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Abstract: GyroWheel is an integrated device that can provide three-axis control torques and two-
axis angular rate sensing for small spacecrafts. Large tilt angle of its rotor and de-tuned spin rate 
lead to a complex and non-linear dynamics as well as difficulties in measuring angular rates. In this 
paper, the problem of angular rate sensing with the GyroWheel is investigated. Firstly, a simplified 
rate sensing equation is introduced, and the error characteristics of the method are analyzed. 
According to the analysis results, a rate sensing principle based on torque balance theory is 
developed, and a practical way to estimate the angular rates within the whole operating range of 
GyroWheel is provided by using explicit genetic algorithm optimized neural networks. The angular 
rates can be determined by the measurable values of the GyroWheel (including tilt angles, spin rate 
and torque coil currents), the weights and the biases of the neural networks. Finally, the simulation 
results are presented to illustrate the effectiveness of the proposed angular rate sensing method with 
GyroWheel. 

Keywords: GyroWheel; angular rate sensing; large tilt angles; genetic algorithm; artificial neural 
network 

 

1. Introduction 

The development of small spacecraft has received a lot of attention in recent years [1–4]. Small 
spacecraft designers face difficult hurdles such as mass, power and volume constraints, which 
significantly impact its cost. It inherently makes sense that some subsystems could be combined 
where possible into a lighter, cheaper, smaller, commercially available and proven system [5–7]. 
GyroWheel, a novel attitude determination and control system [7], is such a multi-function system, 
and it offers the potential to meet the constraints and cost requirements for small spacecrafts. It 
provides control torques about three axes, and measures the spacecraft angular rates about the two 
axes perpendicular to the spin directions simultaneously [8,9], which improves the integration and 
efficiency of attitude control system in small spacecrafts. 

The conception of GyroWheel is inspired by a dynamically tuned gyroscope (DTG). Compared 
with a DTG, it has a larger rotor and tilt angles, as well as a time-varying spin rate due to its multi-
function capability. For a DTG, the tilt of the rotor with respect to its case is regulated about null, and 
it is operated in the tuned condition all the time [10–12]. Therefore, the control torque required to 
maintain its zero tilt is a direct measure of the external angular rates of the DTG’s case about the two 
orthogonal axes lying in the rotor radial plane. The rate sensing principle of the DTG is quite simple. 
However, GyroWheel is frequently operated in a de-tuned condition and at a non-zero tilt. The 
control torque required to hold the rotor spin axis at a constant tilt angle is a function of two 
independent effects: the torque induced by the spacecraft angular rates and the torque required to 
overcome the de-tuned stiffness, damping and gyroscopic coupling [8]. Hence, it is more complicated 
to measure spacecraft angular rates with GyroWheel. 
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A few studies about angular rate sensing with GyroWheel have been conducted. Ower at 
Carleton University derived a three-body, non-linear dynamic model of the GyroWheel based on 
Lagrange’s equations, and developed a rate sensing method by linearizing the non-linear model 
around the operating point of zero spin axis tilt with a constant spin rate [8]. However, the 
measurement error rises significantly with the increase of the tilt angles due to the linearization at 
zero tilt, which limits its application in the large tilt conditions. Considering the rate sensing problems 
under large tilt conditions, the linearization errors were compensated with polynomial functions of 
tilt angles, and a real-time linearization model at arbitrary tilt angles was proposed [13]. Both 
approaches requires an exact knowledge of the GyroWheel parameters, such as the moments of 
inertia, the torque factors, the stiffness and the damping coefficients, the majority of which are 
difficult to identify. Hence the error compensation and real-time linearization are limited in practical 
engineering. In order to improve the measurement accuracy of the GyroWheel, Hall studied the 
problems of GyroWheel calibration, which was used to avoid the influence of changes in temperature 
and gravitational acceleration [14]. In addition, a D-optimal multi-position calibration method was 
developed to reduce the influence of random noises [15,16]. However, neither the accuracy loss 
caused by zero tilt linearization nor the identification of system parameters has been considered in 
these studies. 

Actually, the challenges to realize rate sensing with GyroWheel consist in the complexity and its 
non-linear model, and the identification of the model parameters. artificial neural networks (ANN) 
have been successfully applied to solve problems involving modeling complex dynamic  
systems [17–20]. ANNs are parallel computing systems inspired by biological neural networks. They 
can be defined as a set of elementary processing units that communicate with each other by weighted 
connections. Each unit receives input signals from near units or external sources and gives an output 
signal, which propagates to other units or constitutes a part of the network output [21].The ANN-based 
models differ from conventional models, as they are based on experimental data rather than 
theoretical derivations [22,23]. Therefore, a soft sensor using an ANN as a black box model can be 
used to obtain an estimate of a variable in complex dynamic systems [20]. Besides, global 
optimization algorithms are often added to the training process of the ANNs to avoid local minima, 
which leads to false convergence of the ANN models [22,24–26]. Motivated by these facts, the 
problem of angular rate sensing with GyroWheel is investigated in this paper. A practical rate sensing 
approach is presented based on genetic algorithm (GA) optimized neural networks, which can be 
applied to measure angular rates within the whole operating range of GyroWheel. 

The remainder of this paper is as follows. In Section 2, the mechanical configuration of the 
GyroWheel system is described, and the dynamic equations are derived by applying the Lagrange 
equations of the second kind. In Section 3, a linearization of the dynamic model is performed for the 
purpose of rate sensing, and the characteristics of the rate sensing errors are analyzed. In Section 4, 
according to the error analysis results, a rate sensing principle based on torque balance theory is 
developed. Using explicit genetic algorithm optimized neural networks, a practical way to estimate 
the angular rates with the GyroWheel is provided. Then simulations are performed to illustrate the 
effectiveness of the proposed rate sensing method. Section 5 concludes this paper and outlines areas 
for future studies. 

