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Abstract: In this paper, we propose a novel automatic multi-target registration framework for 
non-planar infrared-visible videos. Previous approaches usually analyzed multiple targets together 
and then estimated a global homography for the whole scene, however, these cannot achieve 
precise multi-target registration when the scenes are non-planar. Our framework is devoted to 
solving the problem using feature matching and multi-target tracking. The key idea is to analyze 
and register each target independently. We present a fast and robust feature matching strategy, 
where only the features on the corresponding foreground pairs are matched. Besides, new 
reservoirs based on the Gaussian criterion are created for all targets, and a multi-target tracking 
method is adopted to determine the relationships between the reservoirs and foreground blobs. 
With the matches in the corresponding reservoir, the homography of each target is computed 
according to its moving state. We tested our framework on both public near-planar and non-planar 
datasets. The results demonstrate that the proposed framework outperforms the state-of-the-art 
global registration method and the manual global registration matrix in all tested datasets. 

Keywords: multi-target registration; infrared-visible videos; non-planar; feature matching; 
Gaussian criterion; multi-target tracking 

 

1. Introduction 

Nowadays there is considerable interest in multi-sensor fusion, particularly infrared-visible 
sensor fusion [1–3]. This is because these sensors can provide complementary information for 
scenario analysis. Many applications, ranging from human detection [4], visual surveillance, and 
target tracking to medical imaging [5] can benefit from this fusion. At this time, registration is 
required to align the images (or videos) captured by different sensors, which is a very important 
step to achieve image fusion. Therefore, this paper focuses on studying infrared-visible video 
registration with multiple targets on non-planar scenes (i.e., scenes in which these targets lie on 
different depth planes). 

In previous works, various approaches have been introduced to solve the infrared-visible 
image registration problem, such as area-based methods [6–8] and feature-based methods [9–12]. 
These works led to some progress in improving registration quality or reducing computational time, 
but there are still some difficulties that need to be overcome. Area-based methods adopt area 
information to find a transformation, but they are not well suited for infrared-visible registration, 
since these two kinds of images will manifest different information of a scene [7]. Furthermore, if 
the images are not rectified [8], it will be difficult to precisely align all targets on non-planar scenes 
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in these methods. In consideration of these facts, we choose featured-based methods for accurate 
registration. 

Feature-based methods extract a variety of features for image registration. Though the texture 
information between infrared-visible images is inconsistent, some methods [10–12] can still find 
reliable features. These methods not only can process the planar scene, but also can find a 
frame-wide homography for the near-planar scene (in which targets almost lie in the same depth 
plane). However, they also have some drawbacks. First, they deal with all targets at a single frame 
together to find matches [10,12]. Therefore, they usually have a quite high computational 
complexity. Besides, the global matching strategy may introduce more outliers and reduce the 
quality of matches. Second, the depth differences between targets are very obvious in many 
observed scenes (non-planar scenes). These existing methods [10–12] cannot align the scenes, since 
one global homography is not enough to register the targets on different depth planes, even if it is a 
frame-wide homography. 

To address the above problems, we propose an accurate registration framework. For the 
targets on non-planar scenes, more than one matrix is required to register them. Taking into account 
this fact, our framework achieves non-planar multi-target registration by estimating a homography 
for each target. During this process, we don't need to consider the depth values of the targets. More 
precisely, we first present a novel feature matching strategy. In the strategy, the foregrounds are 
matched. The results are utilized to constrain the feature matching. Then, a reservoir is created for 
each target to save the corresponding matches, and a multi-target tracking method [13] is adopted 
to distinguish different reservoirs. The transformation of each target is computed with all matches 
in its reservoir. The proposed method is very appropriate for visual surveillance, especially when 
the distance of monitoring is frequently varying. In practice, target tracking [14] has been applied in 
the registration domain. They are typically used to extract trajectories for registration. However, the 
purpose of performing tracking in our framework is different from previous works. As in some 
registration methods, we suppose that there are moving objects on the observed scenes, which are 
synchronized in the infrared-visible videos. The significant contributions presented in this paper 
may be summarized as follows: 

First, we propose a novel automatic registration framework for infrared-visible videos, which 
registers every target. The proposed method can implement accurate multi-target registration on 
non-planar scenes. 

Second, a new feature matching strategy is presented to find correspondences, which 
introduces a simple foreground matching algorithm to guide the feature matching. The strategy is 
faster and more robust than global matching strategies.  

Third, we adopt a multi-target tracking method to distribute a reservoir for each target in the 
current frame. For targets with different motion states, their reservoirs are assigned using different 
methods. This way, sufficiently reliable feature pairs are provided to estimate a frame-wide 
homography for each target. 

