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Abstract: This paper proposes a new feature learning method for the recognition of radar high
resolution range profile (HRRP) sequences. HRRPs from a period of continuous changing aspect
angles are jointly modeled and discriminated by a single model named the discriminative infinite
restricted Boltzmann machine (Dis-iRBM). Compared with the commonly used hidden Markov
model (HMM)-based recognition method for HRRP sequences, which requires efficient preprocessing
of the HRRP signal, the proposed method is an end-to-end method of which the input is the raw
HRRP sequence, and the output is the label of the target. The proposed model can efficiently capture
the global pattern in a sequence, while the HMM can only model local dynamics, which suffers from
information loss. Last but not least, the proposed model learns the features of HRRP sequences
adaptively according to the complexity of a single HRRP and the length of a HRRP sequence.
Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR)
database indicate that the proposed method is efficient and robust under various conditions.
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1. Introduction

In the radar automatic target recognition (RATR) community, recognition techniques based
on radar high-resolution range profile (HRRP) have been widely studied [1–5]. An HRRP can be
understood as a result of “scanning” the target from the direction of the radar line-of-sight, it contains
discriminative features of the target such as the size and the distribution of scattering centers, etc.
The common scheme for HRRP recognition is firstly to divide the full target-radar aspect angles into
several stationary areas (also named “frames”) [2,5–8]. After that, target detection [9–12] is performed
to select the region of interest in an HRRP. Finally, the HRRPs of each frame are further processed for
recognition, which is also called feature extraction. Common feature extraction techniques include
HRRP templates [13], HRRP stochastic modeling [2,3,5], time-frequency transform features [14,15],
transform invariant features [16,17]. All these feature extraction techniques have their own advantages
and disadvantages, none of them is optimal for target recognition.

Since the information of the target provided by a single HRRP is limited, utilizing sequential
HRRP from multiple target-radar aspect angles can be a better choice for recognition. To make use
of the spatial or temporal dependence in a sequence, HMM is often utilized for several sequential
problems, such as sequential event detection in wireless sensor networks [18,19] and radar HRRP
sequence recognition [20–22], where each HMM “state” consists of a set of generally contiguous
target-sensor orientations over which the HRRP statistics are relatively stationary, and the statistical
relationships in the HRRP sequence are described via the transition probabilities from one state to the
next under HMM formulation. There are two paradigms of forming an HRRP sequence. One is done
by continuously receiving HRRPs in a short period of time or aspect angles [21]. The angular sampling
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rate is dense, and the interval between adjacent HRRPs is often less than 0.1◦. In this case, the HMM
tries to model HRRP sequences in a single frame. Another way of forming an HRRP sequence is done
by receiving HRRPs from different aspect-frames [20,22]. The sampling interval is often larger than 3◦

in this case, and the HMM tries to model the transitions between frames. The problem for the HMM is
that it can only represent local dependencies between states, and it is not efficient to deal with high
dimensional data, preprocessing of HRRP using the feature extraction techniques mentioned above is
still required beforehand.

Modeling high dimensional sequential data has also been studied for decades in the machine
learning community. Recently, the restricted Boltzmann machines (RBMs) have achieved great success
in capturing spatial or temporal patterns in different types of data [23–25]. More specifically, an RBM
is a bipartite graphical model that uses a layer of “hidden” binary variables or units to model the
probability distribution of a layer of “visible” variables [26,27].The RBM and its various extensions
have enjoyed much popularity for pattern analysis and generating due to the generality and flexibility
of its graphical structure. However, for all types of RBMs, choosing a proper number of hidden units
is essential but difficult. In order to deal with this issue, Côté [28] proposed a non-parametric model
called the Infinite Restricted Boltzmann Machine (iRBM). The iRBM can automatically adjust the
effective number of hidden units according to the training data, which is especially beneficial when
the data size is changeable.