2. Overview of GyroWheel System 

2.1. GyroWheel Mechanical Configuration 

GyroWheel is a novel attitude determination and control system. The structure of GyroWheel is 
inspired by a DTG, but it has a significantly larger rotor compared to the classical DTG. It is a 
mechanism based on the fundamental law of precession, which is the most common method of 
measuring angular rotations. To provide control torques, its spinning rate is constantly varying and 
it is always operated at large tilt angles. In this sense, it is a form of double gimbaled control moment 
gyroscope (CMG), but based on using a spinning flex-gimbal system as opposed to the usual  
non-spinning motor driven gimbals that are typically used in CMG torque actuators. A cross-sectional 
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view of the GyroWheel system is shown in Figure 1 [8,14]. The system consists of the following 
components: case, spin motor, gimbal assembly, rotor, tilt sensors, permanent magnets, torque coils, 
controller and drive electronics. 

Drive shaft Gimbal

Rotor Tilt sensor

Permanent 
magnets

Torque 
coils

Embedded controller 
and drive electornics Spin motor

Optical cube

 
Figure 1. Cross-sectional view of the GyroWheel system. 

The gimbal assembly consists of a hollow cylindrical section with two pairs of crossed-flexure 
pivots. The rotor is coupled to the drive shaft of the spin motor through the gimbal assembly. A 
brushless direct current (DC) motor spins the gimbal and the rotor, and the motor is designed as part 
of the GyroWheel case. Torque coils that are fixed to the stationary case, are used to interact with 
permanent magnets mounted in the rotor to allow steering the rotor angular momentum vector. The 
tilt angles of the rotor is measured by non-contact sensors located at 90 degree intervals around the 
case. In order to measure the external angular rates, the GyroWheel system is used in a torque 
rebalance mode. The tilt sensor signals are amplified and delivered to the rebalance loop which 
processes the signal and produces a torque command which is delivered to the torque coil. This 
causes the torque coil to apply a torque to the rotor so as to maintain the rotor in the desired position. 

2.2. Dynamic Models of GyroWheel System 

As seen in Figure 1, the GyroWheel system consists of three bodies: a motor shaft, a gimbal and 
a rotor. Four body-fixed reference frames are defined to facilitate the derivation of dynamic models. 
They are the case frame ( :c c c cF O x y z− ), the motor frame ( :m m m mF O x y z− ), the gimbal frame  
( :g g g gF O x y z− ), and the rotor frame ( :r r r rF O x y z− ). The case frame cF  is attached to the spacecraft 

body. Motion of the three bodies is constrained except about three gimbal angles , x yθ θ  and zθ , as 

shown in Figure 2. 
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Figure 2. Reference frames and gimbal angles. 

According to Figure 2, the attitude of the rotor can be described by the following gimbal-
referenced rotation sequence: a rotation zθ  about the cz -axis, followed by a rotation xθ  about the 

mx -axis and then a rotation 
yθ  about the 

gy -axis. 

The spacecraft angular velocity respect to the inertial frame is expressed in the case frame cF : 

T

c cx cy czω ω ω =  ω  (1) 

According to the above rotation sequence, the angular velocity of the motor shaft expressed in 
the motor frame mF  is given by: 

0 0
z

TT

m mx my mz z θ cω ω ω θ  = = + ⋅   ω T ω  (2) 

Similarly, the gimbal angular velocity expressed in the gimbal frame 
gF , and the rotor angular 

velocity expressed in the rotor frame rF  can be calculated as following: 

0 0
x

TT

g gx gy gz x θ mω ω ω θ  = = + ⋅   ω T ω  (3) 

0 0
y

TT

r rx ry rz y θ gω ω ω θ  = = + ⋅   ω T ω  (4) 

where , , 
x y zθ θ θT T T  are rotation matrixes, which describe the transform relations between adjacent 

frames. 
The Lagrangian for the GyroWheel system can be defined by: 

L T V= −  (5) 

where T is the total kinetic energy of the system, and V is the potential energy of the system. They 

take the following form: 
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( )
, , , , , ,

2 2 2

2 2

1
2
1
2

mi mi gi gi ri ri
i x y z i x y z i x y z

x x y y

T I ω I ω I ω

V K θ K θ

= = =

 
= + +  

 

= +

∑ ∑ ∑
 (6) 

where , x yK K  are the stiffness coefficients of the two crossed-flexure pivot pairs. =, , , , ,mi gi riI I I i x y z

are the moments of inertia of the motor shaft, the gimbal and the rotor respectively. To simplify the 
derivation without loss of accuracy, the transverse inertias and spin inertias are rewritten as: 

= = = = = =, , , gx gy gt rx ry rt gz gs rz rsI I I I I I I I I I  (7) 

To derive the dynamic models of the GyroWheel system, ( ), ,x y zθ θ θ  are defined as the 

generalized coordinates. Then the dynamic models can be determined by applying the Lagrange 
equations of the second kind: 

 ∂ ∂
− = −   ∂∂ 

 ∂ ∂
  − = −
  ∂∂ 
 ∂ ∂

− =   ∂∂ 

gx x x
xx

gy y y
yy

gz
zz

d L L T C θ
dt θθ

d L L T C θ
dt θθ

d L L T
dt θθ











 (8) 

where , , gx gy gzT T T  are the generalized control torques acting about the three gimbal axes. , x yC C  

are the damping coefficients of the two crossed-flexure pivot pairs, and 
x y gC C C= = . 