The rest of this paper is organized as follows: related work in the domain is explored in  
Section 2. In Section 3, we present our proposed method. In Section 4, we provide a description of 
our experiments and summarize the results, followed by our conclusions in Section 5. 

2. Related Work 

The key step of registration is to find correspondences between images (or videos). Most 
approaches have been developed to implement this step. These methods are generally studied for 
homologous sensor pairs, such as visible stereo or remote sensing pairs. It is not straightforward to 
apply them to infrared-visible pairs, since the pairs reflect different phenomena. Infrared sensors 
record infrared radiation emitted by objects, while visible sensors record light reflected from objects. 
Next, we briefly review two types of registration methods: area-based methods and  
feature-based methods. 

2.1. Area-Based Methods 
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Some previous methods developed a few similarity functions to directly measure the relevance 
of the image region, such as region correlation [6] and mutual information [7,15,16]. For the 
methods using region correlation, they first compute the cross-correlation of each window pair in 
two images, and then view the pair with the maximum value as a correspondence. There are some 
problems for these methods, like being unreliable in textureless areas and time-consuming. The 
mutual information could evaluate the information dependence by calculating the entropy of each 
image [15]. In infrared-visible image registration, it was usually applied only on a selected part of 
images, such as the boundaries [16] and the foregrounds [7]. This is because there are obvious 
differences in intensity and texture between two sources. 

Other area-based methods convert images into the frequency domain using Fourier transform 
and then calculate correlations [17]. Compared to region correlation methods, they are relatively 
faster and more robust to the noise. Actually, the above area-based methods could align planar 
scenes, but it is hard to realize precise non-planar scene registration using them. The method 
presented in [8] is able to align non-planar scenes using region information. However, it only can 
process the video pairs which have been rectified, which are not available. 

2.2. Feature-Based Methods 

As the simplest features, points have been universally applied in registration, and a variety of 
algorithms have studied how to match feature points [9,18]. However, extracting features directly 
from infrared-visible images is unreliable because of the texture difference. The boundaries are a 
popular solution since they are usually captured by both sensors. Therefore, most scholars adopt 
edges [19] or features on edges [20]. In their work, the edge information was aligned with different 
ways, such as Gaussian field criterion [21]. However, unprocessed edges are unreliable and easily 
influenced by noise. 

In recent years, foreground detection has been adopted to improve the precision in feature 
extraction. Here, some methods adopt tracking to take advantage of detected foregrounds [22–24]. 
They extract the trajectories of all targets, and then use these trajectories to estimate a frame-wide 
homography for the whole scene. Other approaches directly find features on the contours of 
foregrounds [10–12]. A reservoir is then applied to save matches from different frames. The 
reservoir may be updated by different strategies, such as First in, First out (FIFO) [10] or voting 
based on a RANSAC algorithm [12]. These methods also find only one frame-wide homography. 
Actually, these kinds of methods are proposed to align planar or near-planar scenes. Nevertheless, 
a matrix is insufficient to align multiple targets on different depth planes (but it is enough for one 
target, even if the movement of the target is non-planar). As a result, they are not suitable for 
non-planar scene registration. The work in [11] present the idea of considering each target 
individually, but it does not introduce the approach of matching targets in a complex scene, and 
still computes only a homography for all targets. 

The proposed method is related to the work of [10–12], but we make some important 
contributions to achieve non-planar registration in infrared-visible videos. In our work, we present 
a simple foreground matching algorithm to improve the accuracy of feature pairs. Then, we 
determine a frame-wide homography for every target based on a multi-target tracking method [13]. 
These contributions make our proposed framework more precise and have a more extensive range 
of applications. 

3. Proposed Framework 

Figure 1 illustrates the processes of our method. First, a foreground detection algorithm [25] is 
applied to get foregrounds from raw image pairs. We extract feature points for registration from the 
contour of each foreground. Next, we match the infrared and the visible foregrounds based on two 
shape context descriptors [26]. Feature matching is then performed according to the foreground 
correspondences. For aligning non-planar scenes, we assign a reservoir for each target. Under the 
circumstances, multi-target tracking [13] is needed to distinguish different reservoirs. Following 
that, the homography of a target is estimated with all matches in its assigned reservoir. For 
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ensuring the registration accuracy, we also create a global reservoir to save matches from all targets, 
and then compute a global frame-wide homography. They are used to initialize the newly created 
reservoir and constrain the registration of each target, respectively. In the subsequent subsections, 
we thoroughly introduce each step of the proposed framework. 

 
Figure 1. Overview of our proposed framework. 