In this paper, we propose a new approach to sequential radar HRRPs recognition based on the
iRBM. In order to make the iRBM to be capable of learning discriminative features, we modified the
model to make it learning the joint probability distribution of sequential HRRPs and the corresponding
target label. The HRRP data is converted from the SAR data of MSTAR [29]. HRRP sequences with
different lengths are directly used to train the model. The maximal length covers about 1/3 of the full
aspect. We didn’t train a full-aspect model for the reason that in real recognition scenarios, it is difficult
to acquire HRRPs from all aspect angles, but it is much easier to acquire HRRPs from a fragment of
aspect angles. The influence of HRRP sequences with different angular sampling rates at test phase has
also been studied to investigate the robustness of our method. The features of the proposed method
can be summarized as follows:

(a) It is an end-to-end model of which the input is the raw HRRP sequence and the output is the
target class. Feature extraction and target classification are done in a single model.

(b) The model can efficiently capture the global pattern in a HRRP sequence, which is more powerful
than other dynamic models such as the HMM.

(c) It is an adaptive model which can automatically decide the model complexity according to the
complexity of HRRPs and the length of HRRP sequence.

The rest of the paper is summarized as follows: in Section 2, the RBM and iRBM are briefly
introduced as a preparation for the proposal of the method. In Section 3, the proposed model for
sequential HRRP recognition is presented in detail, followed by the training method for the model in
Section 4. After that, several experiments on the MSTAR dataset have been performed to evaluate our
model under various recognition scenarios in Section 5. Finally, we conclude our work in Section 6.

For convenience of reading, some notations for variables and equations in the paper are listed
as follows:

(1) All one-dimensional variables are formatted in italic;
(2) All vectors and matrices are formatted in boldface;
(3) p(x) represents the probability distribution of x.
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2. Preliminaries

2.1. Restricted Boltzmann Machines

The RBM is a bipartite graphic model, which means that it contains two layers, the visible layer
and the hidden layer. The visible layer consists of the visible vector v = [v1, v2, · · · , vD] representing
the observable data, the hidden layer consists of the hidden vector h = [h1, h2, · · · , hN ]. And each unit
of the hidden layer is connected with all the units of visible layer and vice versa, while there is no
connection within each layer. Both v and h are binary vectors. The corresponding graphical model for
the RBM is illustrated in Figure 1.
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The RBM represents a joint probability distribution p(v, h) with the so-called energy function
E(v, h) defined below [26]:

E(v, h) = −hTWv− bTv− cTh (1)

where Θ = {b, c, W} is the set of parameters. And p(v, h) is given as follows:

p(v, h) =
e−E(v,h)

Z
(2)

where Z = ∑
v′

∑
h′

e−E(v′ ,h′) is the partition function which ensures that Equation (2) is a valid

probability distribution.
An RBM can be used to model the distribution of the observed data p(v) by learning from the

training data vt. The training is done in an unsupervised manner. After the model is trained, we can
sample new data from the model. The hidden layer can be also treated as a representation of the data
using p(h|v). In this case, an RBM is treated as a feature extractor which preprocesses the data for
other purposes such as classification [30].

2.2. Infinite Restricted Boltzmann Machines

The iRBM [28] is proposed to settle the difficulty of choosing proper number of hidden units for
the RBMs, it can effectively adapt its capacity as training progresses. The iRBM is an extension of the
ordinary RBM, which mixes infinite number of RBMs with different number of hidden units from 1 to
∞, and all the RBMs choose the hidden units in sequence from the same set. The energy function of
the iRBM is defined as follows:

E(v, h, z) = −vTbv −
z

∑
i=1

hi

(
Wi·v + bh

i

)
− βi (3)

where, v is the D dimensional visible vector representing the observable data. hi is the ith element of
the infinite-dimensional hidden vector h. βi is the penalty for each selected hidden unit hi. Wi· is the
ith row of weight matrix W connecting the visible units and the hidden units. bv is the visible units
biases. bh

i is the ith hidden unit bias. The random variable z ∈ N can be understood as the total number
of hidden units being selected to participate in the energy function.
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It should be noticed that for a given z, the value of the energy function is irrelevant for the
dimensions of h from z + 1 to ∞, which means that hi where i > z will never be activated. Thus, (3) has
the same form with the energy function of ordinary RBM with z hidden units except the penalty βi
which the latter does not have.