By calculating the partial derivative terms in Equation (8), the dynamic models can be expressed 
in the following form: 

( ) ( ), , ,+ + = +g nl c cM x x Cx Kx T F x x ω ω     (9) 

where 

( )

( ) ( ) ( ) ( ), , , , , , , , , , , ,

   = =   
     
     

= = =     
     

     

 =  
= +

1 2

2 3

2
1

, 

0 00 0 0
0 , 0 0 , 0 0

0 0 0 0 0 0
x

x

y

T T

x y z g gx gy gz

g x

rt rt θ g y

rt θ

T

nl c c nlx c c nly c c nlz c c

rt θ r

θ θ θ T T T

CI I K
I I S C K

I I S I

f f f

I I C I

x T

M x C K

F x x ω ω x x ω ω x x ω ω x x ω ω       

( )

+

= −

= + + + + +

2

2 2

2 2 2 2 2 2 2
3

1
2

y

x y

x y x x y x x

s θ gt

rs rt θ θ

rt θ θ rt θ rs θ θ gt θ gs θ mz

S I

I I I C S

I I C S I S I C C I S I C I

  

The detailed expressions for the non-linear torque functions can be found in Reference [8]. 
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3. GyroWheel Rate Sensing for Small Tilt Conditions and Error Analysis 

3.1. Rate Sensing Equation for Small Tilt Conditions 

A linearization of the dynamic Equation (9) is required for the purpose of rate sensing. The 
linearization occurs about the nominal operating condition of zero tilt with a constant spin rate sω , 
where 

     
     = = =     
          

0 0 0

0 0 0
0 , 0 , 0

0s sω t ω
x x x   (10) 

According to Lyapunov’s linearization method, the dynamic equation can be expressed in the 
following form: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ). .

0 0 0 0 0 0 0 0
= = = = = = = =
= = = = = = = =

∂ ∂ ∂
− + − + −

∂ ∂ ∂
∂ ∂ ∂ ∂

= + − + − + + +
∂ ∂ ∂ ∂0 0 0 0 0 0 0 0

0 0 0

0 0
, , , , , , , ,
, , , ,

, , ,
c c c c c c c c

nl nl nl nl
g c c h o t c c

c cx x x x x x x x x x x x x x x x
ω ω ω ω ω ω ω ω

Mx Cx Kx
x x x x x x

x x x
F F F FT x x x x ω ω F x x ω ω
x x ω ω   

   

 

   

 

    

 

 (11) 

Ignoring the higher order terms ( ). . , , ,h o t c cF x x ω ω 
, Equation (9) is simplified to a linearized 

dynamic equation. 
Note that the control torques are generated and the rotor tilt angles are measured with respect 

to the case. Therefore, it is necessary to describe the motion of the rotor with respect to the case frame. 
The relationship between the case-referenced angles ( ),x yφ φ  and the gimbal angles ( ),x yθ θ  is 

given by: 

( ) ( )
( ) ( )

cos sin
sin cos

    − 
=    
    

x xs s

y ys s

φ θω t ω t
φ θω t ω t

 (12) 

Without loss of accuracy, 2 sω  cyclic terms induced by frame transformation and angular 
acceleration terms are ignored, the rate sensing equation of the GyroWheel system can be written as: 

( )

( )

= − + + − −

= − − − −

1

1

cx cy g y d y d s x g s x
s

cy cx g x d x d s y g s y
s

ω T C φ K φ I ω φ C ω φ
h

ω T C φ K φ I ω φ C ω φ
h

 

 

 (13) 

where +   = + = − − = +   
  

21, , 
2 2 2
gs x y

s rs s d gt gs s d rs gt

I K K
h I ω K I I ω I I I , , cx cyT T  are control torques 

described in the case frame. 
To ensure rate sensing accuracy, the GyroWheel is applied as a time-sharing system [13]. It has 

two working modes: actuator mode and sensor mode. When the GyroWheel is used as a sensor to 
measure spacecraft angular rates, the tilt angles of the rotor and the spin rate are kept constant. 
Therefore, the rate sensing equation is reduced to 

− +  = + − − −  
  

+  = − − − +  
  

2

2

1 1
2 2

1 1
2 2

cy x y
cx y gt gs s y g s x

s s

x ycx
cy x gt gs s x g s y

s s

T K K
ω φ I I ω φ C ω φ

h h

K KTω φ I I ω φ C ω φ
h h

 (14) 
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3.2. Error Analysis of GyroWheel Rate Sensing 

3.2.1. Linearization Error 

Since the rate sensing Equation (14) is obtained by linearizing the dynamic equation around the 
zero tilt operating point, it can be applied to measure spacecraft angular rates for small tilt conditions. 
Owing to the elimination of the higher order terms ( ). . , , ,h o t c cF x x ω ω 

 in Equation (11), the rate sensing 
errors rise significantly when the GyroWheel is operated at large tilt angles. 

The physical parameters of the GyroWheel system are presented in Table 1. 

Table 1. Physical parameters of GyroWheel system. 

Parameters Values 
Rotor transverse inertia Irt 3.458 × 10−3 kg·m2 

Rotor spin inertia Irs 6.402 × 10−3 kg·m2 
Gimbal transverse inertia Igt 1.276 × 10−5 kg·m2 

Gimbal spin inertia Igs 1.805 × 10−5 kg·m2 
Stiffness coefficients Kx, Ky 0.092 Nm/rad 

Damping coefficient Cg 3.100 × 10−8 Nm/(rad/s) 

Tile range = +2 2
x yφ φ φ  ° ≤ ≤ °0 4φ  

Range of spin rate sω  133.52 rad/s ≤ sω  ≤ 180.64 rad/s 

According to Table 1 and Equation (14), the relationship between the rate sensing errors and the 
tilt angles is shown in Figure 3. 

  
(a) (b) 

  
(c) (d) 

Figure 3. Relationship between rate sensing errors and tilt angles: (a) X-axis rate sensing error versus 
x-axis tilt; (b) Y-axis rate sensing error versus y-axis tilt; (c) X-axis rate sensing error versus y-axis tilt; 
(d) Y-axis rate sensing error versus x-axis tilt. 