3.1. Foreground and Feature Extraction 

This work focuses on registering moving targets on static scenes, so the moving target 
detection is the initial step of our method. The PAWCS algorithm [25] is executed to subtract 
backgrounds, which builds a statistical background model using color and binary features, and 
applies a feedback scheme to identify foregrounds. At this time, morphological operations such as 
closing and hole filling are adopted to get improved candidate foreground blobs. The foreground 
blobs whose areas are relatively very small are abandoned. To solve the foreground fragmentation 
problem, when two blobs are very close (smaller than a fixed distance cD ), and the ratio of their 
areas (small / large) is smaller than a threshold aT , they are merged together. After these, more 
reliable foregrounds can be obtained. Since some deviations may occur during foreground 
detection, we do not adopt all contour points of foregrounds for registration. The Curvature Scale 
Space (CSS) corner detection algorithm [20] is used to extract features from contours, which views 
the contour point with the curvature maximum as a feature. The algorithm can locate features 
accurately with a fast computational rate. 

3.2. Feature Matching 

For infrared-visible image registration, finding feature correspondences is an important and 
challenging step. Previous approaches [10,12] mostly adopt the global matching strategy, in which 
all features from multiple targets are matched simultaneously and globally. Indeed, the 
correspondences should be found only on the corresponding blobs. Therefore, this section presents 
a novel algorithm to process feature matching, which is based on the corresponding relations  
between foregrounds. 

In intersecting fields, the shape information of targets and the spatial relationships between 
objects are mostly preserved. Based on this observation, we can match infrared and visible 
foregrounds by using two descriptors. For a foreground area, its centroid is first computed. We 
build the first shape context descriptor with its own contour points using the method in [26], which 
expresses the disposition of contour points relative to the centroid using a uniform log-polar 
histogram. The descriptor utilizes the shape information. The second shape context descriptor is 
obtained using the contour points from other foregrounds, which displays the relative spatial 
distributions between targets. 
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After describing all foregrounds in infrared and visible images, the 2  text statistic is used to 
measure the similarity between two descriptors, which is defined as: 

2
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K I
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where (k)IS  and (k)VS  represent the K-bin normalized shape contexts of an infrared and a visible 
foregrounds, respectively. We accumulate the 2  statistic values of two kinds of descriptors as the 
cost metric of foreground matching. For an infrared foreground, the visible foreground with 
minimal cost metric is deemed to be its candidate correspondence. The process is executed from 
visible to infrared foregrounds too, since foreground mismatch would seriously reduce the quality 
of feature correspondences. Only when a visible foreground is the candidate correspondence of an 
infrared foreground and vice versa, they would be regarded as a matched pair. 

Kike for the foreground, every feature point is described by a shape context using all contours 
in the image. Equation (1) is also used to measure the descriptor similarity. Then, we match the 
features from each foreground individually. For a foreground in the first image modality, we first 
consider if its corresponding blob existed in the second modality. If it existed, feature 
correspondences are found only on the corresponding blob pair; if not, we find matching points on 
all foregrounds in the second modality. The correspondence problem is solved using the Hungarian 
algorithm [27]. For the matches from various targets, they would be saved in different reservoirs, 
which is detailed in Section 3.3. 

3.3. Reservoir Creating and Assignment 

3.3.1. Reservoir Creating with Gaussian Criterion 

To estimate an accurate frame-wide transformation, various reservoirs have been used to save 
matches from different frames. However, existing reservoirs have some disadvantages. Reference 
[10] presented a FIFO reservoir to preserve matches from N continuous frames. When the 
movements of targets are faint, the reservoir would be filled with matches that are not typical 
enough for calculating a homography. Reference [12] proposed a reservoir using a voting scheme 
based on the RANSAC algorithm [28], but it may save some persistent outliers because the 
RANSAC algorithm is not stable. 

Therefore, we propose a novel reservoir for better correspondence preservation. In which, we 
first calculate the Gaussian distance of each match with the following expression: 

2

2

d ( ( ( )), ( ))exp( C( ( ), ( )))I v
i I v

x i x iE S i S i



     (2)

where ( )Ix i  and ( )vx i  are the infrared and the visible feature points in the match, respectively. 
2

I v( ( (i)), (i))d x x  is the 2L  distance of the point pair transformed by the current matrix H , and 
V( (i),S (i))IC S  represents the descriptor similarity calculated by Equation (1).   represents a range 

parameter, and   is a balanced factor which controls the trade-off between spatial and attribute 
distances of the match. With the Gaussian criterion, we can together consider the matching metric 
and the homography adaptability of the match. When the reservoir is filled, the K-means algorithm 
[29] is used to divide all matches into two groups (inliers and outliers) according to their Gaussian 
distances. For a new match, we will randomly pick one of the outliers and replace it. To show the 
robustness of Gaussian distance, Figure 2 shows the curves of 2L  distance ( 2

2 I, v( )LE d x x ) and 

Gaussian distance ( 2 2
I, v1 exp( ( ) / )Eg d x x    ). We see that using the Gaussian distance makes 

inlier and outlier division become more easy. 
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Figure 2. The curves of 2L  distance (left) and Gaussian distance (right) for various Euclidean 
distances I, v( )d x x . 