The joint probability over v, h and z is:

p(v, h, z) =
1
Z

e−E(v,h,z) (4)

where:

Z =
∞

∑
z′=1

∑
v′

∑
h′∈Hz′

e−E(v′ ,h′ ,z′) (5)

and Hz = {h ∈ H|hk = 0∀k > z}, where H is the set of all possible values h takes. Thus Hz defines the
legal values of h given z.

The hidden units are selected in sequence as z takes the value from 1 to ∞, and if the penalty
βi is chosen properly, an infinite pool of hidden units can be achieved. A way to parameterize βi is
suggested in [28], which is βi = β ln

(
1 + ebh

i

)
. This will ensure the partition function Z is convergent

as long as β > 1 and the number of hidden units having non-zero weights and biases is always finite.
In this paper, we just used the same value βi = 1.01× ln 2 in all the experiments, as we found that
the performance of the model is robust to the choices of βi. The major effect of βi is on learning speed
rather than the final performance.

It needs to be pointed out here that, for both RBMs and iRBMs, exactly computing p(v) is
intractable as computing the partition function Z involves summing all possible states of hidden units.
However, inferring h from v or conversely is easy. Thus, the model can be used to draw new samples
v1, v2, · · · , vT efficiently by conducting Gibbs sampling (h0 → v1 → h1 → v2 · · ·hT−1 → vT ).

3. The Proposed Model

The iRBM has a nice property of adaptively learning the numbers of hidden units, which is
especially beneficial when the dataset size is changeable. However, it can only perform unsupervised
learning, there is no guarantee that the learnt features are helpful for discrimination. In this section,
a modified version of iRBM is proposed which can jointly learn the distribution of the HRRP sequence
(v1, · · · , vL) with sequence length L, and its corresponding label y.

By introducing the label of data into the energy function (3), a new model representing the joint
probability of (v1, · · · , vL), h, y and z is achieved, which is:

p(v1, · · · , vL, h, y, z) =
1
Z

e−E(v1,··· ,vL ,h,y,z) (6)

where the modified energy function is:

E(v1, · · · , vL, h, y, z) = −
L

∑
l=1

vT
l bl − ey

Td−
z

∑
i=1

hi

(
L

∑
l=1

Wl
i·vl + Ui·ey + ci

)
− βi (7)

where, vl is the lth HRRP vector of the sequence. ey =
(
1i=y

)C
i=1 is the “one hot” representation of the

label y ∈ {1, 2, · · · , C}, and C is the total number of classes. d is the label bias vector with the same
dimension to ey. Wl

i· is the ith row of weight matrix Wl connecting the lth HRRP vector and the hidden
units h. Ui· is the ith row of the weight matrix U which connects h and ey.

By marginalizing out h and z, we get the marginal distribution p(v1, · · · , vL, y) as follows:

p(v1, · · · , vL, y) =
1
Z

∞

∑
z=1

∑
h∈Hz

e−E(v1,··· ,vL ,h,y,z) =
1
Z

∞

∑
z=1

e−F(v1,··· ,vL ,y,z) (8)
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where:

F(v1, · · · , vL, y, z) = −
L

∑
l=1

vT
l bl − ey

Td−
z

∑
i=1

ln

(
1 + exp

(
L

∑
l=1

Wl
i·vl + Ui·ey + ci

))
− βi (9)

We name this model the discriminative infinite restricted Boltzmann machine (Dis-iRBM).
The graphical structure of the proposed model is demonstrated in Figure 2.
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The Dis-iRBM has a self-contained structure for supervised learning just as the ClassRBM [31] does.
Furthermore, it learns features more flexibly. It can be trained discriminatively or generatively [31].
In the following section, a hybrid training objective combining discriminative and generative training
objective together is proposed to learn the parameters of the model.