According to Figure 3, we find: 
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1. The rate sensing errors caused by linearization at zero tilt are significantly correlated to the tilt 
angles of the GyroWheel rotor and the spin rate. The rate sensing errors increase with the 
increasing of the tilt angles and the increasing of the spin rate. 

2. The rate sensing Equation (14) can be applied to measure spacecraft angular rates under small 
tilt conditions where the rotor tilt angles are less than 0.5°. However, when the GyroWheel is 
operated at a tilt angle of 4°, the rate sensing errors are up to 10−2 rad/s. Obviously, the rate 
sensing accuracy is far from satisfactory under large tilt conditions. 

3. In an effort to ensure the rate sensing accuracy, the linearization errors should be compensated. 
The compensation terms are functions of tilt angles and spin rate, and can be denoted as 

( ) ( ), , , , ,nlx x y s nly x y sδ φ φ ω δ φ φ ω . 

3.2.2. Parameter Error 

In Equation (14), the control torques , cx cyT T  are proportional to the current in each torque coil. 

Generally, the control torque terms can be expressed in the following form: 

= =, cycx
tx x ty y

s s

TT k i k i
h h

 (15) 

where , x yi i  are the currents in the torque coils, and , tx tyk k  are torque factors. According to 

Equations (14) and (15), the estimate of spacecraft angular rate is dependent on the following types 
of terms: 

1. Measurable values, including the tilt angles , x yφ φ , the spin rate sω , and the coil currents , x yi i . 

2. System parameters, including the moments of inertia , , gt gs rsI I I , the stiffness coefficients , x yK K

, the damping coefficient gC , and the torque factors , tx tyk k . 

In fact, the identification of the torque factors , tx tyk k  is achievable by applying angular rate tests 

[27], therefore the control torque terms can be regarded as measurable values. However, the other 
system parameters are determined based on the material properties and the engineering CAD models 
used to machine the rotor and gimbal of the GyroWheel. Once the GyroWheel has been machined, 
there is not a more accurate method to identify these parameters. The parameter errors between their 
true values and design values will have a significant impact on the rate sensing accuracy. It is 
assumed that the true values of the system parameters have a deviation of %10±  from the design 
values given in Table 1. Substituting the true values and design values into Equation (14), the maximum 

rate sensing errors Δ , Δcxm cymω ω  due to the individual parameter errors are listed in Table 2. 

Table 2. Rate sensing errors due to parameter errors. 

Parameters 
Small Tilt ( .= °0 5φ ) Large Tilt ( = °4φ ) 

( )Δ rad scxmω  ( )Δ rad scymω  ( )Δ rad scxmω  ( )Δ rad scymω  

Igt 3.137 × 10−4 3.137 × 10−4 2.510 × 10−3 2.510 × 10−3 
Igs 2.220 × 10−4 2.220 × 10−4 1.776 × 10−3 1.776 × 10−3 
Irs 1.019 × 10−4 1.019 × 10−4 8.150 × 10−4 8.150 × 10−4 
Kx 4.690 × 10−5 4.690 × 10−5 3.752 × 10−4 3.752 × 10−4 
Ky 4.690 × 10−5 4.690 × 10−5 3.752 × 10−4 3.752 × 10−4 
Cg 4.220 × 10−9 4.220 × 10−9 3.376 × 10−8 3.376 × 10−8 
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As seen in Table 2, the rate sensing errors due to the parameter errors are not negligible even 
under small tilt conditions. Based on the above analysis, the rate sensing method described by 
Equation (14) is not suitable for practical application. 

4. GyroWheel Rate Sensing Using Genetic Algorithm Optimized Neural Networks 

4.1. Rate Sensing Principle Based on Torque Balance Theory 

As stated in Section 3.2.1, the compensation of linearization error is required to enhance the rate 
sensing accuracy of the GyroWheel system, especially under large tilt conditions. Incorporating the 
compensation terms into Equation (17), the rate sensing equation now becomes: 

( )

( )

− +  = + − − − −  
  

+  = − − − + −  
  

2

2

1 1 , ,
2 2

1 1 , ,
2 2

cy x y
cx y gt gs s y g s x nlx x y s

s s

x ycx
cy x gt gs s x g s y nly x y s

s s

T K K
ω φ I I ω φ C ω φ δ φ φ ω

h h

K KTω φ I I ω φ C ω φ δ φ φ ω
h h

 (16) 

Denote ( ) ( )= − ⋅ = ⋅, , , , ,nly s nlx x y s nlx s nly x y sT h δ φ φ ω T h δ φ φ ω , Equation (16) can be rewritten as 

follows: 

( )

( )

 +    = − − − − − +   
    

+  = − − − + +  
  

2

2

1 1 , ,
2 2

1 1 , ,
2 2

cy x y
cx y gt gs s y g s x nly x y s

s s

x ycx
cy x gt gs s x g s y nlx x y s

s s

T K K
ω φ I I ω φ C ω φ T φ φ ω

h h

K KTω φ I I ω φ C ω φ T φ φ ω
h h

 (17) 

In Equation (17), the terms in the square brackets represent the spring torque, damping torque 
and coupling torque applied to the rotor of the GyroWheel, collectively called residual torques in this 

paper. More concretely, 
+  − − = 

 
21 , ,

2 2
x y

i gt gs s i

K K
φ I I ω φ i x y  represents the spring torque induced 

by the de-tuned stiffness, =, ,g s iC ω φ i x y  represents the damping torque, and =, ,nliT i x y  includes 

part of the spring and damping torques ignored due to linearization, and the coupling torque induced 
by the non-zero tilts.  