3.3.2. Reservoir Assignment Using Multi-Target Tracking 

We need to find the target association in consecutive frames to allot a reservoir for each target. 
Therefore, a multi-target tracking method [13] is adopted, in which KCF trackers and foregrounds 
help each other to take tracking decision. The foregrounds are used to get the sizes of moving 
targets in combination with the outputs of KCF trackers, while KCF trackers are applied to find the 
association and handle some special cases, such as occlusions. By obtaining the output tRF of each 
tracker 1tCF  , the method identifies the moving state of each foreground blob tFOR  such as 
entering, leaving, occlusion and so on. In our work, since infrared targets are more salient, and 
infrared scenes are not easily influenced by shadow and light changing, we track targets in infrared 
videos. Some tracking results of the targets with different states are given in Figure 3. 

 

Figure 3. Representative cases (Case: 1–7) of tracking results for the targets with different moving 
states. The green bounding box shows the output of a tracker. There are seven kinds of moving state, 
as shown in Case (1–7): entering (Case 1), tracking normally (Case 2), fragmentation (Case 3), 
occlusion (Case 4), invisible (Case 5), lost tracking (Case 6) and leaving (Case 7). 

During reservoir assignment, a global reservoir is first created to save matches from all targets. 
Then, we assign a reservoir to each tracker of the current frame based on the tracking results, which 
reserves the matches from the corresponding target. This is discussed as follows: 

 If only one tracker 1t
jCF   is associated with a foreground t

jFOR , it means the target is being 

tracked normally (Case 2 in Figure 3). At this time, the reservoir of 1t
jCF   is directly assigned 

to the tracker t
jCF , and the matches from the foreground t

jFOR  are saved in the reservoir. 

 More than one tracker 1t
jCF   may be associated with a foreground t

jFOR , which could be 

caused by an occlusion (Case 4) or fragmentation (Case 3). We differentiate the two cases 
according to the way presented in [13]: if the area of the blob is smaller than the sum of the two 
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trackers in some consecutive frames, it is very likely caused by fragmentation. Otherwise, we 
assume that two targets are under occlusion. If caused by an occlusion, there are multiple 
trackers t

jCF  for the foreground. The reservoir of each 1t
jCF   is assigned to the 

corresponding tracker t
jCF . Each match from the foreground is saved in the reservoir with the 

tracker closest to the match. If caused by fragmentation, we combine these trackers 1t
jCF   to 

produce a new tracker t
jCF  for the foreground, and merge their reservoirs to bring in a new 

reservoir for the current tracker. The matches from the foreground are reserved in the 
reservoir. 

 If no tracker 1tCF   is associated with a foreground tFOR , it means a new target is entering 
the scene (Case 1) or tracking is lost (Case 6). At this moment, a new tracker t

jCF  is built for 

the foreground, and a new reservoir is created to keep the point pairs in the foreground. Since 
the matches in the reservoir may be insufficient to estimate a reliable homography, we 
introduce part of matches from the global buffer to the reservoir. Next, if caused by tracking 
failure, the lost reservoir would be merged into the new reservoir, when the lost tracker 1t

jCF   

is recalled. 

If a tracker 1t
jCF  is not associated with any foreground tFOR , it means a target is invisible 

(Case 5) or leaving (Case 7). In this case, the tracker 1t
jCF   and its reservoir are saved in some 

consecutive frames. As presented in [13], if the tracker is associated with a foreground again in 
these frames, the lost tracker and the reservoir are recalled. Otherwise, the tracker and the reservoir 
are both removed. 