4. Learning the Parameters of the Model

The training objective to learn the parameters is a hybrid training objective combining the
generative and the discriminative training objective similar to [31], and is given below:

fhybrid(Θ, Dtrain) = − 1
|Dtrain|

(
(1 + α)

|Dtrain|
∑

n=1
ln p(yn|vn) + α

|Dtrain|
∑

n=1
ln p(vn)

)
= 1
|Dtrain|

(
(1 + α) fdis(Θ, Dtrain) + α fgen(Θ, Dtrain)

) (10)

where, Dtrain = {(vn, yn)} is the set of training examples, and vn =
(
vn

1 , · · · , vn
L
)
. The way to construct

training examples of HRRP sequences will be explicitly introduced in Section 5. fdis(Θ, Dtrain) =

−
|Dtrain|

∑
n=1

ln p(yn|vn) corresponds to the discriminative part modeling p(yn|vn), and fgen(Θ, Dtrain) =

−
|Dtrain|

∑
n=1

ln p(vn) corresponds to the generative part modeling the inputs p(vn) only. α > 0 controls the

proportion of each part. The second part can be thought of as a model regularization term.
The learning of the generative part fgen(Θt, Dtrain) is identical with the learning of the iRBM

introduced in Section 2. The Contrastive Divergence (CD) and the Persistent Contrastive Divergence
(PCD) [32,33] can be directly used to compute the gradients. The approximated gradient for the
generative part is given below:

∂

∂θ
fgen(Θt, Dtrain) ≈

1
|Dtrain|

|Dtrain|

∑
n=1

(
∂

∂θ
F(vn, zpos)− ∂

∂θ
F(vneg, zneg)

)
(11)

where, zpos is sampled from p(z|vn), and vneg, zneg are sampled from p(vn, z) by K-step Gibbs sampling,
the detail of learning a iRBM is provided in [24].
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In order to calculate the gradient of the discriminative part fdis(Θt, Dtrain), the conditional
probability p(y|vn) is derived as follows:

p(y|vn) =
p(y, vn)

p(vn)
=

∞
∑

z=1
e−F(vn ,y,z)

∞
∑

z=1
∑
y′

e−F(vn ,y′ ,z)
=

∞
∑

z=1
e−G(y,z|vn)

∞
∑

z=1
∑
y′

e−G(y′ ,z|vn)
(12)

where:

G(y, z|vn) = −dy −
z

∑
i=1

ln

(
1 + exp

(
T

∑
l=1

Wl
i·v

n
l + Ui·ey + ci

))
− βi (13)

By taking Equations (12) and (13) into the discriminative part of (11), the gradient of
fdis(Θt, Dtrain, t) is derived as follows:

∂

∂θ
fdis(Θ, Dtrain) =

1
|Dtrain|

|Dtrain|

∑
n=1

∂F(yn|vn)

∂θ
−∑

y′
p
(
y′
∣∣vn)∂F(y′|vn)

∂θ
(14)

where:

F(y|vn) = − ln
∞

∑
z=1

(
e−G(y,z|vn)

)
(15)

and

p
(
y′
∣∣vn) = e−F(y|v)

∑
y′

e−F(y′ |vn)
(16)

The gradients ∂F(yn|vn)/∂θ can be exactly computed, as shown in the Appendix A. However,
this involves computing gradients for infinite many parameters. To avoid this issue, we only compute
the gradients for parameters of first Mt hidden units whose parameters are non-zero at gradient
descent step t, and leave all the remaining parameters to be 0. The complexity of computing (16) is
O
(

M2
t D + M2

t C
)
.

The maximum number of activated hidden units Mt changes gradually during training.
Practically, if the Gibbs sampling chain ever samples a value of z larger than Mt, we clamp it to
Mt + 1. This avoids filling large memory for a large (but rare) value of z. The training procedure for
the proposed recognition model is summarized as follows:

Step 1: Divide the training dataset of HRRPs into several aspect frames;
Step 2: Construct the sequential HRRP training data with length L by L HRRPs from L adjacent aspect

frames, and each frame provides one HRRP. See the details in Section 5.
Step 3: Train several different models on the data with different lengths L using the training method

described above.