For a DTG, the tilt of the rotor with respect to its case is regulated about null, and it is operated 
in the tuned condition all the time. Therefore, the control torque required to maintain its zero tilt is a 
direct measure of the external angular rates of the DTG’s case about the two orthogonal axes lying in 
the rotor plane. 

However, the GyroWheel is frequently operated in a de-tuned condition and at a non-zero tilt. 
The control torque required to hold the rotor spin axis at a constant tilt is a function of two 
independent effects: the torque induced by the external angular rates and the torque required to 
overcome the de-tuned stiffness, damping and coupling. Essentially, the rate sensing Equation (17) 
is an expression of torque balance. That is, the control torque applied to the rotor is equal to the sum 
of the precession torque due to the external rates and the residual torque due to the de-tuned spin 
rate and non-zero tilts.  

As discussed in Section 3.2.2, the spring torque, the damping torque and the coupling torque 
vary with spin rate and tilt angles, and they cannot be measured directly. In addition, the torque 
factors are functions of tilt angles and spin rate [8]. Given that there is no feasible way to separate 
these torques in practical engineering, Equation (17) is rewritten as: 

( ) ( )
( ) ( )

= − −

= −

, , , ,

, , , ,

cx ty x y s y rex x y s

cy tx x y s x rey x y s

ω k φ φ ω i δ φ φ ω

ω k φ φ ω i δ φ φ ω
 (18) 

where , rex reyδ δ  are equivalent rates due to the residual torques: 
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( ) ( )

( ) ( )

+  = − − − − +  
  

+  = − − + +  
  

2

2

1 1, , , ,
2 2

1 1, , , ,
2 2

x y
rex x y s y gt gs s y g s x nly x y s

s

x y
rey x y s x gt gs s x g s y nlx x y s

s

K K
δ φ φ ω φ I I ω φ C ω φ T φ φ ω

h

K K
δ φ φ ω φ I I ω φ C ω φ T φ φ ω

h
 

 

The method for external rate sensing given in Equation (18) depends on the good estimates of 

the equivalent rates , rex reyδ δ  and the torque factors , tx tyk k . 

4.2. Identification of Torque Factors and Equivalent Rates 

Angular rate test is a conventional method of torque factor identification for a DTG [27]. Given 
that the torque factor of the GyroWheel varies with spin rate and tilt angles, a series of angular rate 
tests are required. The main principle of the angular rate test is shown in Figure 4. 

 

Figure 4. Schematic of angular rate test. 

The GyroWheel is mounted on a single-axis rate table with its x-axis parallel to the rotation axis 
of the rate table. The GyroWheel is operated at a certain tilt angle ( ), xi yiφ φ  and spin rate siω , and 

a series of external rates 0 1, , , nω ω ω  are provide by rotating the test table. Record the currents 

0 1, , , y y yni i i  in the y-axis torque coil.  

Since the equivalent rate rexδ  is induced by the residual torque, it varies with spin rate and tilt 
angles rather than external rates. A set of equations can be obtained by substituting the test data into 
Equation (18): 

ty y rex

ty y rex

n ty yn rex

ω k i δ

ω k i δ

ω k i δ

0 0

1 1

= − −


= − −


 = − −



 (19) 

The test data can be processed by linear fitting. In this operating condition of the GyroWheel, 
the torque factor ( ), ,tyi xi yi sik φ φ ω  and the equivalent rate ( ), ,rexi xi yi siδ φ φ ω  are determined by: 

( )
( )( )

( )
( ) ( )

=

=

− + −
=

− +

= − −

∑

∑
0

2

0

, ,

, , , ,

n

yk y k
k

tyi xi yi si n

yk y
k

rexi xi yi si tyi xi yi si y

i i ω ω
k φ φ ω

i i

δ φ φ ω ω k φ φ ω i

 (20) 
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Repeat the procedure with other operating conditions. Thus, a series of torque factor 

( ) , = , , 1,2, ,tyi xi yi sik φ φ ω i p  and equivalent rate ( ) = , , , 1,2, ,rexi xi yi siδ φ φ ω i p  can be obtained, 

where p represents the number of different operating conditions. 
Similarly, the torque factor ( ) = , , , 1,2, ,txi xi yi sik φ φ ω i p  and the equivalent rate 

( ) = , , , 1,2, ,reyi xi yi siδ φ φ ω i p  can be identified by performing the angular rate test with the 

GyroWheel’s y-axis parallel to the rotation axis of the rate table. 

4.3. Rate Sensing Using Genetic Algorithm Optimized Neural Networks 

4.3.1. Methodology: Genetic Algorithm Optimized Neural Network 

The artificial neural network (ANN), a well-known soft computing tool, has wide-ranging 
applications and is often used to model the non-linear relationship between input parameters and 
output value(s). ANN technique is based on experimental data, so it can be applied to solve modelling 
problems where conventional approaches, such as regression analysis, fail or perform poorly.  
Multi-layer perception (MLP) ANN is widely utilized and is often trained with a back-propagation 
(BP) algorithm [28]. The BP algorithm is based on a learning rule by which the weights are evaluated 
in order to minimize the error between the neural network output and the desired output [21]. In 
addition, a global optimization algorithm, such as genetic algorithm (GA), should be added to the 
training process of the ANN algorithm to avoid local minima, which leads to false convergence of 
the ANN model. 

As stated in Section 4.2, torque factors and equivalent rates are functions of tilt angles and spin 
rate. To realize rate sensing with the GyroWheel, it is essential to model the relationship between 

( ), ,x y sφ φ ω  and , , , tx ty rex reyk k δ δ . Since the model is significantly non-linear and complex, it is 

difficult to build the relationship based on theoretical derivations. Hence, the GA optimized ANN 
method is applied to the modelling problem in this study. 