3.4. Homography Estimation 

To align multiple targets accurately, we estimate a homography for each target. For a 
foreground blob, one or more matrix is required, whose quantity is the same as the number of 
reservoirs corresponding to the foreground. Since the matrices from a single frame may be noisy, 
frame-wide transformations are adopted. Now, we also need a global matrix to ensure registration 
precision. The current global matrix curHg  is first computed with all matches in the global 
reservoir using the RANSAC algorithm [28]. Then, we calculate the overlap error of a 
transformation using: 

( , )( ) 1
( , )

i v

i v

S M SE M
S M S

 
 

 
 (3)

where M  is a transformation matrix, ( , )iS M  is the transformed infrared foreground image, and 
vS  represents the original visible foreground image. After getting the overlap errors 1tE   (for the 

reference global frame-wide 1tMg  ) and curE  (for the current homography curHg ), we update the 
global frame-wide matrix with: 

1 1

1

(1- )  +    if  
                                otherwise    

t cur cur t
t

t

Mg Hg E E
Mg

Mg
  



   
 


 (4)

where   is an adaptation factor. We used a fixed value in our experiment. After that, we can 
estimate a global frame-wide homography for the whole scene. 

For an infrared foreground blob IR
iB , we have to confirm its corresponding visible foreground 

before aligning it. Under this condition, if there is a matched visible foreground during the 
foreground matching (Section 3.2), the visible foreground is viewed as the correspondence vis

iB . 
Otherwise, we transform the infrared foreground with the global matrix tMg . The visible 
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foreground that has the lowest overlap error with the transformed foreground is chosen as the 
correspondence vis

iB . After that, we start to estimate the homography of this foreground pair. 
Algorithm 1 describes our strategy in detail. If there is only one reservoir for the infrared 

foreground IRB , we first estimate a current homography curHq  with all matches in the reservoir 
curR using the RANSAC algorithm [28], and get its overlap error curE  (Equation (3)). We then 

discuss the moving state. If tracking normally, the previous frame-wide matrix 1tMq  is viewed as 
the reference frame-wide 1t

refMq  ; if fragmentation, there are multiple previous matrices. We 

consider their average as the reference frame-wide 1t
refMq  ; if entering or lost tracking, there is no 

frame-wide homography in the previous matrix group 1{ }tMq  . In this case, the global matrix tMg  
is selected as the reference frame-wide 1t

refMq  . Next, we determine the overlap error 1t
refE  of 1t

refMq   

(Equation (3)). According to curHq , curE , 1t
refMq  , and 1t

refE  , we last estimate the current frame-wide 

homography tMq  using Equation (4). 
If there is more than one reservoir for the infrared foreground, it means some targets are 

occluded. At this time, we divide the foreground IRB  into M (the number of reservoirs) 
targets 1 2 M, ,....IR IR IRB B B . Each target includes the foreground pixels in its tracker, and the pixels that are 
not in any trackers but are closest to the tracker. For each target IR

jB , we first compute the current 

matrix cur
jHq  and the current overlap error cur

jE . Then, we view the corresponding previous 

frame-wide 1t
jMq   as 1t

refMq  , and confirm its overlap error 1t
refE  . According to cur

jHq , cur
jE , 1t

refMq  , 

and 1t
refE  , we estimate the current frame-wide homography t

jMq  for the target (Equation (4)). With 

the homography estimate algorithm, we can calculate an accurate frame-wide transformation for 
each target. 

Algorithm 1: Estimating homography for a foreground in the current frame.
Input: Infrared foreground: IRB . visible foreground: VISB . Moving state: IRF .
Reservoir group: { }curR . Previous homography group: 1{ }tMq  . Global matrix: tMg  
Output: current frame-wide homography group: { }tMq  
Proceduce Homography estimation 

If { }) 1 ( cursize R   
cur curR Hq  , 1 ( , ) / ( , )IR cur VIS IRcur cur VISB Hq B B HE q B      . 

If = tracking normallyIRF  1 1t t
refMq Mq   end if; 

If fragmenta i= t onIRF  1 1
1

/Nt t
ref ii

Mq Mq N 


  end if; 

If = entering or lost trackingIRF  1t
ref tgMq M   end if; 

1 1 11 ( , ) / ( , )  IR t VIS IR t VIS
ref ref

t
ref B Mq B B Mq BE         

1 1, , ,cur t t
ref

cur t
refE EHq Mq Mq    

Else 
1 2 M, ,....IR IR IR IRB B B B   

For 1 2, ,...cur cur cur cur
j MR R R R  do 
cur cur
j jR Hq  , 1 ( , ) / ( , )IR cur VIS IR cur VIS