After the model is trained, a new sample of the sequential HRRP data v′ =
(
v′1, · · · , v′L

)
is

obtained using the same aspect frame detecting technique in the training phase. And the likelihood of
each label conditioned on the new data is computed using the trained model with the same sequence
length L. Finally, it is assigned to the class y∗ according to the following decision rule:

y∗ = arg max
y∈{1,··· ,C}

p
(
y
∣∣v′) (17)

As mentioned above, the complexity of computing (16) or (17) is O
(

M2
t D + M2

t C
)
. D = L× D0,

and D0 is the number of dimensions of a single HRRP, of which the order of magnitude is 100.
The sequence length L is usually less than 50. And the class numbers C has a magnitude order
of about 10. Thus the approximate computational complexity for a typical recognition problem is
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O
(
5000×M2

t
)
, which is a quadratic function of the model size Mt. The computation can be performed

in real-time as long as Mt is not extremely large.

5. Experimental Results

In this section, several experiments on the MSTAR dataset have been performed to evaluate
the proposed recognition model. Firstly, the way of arranging the training and testing HRRP
sequences have been introduced. Then, two kinds of experiments have been done on this dataset.
The first experiment investigated the influence of HRRP sequence length on recognition performance.
The second experiment investigated the robustness of the proposed model when the angular sampling
rates at test phase were different from that at training phase. To accelerate the learning of Dis-iRBMs,
we used a new training strategy referred as “RP” training [34] to train the Dis-iRBMs in all experiments.

5.1. The Dataset

SAR images of three types of targets (the T-72 main battle tank, the BMP-2 armored personnel carrier,
and the BTR-70 armored personnel carrier) in MSTAR were used to construct the sequential HRRP
dataset. The SAR images of the training set were taken at a depression angle of 17◦, while the testing set
depression angle is 15◦. SAR images of all targets covered the full aspect angles, and the training and
the testing images of the same vehicle at the same aspect angle are different. Variants (different serial
number) of the three targets were also used in the testing set to evaluate the generalization ability of
the recognition method. The dataset of three-target problem is briefly illustrated in Table 1. The size of
the training and testing sets of SAR images is 698 and 1365, respectively.

Table 1. Training and testing set of SAR images for the three-target problem.

Training Set Size Testing Set Size

T72 (Sn_132) 232
T72 (Sn_132) 196
T72 (Sn_812) 195
T72 (Sn_S7) 191

BTR70 (Sn_C71) 233 BTR70 (Sn_C71) 196

BMP2 (Sn_C9563) 233
BMP2 (Sn_C9563) 195
BMP2 (Sn_C9566) 196
BMP2 (Sn_C21) 196

We converted each SAR image into 10 mean HRRPs, thus the training set and testing set contain
6980 HRRPs and 13,650 HRRPs respectively. In many literatures, the clutter is removed to get
“clean” HRRPs, while we directly used the raw HRRPs, the only preprocessing were normalizing the
magnitude of each HRRP to its total energy. This setting could make the experiments more closed
to real recognition scenarios. We divided the 360◦ of aspect angles into 50 aspect frames uniformly,
each frame covers 7.2◦, this division of aspect frames may not be optimized, but is similar to that
described in [20], which allow us to conveniently compare between these two methods. Suppose
the total number of HRRPs for a target is N, then each aspect frame contains about N/50 HRRPs.
The following steps were taken to construct the sequential HRRP data:

Step 1: The first HRRPs from aspect frame 1 to aspect frame L are chosen to form an HRRP sequence
with length L. Slide one unit to the right to choose the second HRRPs from the same frames to
form another HRRP sequence. Repeat this procedure until the end of each frame;