According to the universal approximation theorem, a network with one hidden layer is sufficient 
to uniformly approximate any continuous and non-linear function [29]. A schematic of a simple MLP 
ANN is shown in Figure 5. 

Σ 

Σ 
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Σ f1 Σ f2

Σ f2
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… … …… …

Hidden Layer Output LayerInput Layer

inx

2
onb1

hnb

2
1, onW

2
,h on nW

1
1, hnW

1
,2inW

1
,i hn nW ony

1
2b

1
1b

1
1,1W

1
1,2W

2
1,1W

2
1b

2
2b

1x

2x

1y

2y

 
Figure 5. A simple MLP ANN. 

where , , i h on n n  are the numbers of inputs, hidden neurons and outputs, respectively. , i jx y  

represent the inputs and outputs of the network. 
1

,i jW  is the weight between the i-th input and the 

j-th hidden neuron, 
2

,i jW  is the weight between the i-th hidden neuron and the j-th output, and 
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1 2,i jb b  are bias values. 1 2, f f  represent the activation functions. The outputs of the network can be 

expressed in the following form: 

= =

  
= + + =      

∑ ∑ 

2 2 1 1
2 , 1 ,

1 1
, 1, ,

h in n

i i k i k j k j o
k j

y f b W f b W x i n  (21) 

The objective of the ANN is to minimize mean square error (MSE) described as follows: 

( )
o pn

ij ij
i jo

MSE t y
p n

2

1 1

1
= =

= −
⋅ ∑∑  (22) 

where p is the number of samples, y and t are predicted outputs of the ANN and targets, respectively. 
In an attempt to improve the ANN’s performance, the initial weights and biases are optimized 

by GA. The GA optimized ANN algorithm is shown concisely in Figure 6. 

Start

Randomly create initial 
population by coding

Evaluate fitness values of 
all individuals Terminate?

Selective 
reproduction

Crossover

Mutation

Optimized weights 
and biases

Determine ANN 
architecture

Initial weights and biases  
by decoding

Initialize ANN 

Train  ANN

EndYes
No

 
(a) 

…… ………… …… …… …… …… ……
1

1, hnW 1
,1inW 1

,i hn nW 1
hnb1

1b 2
1, onW 2

,1hnW 2
,h on nW2

1,1W 2
onb2

1b1
1,1W

(b) 

Figure 6. GA optimized ANN algorithm: (a) Flowchart; (b) An example of storing weights and biases 
of an ANN model in the genes of a chromosome. 

As seen in Figure 6, the weights and biases of ANN model are stored in the genes of a 
chromosome. At the start of the algorithm, an initial population of individuals (also called 
chromosomes) is created.  

The gene values are assigned to the initial weights and biases of the network, and the network 
is trained based on the BP algorithm. Then the fitness values of all the chromosomes of population 
are evaluated, the inverse of MSE is regarded as the fitness function. Later on, the more fit individuals 
are stochastically selected from the current population, and each individual’s genome is modified by 
crossover and mutation operations. These operations result in a new generation population of 
chromosomes. The generational process is repeated until any of the two termination conditions has 
been reached, i.e., the required number of generations has been reached, or convergence has been 



Sensors 2017, 17, 1692 13 of 21 

achieved. The weights and biases of the network are determined via a global optimization method, 
i.e., GA, which increases the performance of the ANN model. 

4.3.2. GAANN-Based Rate Sensing for GyroWheel 

According to the analysis above, the rate sensing algorithm consists of the following steps: 

Step 1. Experimental Data Collection and Data Preprocessing. 

A database including 287 samples can be obtained by performing the test procedures as given 
in Section 4.2. The experimental data are recorded for 287 different operating conditions of the 

GyroWheel: 41 tilt conditions ( cos sin= =, x yφ α λ φ α λ , . . . .= ° ° ° ° ° ° ° ° °0 , 0 5 , 1 , 1 5 , 2 , 2 5 , 3 , 3 5 , 4α , 

. .= ° ° ° ° °0 , 22 5 , 45 , 67 5 , 90λ ) and 7 different spin rates (133.52, 141.37, 149.23, 157.08, 164.93, 172.79, 
180.64 rad/s). Of the 287 data sets, 229 records (80%) are randomly taken for the training process and 
the remaining 58 records are used for validation and testing (10% for each). The database has two 

parts: the input and the target. In this specific case, the inputs are: the tilt angles , x yφ φ , and the spin 

rate sω . To measure the external angular rates, the following target variables are used: the torque 

factors , tx tyk k  and the equivalent rates , rex reyδ δ . 

In addition, the database must be normalized based on the activation functions used in the ANN 
architecture. In this study, all of the inputs and the targets are normalized between −1 and 1 by using 
the following equation: 

( )

( )

,

,

− +
= = =

−

− +
= = =

−

 

 

, ,

, ,

, ,

, ,

2
, 1, , 1, ,

2
, 1, , 1, ,

ij i max i min
ij i

i max i min

ij i max i min
ij o

i max i min

x x x
x i n j p

x x

y y y
y i n j p

y y

 (23) 

where , ij ijx y  are the i-th input and output of the y-th sample respectively, the subscripts “max” and 

“min” represent the maximum and minimum values. 

Step 2. Model Construction Using GA Optimized ANN. 

Four independent neural networks are adopted to model the torque factors , tx tyk k  and the 

equivalent rates , rex reyδ δ  respectively.  

In fact, the methods to find the best operating parameters for GA are mostly trial and error  
type [25]. Therefore, the parameters are selected after numerous experiments, and are listed in Table 3.  