j j
cur
j j jB Hq B B Hq BE        

1 1t t
ref jMq Mq  , 1 1 11 ( , ) / ( , )  IR t VIS IR t VIS

j ref j ref
t
ref B Mq B B Mq BE         

11, ,,cur t t
j ref

cur t
j ref jEH M MqEq q      

End for 
End if 

End proceduce 

4. Experiments and Results 
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4.1. Experiments 

4.1.1. Datasets 

To manifest the advantage and generalization of the propose framework, experiments were 
performed on both near-planar and non-planar scenes, although the framework is presented for 
non-planar video scene registration. For near-planar scenes, we employed the public LITIV dataset 
provided by Torabi [22], which includes nine video pairs of 240 × 320 resolution. In these videos, all 
targets are on near-planar scenes since they were viewed from afar. Furthermore, ground-truth 
matrices are provided, which were used to produce the results of manual registration. For 
non-planar scenes, there are few public datasets with videos which contain multiple targets on 
different depths for IR-visible registration. The OTCBVS dataset provided by Bilodeau [8] is the 
only one we found. Therefore, four raw video pairs of 360 × 480 resolution in the dataset were used 
in our experiment. Since the ground-truth is not provided by the dataset, we created our own 
ground-truth transformations by manually selecting some identifiable points in the infrared and 
visible images. 

4.1.2. Approach Comparison 

In the proposed method, different matrices are computed to align multiple targets. Therefore, 
we first compared our method with a state-of-the-art global registration method [12]. In which, all 
targets are analyzed together, and a global frame-wide homography is estimated for the whole 
scene. Detailed, the method directly matched contour points, and saved the feature pairs from each 
target in a reservoir based on a voting scheme. Next, we also compared the proposed framework 
with manual ground-truth to show the superiority of our framework. It must be declared that the 
ground-truth represents the manual registration matrix rather than the reference image. The error 
of it is not necessarily equal to 0. 

In Section 3.4, the global transformation matrix has been estimated to ensure registration 
accuracy. To validate the robustness of the proposed feature matching strategy and the reservoir, 
we introduce the proposed global matrix as a comparison in our experiments. Since a global 
homography is difficult to realize for non-planar registration, the results on OBCTVS dataset cannot 
directly reflect the robustness of the matching strategy and reservoir. Therefore, the method is 
applied only on the near-planar database. For fairness, all methods are tested on the same 
foreground images, and the same error function is adopted to evaluate these methods. Besides, the 
parameters used by every method were identical in both methods. 

4.1.3. Evaluation Metric 

Most previous methods [10,12,22] created a pair of binary polygons for each sequence pair by 
manually selecting some matched points. They used the overlap error between the transformed 
polygons as evaluation metric. However, there are certain limitations for the metric. First, it only 
can assess the registration quality for perfectly planar scene. For near-planar or non-planar scene, 
the metric is useful only when all targets lie on the same depth with the polygons. Otherwise, the 
polygon overlap error is not competent to measure registration accuracy. Besides, these polygons 
were built for global registration methods, which calculate only one registration matrix for a frame 
pair. It could not be adopted in the proposed framework, because more than one matrix may be got 
simultaneously in our method. 

Under the circumstances, we considered the overlap error between the transformed infrared 
and the corresponding visible foreground images as registration error function, which is defined as: 

1, 2, ...,
1 1

( ) 1 ( ( , ) / ( , ) )N NIR IR
c N k v k vk kk k

E M B M S B M S
 

        (5)

where kM  is the transformation matrix of the thk  infrared target IR
kB , and 

1
( , )N IR

kkk
B M


  is the 

union set of all transformed infrared targets. vS  represents the raw visible foreground image. The 
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error function can measure the alignment of each target for all methods. To be clear, for a frame pair, 
if there is no target in infrared or visible image, the overlap error of this pair is not considered. 

4.1.4. Parameter Settings 

There are mainly five parameters in our method: cD , aT , 2 ,   and  . Parameters cD  
and aT  control the merging of detected foreground blobs. Only when the nearest distance between 
two foregrounds is smaller than cD  and their area ratio is lower than aT , the foreground blobs 
could be merged. To solve the foreground fragmentation problem but not merge two targets 
together, the experiments show 50 pixelscD   and 0.2aT   are the best set. Parameter 2  is the 

range factor in calculating the Gaussian distance of each match. Typically, we set 2 100  . 
Parameter   presents the trade-off between the spatial and attribute information of a 
correspondence. Since we prefer to consider the adaptability of the point pair to the transformation 
matrix, the parameter   is set to 0.5. Parameter   is the weight factor for estimating frame-wide 
homography. To find a middle ground between updating matrix timely and avoiding the local 
optimum, we initialize 0.25  . 