Step 2: Slide one frame to the right and repeat step 1;
Step 3: Repeat step 2 until the end of all aspect frames. If the sequence starts after (50− L) th frame,

then the first L− 1 frames are cyclically used one by one to form complete sequences.
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The total number of HRRP sequences is exactly N by constructing the data in this way, and
each HRRP sample can appear at anywhere of the sequence. Part of training set and testing set are
illustrated in Figure 3, where the sequence length L = 5.
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5.2. Experiment 1: Investigating the Influence of HRRP Sequence Length on Recognition Performance

In this sub-section, five individual models were trained by the data with different sequence
lengths (L = 1, 5, 10, 15, 20, 30). We also trained ClassRBMs with different hidden layer sizes as
comparisons to the proposed method. At the testing phase, the data has the same angular sampling
rate and sequence length with the training data. In this case, each model is supposed to have the best
performance, thus comparison between different models is fair. The recognition performance of each
model is shown in Figure 4.

As shown in Figure 4, the longer the sequence is, the higher the test accuracy can achieve.
This is not surprising as multiple HRRP contains more information about the target than a single
HRRP. The proposed model can efficiently utilize more complicated information owing to the strong
representation power and adaptive feature learning property. Reference [20] used a similar way
of constructing the sequence data which resulted in 55 aspect frames. They trained HMMs on the
full-aspect HRRP sequences (L = 55), and the maximal sequence length for test was 30 with the
same angular sampling rate in the test phase. By this setting, they reached a result of 94%. But the
sequence length is too long (covering more than half of the aspect angles), which often cannot be
fulfilled in real recognition scenarios. Our model outperforms [20] when the length is longer than
10. The best performance in this experiment is 99.8% when the sequence length L = 30. This result
is ideal as the test and training angular sampling rates are identical and the sequence length is long
enough. As for ClassRBM, the number of hidden units cannot be learnt, it has to be specified before
training. We tried three different hidden layer sizes (Nh = 10, 30, 100). The performances of ClassRBMs
indicate that increasing the model complexity would not necessarily result in increasing the recognition
performance. And a too large model is also more likely to over fit the data. Thus it is essential to decide
a proper size of the model for better generalization. The confusion matrix achieved by the model train
on HRRP sequence with L = 15 is illustrated in Table 2.

Table 2. Confusion matrix of the best model (L = 15) for three targets problem.

True Inferred BMP2 BTR70 T72 Accuracy (%)

BMP2 5613 45 212 95.62
BTR70 54 1906 0 97.24

T72 81 0 5731 98.61
Total accuracy(%) 97.13
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Figure 4. Recognition performance on models trained with different sequence length data. The result of
HMM is provided by [20] in which a full-aspect HMM containing 55 states (aspect frames) was trained.

To validate the adaptive property of the proposed model, we repeated the training procedure on
each sequence length five times. The average model size over five trials on each sequence length is
illustrated in Figure 5. We can see from the figure that the number of hidden units went down and
became stable at 50~60 when the sequence length was larger than 15. This is not surprising. As the
sequence becomes longer, the visible data become more structured and regular. The hidden units can
discover global patterns more efficiently and share it with each other, which results in the need of less
number of hidden units.
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Figure 5. Effective hidden layer sizes of Dis-iRBMs trained on the data with different sequence lengths.

Figure 6 illustrates weight matrices W or filters learnt by Dis-iRBMs, where each row in the weight
matrix represents a filter learnt by the corresponding hidden unit.
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5.3. Experiment 2: Investigating Robustness of the Proposed Model on Alternative Angular Sampling Rates in
Test Phase

In real recognition scenarios, it is difficult to ensure that the angular sampling rate in the test phase
is identical to that in the training phase, especially when the relative pose of the target is unavailable.
Thus it is essential for the recognition method to have some robustness to the change of the sampling
rate. The difference in training and test angular sampling intervals is illustrated in Figure 7.
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Figure 7. A illustration of the difference of angular sampling intervals between training and testing
phase. Where the ratio between testing and training sampling intervals is 1/2.