In addition, the choice of the number of the hidden neurons is of great importance to avoid  
over-fitting. An empirical formula is given below: 

 = + +h i on n n a    (24) 

where a  is an integer between 1 and 10. In addition, Belman-Flores recommended an over-fitting 
criterion for a network with one hidden layer [26], which defined an upper bound for the number of 
hidden neurons as: 

 
( )

t
h

i

nn
n4 1

≤
+

   (25) 

where tn  is the number of training sets. According to Equations (24) and (25), the number of hidden 
neurons is set as 10. The parameter settings of ANN is given in Table 4. 

Based on the GA optimized ANN algorithm as shown in Figure 6, the four networks can be well 
trained, of which the weights and biases are adjusted so that each network may produce a desired 
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output when a specific input is applied. The weights and biases are frozen and recorded after 
training, and the trained ANN models can be expressed in explicit forms: 

, ,

= =

= =

= =

  
= + +     

  
= + +     

  
= + +     

∑ ∑

∑ ∑

∑ ∑

10 3
2 2 1 1
1 1 1 ,1 1 1 ,

1 1

10 3
2 2 1 1
2 1 2 ,1 2 2 ,

1 1

10 3
2 2 1 1
3 1 3 1 3 3

1 1

rex j j i j i
j i

rey j j i j i
j i

tx j j i j i
j i

δ purelin b W tansig b W x

δ purelin b W tansig b W x

k purelin b W tansig b W x

, ,
= =

  
= + +     

∑ ∑
10 3

2 2 1 1
4 1 4 1 4 4

1 1
ty j j i j i

j i
k purelin b W tansig b W x

 (26) 

The pre-subscripts “1”, “2”, “3”, “4” in the weights and biases represent the ANN models of
, , , rex rey tx tyδ δ k k  respectively. The activation functions can be computed as: 

( )

( ) x

purelin x x

tansig x
e 2

2 1
1 −

=

= −
+

 (27) 

Table 3. Parameter settings of GA. 

Parameters Values 
Coding type Real coding 

Population size 100 
Iterations 50 

Selection operator Roulette-wheel selection 
Crossover probability 60% 
Mutation probability 0.5% 

Table 4. Parameter settings of ANN. 

Parameters Values 
Number of hidden neurons 10 

Epochs 2000 
Training algorithm Bayesian regulation back-propagation 

Activation function of hidden layer tan-sigmoid 
Activation function of output layer purelin (linear transfer function) 

Step 3. External Rate Sensing. 

Combining Equations (18) and (26), the rate sensing equations can be expressed as follows: 

= = = =

= =

      = − + + ⋅ − + +               
  

= + + ⋅     

∑ ∑ ∑ ∑

∑ ∑

10 3 10 3
2 2 1 1 2 2 1 1
4 1 4 ,1 4 4 , 1 1 1 ,1 1 1 ,

1 1 1 1

10 3
2 2 1 1
3 1 3 ,1 3 3 ,

1 1

cx j j i j i y j j i j i
j i j i

cy j j i j i
j i

ω purelin b W tansig b W x i purelin b W tansig b W x

ω purelin b W tansig b W x
= =

  
− + +     

∑ ∑
10 3

2 2 1 1
2 1 2 ,1 2 2 ,

1 1
x j j i j i

j i
i purelin b W tansig b W x

 (28) 

When the GyroWheel is used to measure spacecraft angular rates, the tilt angles of the rotor, the 
spin rate and the torque coil currents can be measured by the sensors. Substituting the values of tilt 
angles, spin rate and torque coil currents into Equation (28), the spacecraft angular rates can be 
determined. 

4.3.3. Simulation Results and Analysis 



Sensors 2017, 17, 1692 15 of 21 

In this section, the performance of the proposed rate sensing approach is investigated by 

numerical simulations. A schematic of the simulation platform is shown in Figure 7. _ _ _, , s c x c y cω φ φ  

are the command inputs of the GyroWheel control loops, and , , s x yω φ φ  are the corresponding 

measurable outputs of the three control loops. , cx cyω ω  represent the spacecraft angular rates or the 

external rates provided by the rate table, and _ _, cx m cy mω ω  are the measured values of the external 

rates using the proposed rate sensing approach. 
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y-axis Tilt 
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Figure 7. Schematic of the simulation platform. 

In Figure 7, Part 1 of the simulation platform is utilized to collect experimental data as stated in 
4.3.2 (Step 1), which are used to train the four networks based on GA optimized ANN algorithm. Part 
2 of the simulation platform is designed to realize the angular rate sensing of the spacecraft with the 
proposed method. 

The key parameters of the GyroWheel system are given in Table 1, and the parameters of the 
GAANN models are given in Tables 3 and 4. The GAANN architecture is illustrated in Figure 8. After 
training, the performance of the ANN models are evaluated in terms of MSE and correlation 
coefficient, as shown in Table 5 and Figure 9. The MSE and correlation performances indicate that 
there is no over-fitting in the ANN models, and the ANN models can predict the torque factors and 
equivalent rates accurately. 

 

Figure 8. GAANN architecture for GyroWheel rate sensing. 
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Table 5. MSE performance of GAANN models. 

ANN 
MSE Values 

Training Validation Testing 
1 1.1142 × 10−8 7.3956 × 10−9 1.5940 × 10−8 
2 7.7689 × 10−9 1.6244 × 10−8 1.0707 × 10−8 
3 1.7201 × 10−9 9.4487 × 10−10 7.4277 × 10−10 
4 5.8538 × 10−10 8.4108 × 10−10 1.2611 × 10−9 
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(b) 

Figure 9. GAANN correlation performance: (a) ANN models for predicting equivalent rates; (b) ANN 
models for predicting torque factors. 

The weights and biases of the final ANN models are presented in Table 6. 

Table 6. Weights and biases of ANN models. 