4.2. Results 

4.2.1. Results for Near-Planar Scenes 

Figure 4, Tables 1 and 2 display the registration errors of all algorithms on near-planar scenes. 
We find that the proposed global registration matrix usually has lower errors than the registration 
method presented by Charles [12], although the method also computes a global transformation. 
This is essentially because our matching strategy and reservoir can provide more accurate 
correspondences for homography estimation. In the dataset, the sizes of infrared scenes are quite 
different from those of visible scenes, so the distribution and number of targets may be not 
consistent between two types of images. The phenomena are very universal throughout each 
sequence pair. In this case, the proposed feature matching strategy can prevent more mismatches 
by finding target correspondences, and the reservoir can distinguish inliers and outliers more 
exactly by using Gaussian criterion.  
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Figure 4. Accuracy comparisons of the ground-truth, the method of [12], the proposed global matrix 
and our framework using the foreground overlap errors on the LITIV dataset. 

Table 1. Average overlap errors for all sequence pairs of the LITIV dataset (red entries indicate the 
best results). 

Sequence Pair Ground-Truth Charles et al Proposed Global Matrix Proposed Framework
LITIV-1 0.4515 0.4850 0.4227 0.4155 
LITIV-2 0.5290 0.7196 0.5031 0.4701 
LITIV-3 0.3646 0.5545 0.3340 0.3257 
LITIV-4 0.3418 0.4838 0.2854 0.2742 
LITIV-5 0.4085 0.9130 0.4047 0.3908 
LITIV-6 0.4564 0.7852 0.4395 0.3972 
LITIV-7 0.5380 0.7524 0.4947 0.4766 
LITIV-8 0.6232 0.9118 0.5840 0.4670 
LITIV-9 0.3533 0.8091 0.3107 0.2774 

Table 2. Minimum overlap errors for all sequence pairs of the LITIV dataset (red entries indicate the 
best results). 

Sequence Pair Ground-Truth  Charles Et. Al. Proposed Global Matrix Proposed Framework
LITIV-1 0.1571 0.1308 0.1135 0.1075 
LITIV-2 0.1678 0.1971 0.1187 0.1250 
LITIV-3 0.0804 0.1093 0.0897 0.0844 
LITIV-4 0.1851 0.1746 0.1504 0.1419 
LITIV-5 0.1922 0.5075 0.0824 0.1875 
LITIV-6 0.1675 0.1923 0.1475 0.1311 
LITIV-7 0.3125 0.2343 0.2188 0.2222 
LITIV-8 0.3107 0.7281 0.1837 0.1832 
LITIV-9 0.2072 0.6036 0.1509 0.1465 

We also see that the proposed non-planar registration framework succeeds in extracting the 
proposed global matrix in all video pairs. The situation is caused by the non-planar characteristic of 
the LITIV dataset. In the dataset, the scenes don’t fully follow the planar assumption, especially for 
LITIV-8 and LITIV-9. In this case, the framework has a better performance since it can eliminate the 
influence of varying depths by aligning each target individually. 

As shown in these results, our method and the proposed global matrix outperform 
ground-truth homography in all sequence pairs. This is normal and desirable performance, because 
there are some disadvantages for the ground-truth. First, the deviation is unavoidable when 
establishing a ground-truth by manually selecting some point pairs. Second, the ground-truth 
produces an ideal registration only for a planar scene. However, the moving of the target is not 
always on one depth plane. Hence, methods that aim to align the current targets have a higher 
precision. For the proposed method, it is also because the method can implement multi-target 
registration on non-planar scenes. In addition, we find there are some strong increases in the error 
curves of these methods, which are caused by the size differences between infrared and visible 
scenes. 

4.2.2. Results for Non-Planar Scenes 

The registration results on non-planar scenes are shown in Figure 5. The figure contains three 
groups, which present the results of each method, respectively. There are five images in each row of 
a group, and the quantities of targets in these images vary from one to five. We superimpose the 
transformed infrared images on the visible images to display the registration outputs. 
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(a) The registration results using the ground-truth. 

 

(b) The registration results using the global method [12]. 

 

(c) The registration results using the proposed method. 

Figure 5. Registration results on some typical frame pairs in the OTCBVS dataset using the manual 
ground-truth homography, the global method in [12] and the proposed framework, as shown in 
group (a–c). Each group contains two sets of images, which is displayed by two rows. Each row 
contains five images with different numbers of targets. 