ANN Weights between Input and 
Hidden Layer 

Biases of 
Hidden Layer 

Weights between Hidden 
and Output Layer 

Biases of 
Output Layer 

1 

0.0100, 0.5545, 0.0777; 
0.1455, 0.4150, −0.1270; 
0.0704, −0.3346, −0.0711; 

−0.0391, −0.7435, −0.0994; 
0.1792, −0.4262, 0.0458; 

0.2559, −0.0055, −0.0170; 
0.2264, −0.2593, 0.0561; 

−0.2273, −0.3106, 0.0165; 
0.2551, 0.2819, 0.0432; 
−0.2071, 0.2051, 0.0241. 
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−0.1981. 
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2 

0.5141, −0.3526, 0.0901; 
0.2502, 0.0662, −0.0692; 
−0.7629, 0.4477, 0.0198; 
0.3041, 0.1787, −0.0073; 

−0.6078, −0.2979, −0.1073; 
0.3246, 0.1595, −0.0853; 
−0.4315, 0.3101, −0.0164; 
0.1087, −0.0002, 0.1244; 
−0.4581, 0.2426, 0.0308; 

0.2989, −0.0997, −0.2243. 

−1.9411; 
0.8813; 

−1.1333; 
0.3888; 
1.4684; 

−0.1584; 
−0.8051; 
−0.1484; 
−0.2198; 
−1.6234. 

−5.3511, −10.8303, 
−1.5636, 8.1233, 
4.6847, −4.7499, 
4.5676, −4.1065, 
−3.9801, 2.6404. 

−2.1126 

3 

0.1551, 0.0128, 0.2639; 
0.0151, 0.0003, −0.3749; 

−0.3603, −0.0390, −0.4786; 
0.0009, 0.0318, −0.3257; 
0.0303, 0.0207, −0.9521; 
0.0565, 0.0221, 0.2269; 

−0.1718, −0.0120, −0.2306; 
−0.0226, −0.0192, 0.6862; 
0.0200, −0.1314, −0.2398; 
−0.0373, −0.0052, 0.2146. 

0.1712; 
0.2737; 
0.1333; 
0.3065; 

−1.7030; 
−0.2572; 
−0.5986; 
0.4407; 

−1.0285; 
−0.1963. 

0.5813, 0.6213, 
0.0341, 0.5309, 

0.9480, −0.4722, 
0.6712, −0.4977, 
0.2949, −0.4503. 

0.8952 

4 

0.0064, −0.0065, 0.3470; 
0.0150, −0.0038, 0.6597; 
0.0137, −0.0044, 0.8656; 

−0.0123, −0.0312, 0.1601; 
−0.0019, 0.0316, −0.0801; 
0.0036, −0.0433, −0.3119; 
−0.0196, 0.1975, 0.0048; 

−0.1069, −0.0316, 0.1904; 
−0.0218, 0.1599, 0.1726; 
0.0258, −0.0250, 0.2503. 

−0.1904; 
0.4451; 
1.6821; 

−0.3732; 
0.1029; 
0.1148; 
0.4758; 
0.9927; 
0.0577; 

−0.2785. 

−0.5990, −0.4535, 
−1.1659, −0.6272, 
0.2505, 0.5259, 

−0.3702, −0.4228, 
0.2553, −0.5580. 

1.0207 

Under the same condition of Figure 3, the measured angular rates are calculated by substituting 
the weight and bias values into Equation (28), and the rate sensing errors are given in Figure 10. 
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(c) (d) 

Figure 10. Relationship between rate sensing errors and tilt angles: (a) X-axis rate sensing error versus 
x-axis tilt; (b) Y-axis rate sensing error versus y-axis tilt; (c) X-axis rate sensing error versus y-axis tilt; 
(d) Y-axis rate sensing error versus x-axis tilt. 

In comparison with the traditional rate sensing method, the GAANN-based rate sensing method 
can effectively improve the measurement accuracy, even if the GyroWheel system is operated at a 
large tilt angle. 

Furthermore, the rate sensing accuracy with the proposed method is verified under various 
operating conditions. 500 operating conditions are randomly determined, and the respective rate 
sensing errors are calculated, which are visualized in Figure 11 as histograms. 

  
(a) (b) 

Figure 11. Histograms of Rate sensing errors: (a) X-axis; (b) Y-axis. 

As seen in Figure 11, the rate sensing accuracy can reach 10−6 rad/s using the proposed method. 
Therefore, the rate sensing method given in Equation (28) is an effective way to estimate the 
spacecraft angular rates under various operating conditions. 

In addition, by using more experimental data to train the ANNs, the accuracy of the GAANN-
based rate sensing method can be further improved. 

5. Conclusions 

In this paper, the angular rate sensing problem is investigated for GyroWheel, a novel attitude 
determination and control device. A practical rate sensing method is developed by using the genetic 
algorithm optimized artificial neural networks. Compared with the traditional rate sensing method, 
the salient features of the proposed method are as follows: 
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1. The GAANN-based method provides a high rate sensing accuracy even under large tilt 
conditions. Therefore, it can be applied to measure angular rates in the whole operating range 
of the GyroWheel. 

2. The GAANN-based method does not depend on the GyroWheel parameters that are difficult to 
identify. Instead, explicit ANN models are established using experimental data. Once the 
weights and biases of the ANN models are determined, the spacecraft angular rates can be 
estimated with the measurable tilt angles, spin rate and coil currents of the GyroWheel. 

Limited to the experimental conditions, the effectiveness of the proposed method is verified by 
simulations rather than experiments with the GyroWheel prototype. In future research, the 
performance of the proposed method will be investigated for the GyroWheel prototype. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

DTG Dynamically Tuned Gyroscope 
ANN Artificial Neural Network 
GA Genetic Algorithm 
CMG Control Moment Gyroscope 
DC Direct Current 
MLP Multi-layer Perception 
BP Back-propagation 
GAANN Genetic Algorithm Optimized Neural Network 
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