We see that the ground-truth cannot align non-planar scenes, even if there is only one target on 
the scenes. The reason for the situation is that the ground-truth can merely register a depth plane. 
For any target, if it does not lie on the plane, the ground-truth has no ability to align it. This declares 
that the global ground-truth matrix is not applicable to non-planar registration. The second group 
shows the global registration method in [12] can align the scenes which contain one target. This is 
because the frame-wide homography provided by the method is competent in registering one 
target, even it moves in three-dimensional space. However, the method fails to complete the 
registration of multiple targets, since one matrix is not enough to eliminate the influence of depth 
differences between targets. The last group illustrates that our method always succeeds in aligning 
all targets on non-planar scenes, regardless of the number of targets. This is no surprise, since our 
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framework provides a frame-wide matrix for each target, and then eliminates the effect of 
non-planar characteristic. This guarantees that the proposed method could achieve better 
performance on non-planar multi-target registration than the global method and the ground-truth. 

Tables 3 and 4 give the average and minimum registration errors for all sequences in the 
non-planar dataset. According to these tables, we observe that our framework significantly reduces 
the average registration error of each sequence pair (24.14% for Video 1, 35.32% for Video 2, 10.12% 
for Video 3 and 15.32% for Video 4). Moreover, our method could achieve much lower minimum 
errors for all studied pairs compared to the method proposed in [12] and the ground-truth. These 
experimental data reveals that the propose framework is more suitable for non-planar registration 
than both the automatic and manual global registration methods. 

Table 3. Average overlap errors for all sequence pairs of the OTCBVS dataset (red entries indicate 
the best results). 

Sequence Pair Ground-Truth Charles et al. Proposed 
OTCBVS-1 0.7220 0.7176 0.4762 
OTCBVS-2 0.6983 0.7423 0.3891 
OTCBVS-3 0.6920 0.5537 0.4525 
OTCBVS-4 0.6346 0.5839 0.4307 

Table 4. Minimum overlap errors for all sequence pairs of the OTCBVS dataset (red entries indicate 
the best results). 

Sequence Pair Ground-Truth Charles et al. Proposed 
OTCBVS-1 0.2582 0.2300 0.1764 
OTCBVS-2 0.3806 0.3263 0.1594 
OTCBVS-3 0.4291 0.2981 0.2329 
OTCBVS-4 0.2797 0.1978 0.1457 

In order to reflect the global performance of these methods, we also present error-to-time 
curves for every video pair, as shown in Figure 6. We see that our method produces the best results, 
and our error curves are mainly below the curves of two comparison methods. The proposed 
framework has the ability to achieve a higher precision and stabilize at this level more often than 
the global registration methods. 
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Figure 6. Accuracy comparisons of the ground-truth, the method of [12] and our framework using 
the foreground overlap errors on the OTCBVS dataset.  

Then, we encounter two questions: why are the registration errors still important? Why are our 
error curves not smooth? There are two simple answers to these questions. The first one is the 
occlusion. Our framework is able to process slight partial occlusion. However, when a target is 
seriously occluded by others, the framework may identify all as one target, and calculate only one 
homography for these targets. As a result, the registration is not accurate. Serious occlusion is 
frequently happening throughout each sequence, which leads to the high overlap errors and the 
fluctuation of registration errors. Registration results on some occlusion frames occurred in  
OTCBVS-1 are presented in Figure 7. 

 
Figure 7. Registration results on some serious occlusion frames in the OTCBVS-1. The results are not 
accurate since only one homography is computed for multiple targets under the occlusion. 

The second answer is the deviation in foreground detection. Actually, foreground detection is 
imperfect in most infrared and visible images, and foreground fragmentation may occur in some 
frames. Using the noisy foreground frames, the high overlap errors are obtained in these frames, 
even if we have estimated an accurate transformation for each target. Therefore, the errors are still 
important and unstable. Some noisy foreground pairs and the registration results on them are 
shown in Figure 8. We find that the proposed framework could achieve acceptable registration 
accuracy in these pairs. This is because the feature matching algorithm and reservoir used by our 
method ensure that we can get plenty of accurate matches from various frames for registration. This 
is to say, the proposed method is robust to deviations in foreground extraction. 

5. Conclusions 

In this paper, we have presented a multi-target independent analysis framework to implement 
non-planar infrared-visible video registration. The method finds foreground correspondences in 
order to match feature points more robustly and faster. To align multiple targets on different depth 
planes, we adopted a multi-target tracking method to assign a reservoir for each target. 
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Figure 8. Noisy foreground frame pairs in the OTCBVS dataset and the registration results on these 
frames. The first row is infrared foregrounds and the second is visible foregrounds. The last row is 
the registration results on these pairs. 

For targets with different moving states, their frame-wide homography is estimated in 
different ways. Experimental results showed that the proposed framework could precisely register 
multiple targets on both near-planar and non-planar scenes. It also outperformed a recent 
state-of-the-art global registration method and the manual ground-truth. Furthermore, the 
experiments verified that our method is robust to foreground fragmentation. 
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