Here, we used the best model trained on the data with L = 15 and sampling interval T0 = 7.2◦ to
evaluate this property. Several different testing datasets were constructed using different ratios between
testing and training sampling intervals (1/4, 1/2, 3/4, 1, 5/4, 3/2, 2). The results are shown in Figure 8.
The test accuracy ranges from 76.8% to 98.4%. In overall, the recognition performance is improved
when the testing and training angular sampling intervals get closer to each other. Intuitively, the model
will perform the best when sampling ratio is 1. However this is not the case in this experiment, the
model performs the best when the ratio is 5/4. The reason of this unexpected result may come from
the fact that, the whole aspect angles was uniformly divided into 50 frames. This division of frames
may not be optimized, e.g., the evolution of statistic property of HRRP with respect to the aspect angle
is often not uniform. Better performance will be achieved if more elaborate way of frame division is
utilized. We also used an expanded training set containing three different angular sampling intervals
(T0 = 7.2◦, T1 = 3.6◦, T2 = 14.4◦) to train the model, and T0 = 7.2◦ was used as benchmark for comparing
to the testing sampling intervals. Its test performance ranges from 80.6% to 98.4%. An interesting fact
from this experiment is that, higher sampling interval is preferred for better recognition. For a single
radar, it is not easy to sampling the HRRPs with large angular intervals. However, this condition can
be fulfilled more easily if there exist multiple radars observing the target from different aspect angles.
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6. Conclusions

This paper provides an approach for efficiently recognizing radar HRRP sequences. The proposed
model has appealing properties of adaptive feature learning and capturing global features in a HRRP
sequence. It is an end-to-end method which directly processes the raw HRRP sequence data and
outputs the target label. It achieves high recognition accuracy when the sequence length covers more
than 1/5 of the aspect angles, which outperforms the HMM using the HRRP sequences covering
the whole aspect angles. It is more flexible and generalizes better than the ClassRBM. The model
also shows some robustness to the change of angular sampling rate, the results with respect to
angular sampling intervals also indicates that higher sampling interval might be preferred for better
recognition. In the future, the proposed model can be improved in three directions. The first is trying
to import area knowledge of the HRRP signal into the model to make it representing the HRRP more
accurately. The second is studying the effects of angular sampling interval or frame division on model’s
performance. The third is developing a model which can efficiently take different scales of relative
angular speeds into account thus may enhance its robustness to the change of angular sampling rates
in real recognition scenarios.
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Appendix A

Derivation of gradients (14) w.r.t. θ is presented as follows. Recall the Equation (14):

∂

∂θ
fdis(Θ, Dtrain) =

1
|Dtrain|

|Dtrain|

∑
n=1

∂F(yn|vn)

∂θ
−∑

y′
p
(
y′
∣∣vn)∂F(y′|vn)

∂θ
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where:
∂F(y|vn)

∂θ = ∂
∂θ − ln

∞
∑

z=1

(
e−G(y,z|vn)

)
= − 1

∞
∑

z=1
(e−G(y,z|vn))

∂
∂θ

∞
∑

z=1

(
e−G(y,z|vn)

)
=

∞
∑

z=1

e−G(y,z|vn)
∞
∑

z=1
(e−G(y,z|vn))

∂
∂θ G(y, z|vn)

=
∞
∑

z=1
P(z|vn, y) ∂

∂θ G(y, z|vn)

(A1)

In order to compute (A1), we need to compute ∂
∂θ G(y, z|vn) first, which are shown as follows:

∂
∂Wi·

G(y, z|v) = − ∂
∂Wi·

z
∑

i′=1
ln
(
1 + exp

(
Wi′ ·v + Ui·ey + ci′

))
− βi′

= − ∂
∂Wi·

z
∑

i′=1
ln
(
1 + exp

(
Wi′ ·v + Ui·ey + ci′

))
− βi′

= −H(z− i) ∂
∂Wi·

ln
(
1 + exp

(
Wi·v + Ui·ey + ci

))
= −H(z− i)

exp(Wi·v+Ui·ey+ci)
1+exp(Wi·v+Ui·ey+ci)

v

= −H(z− i)s
(
Wi·v + Ui·ey + ci

)
v

(A2)

Similarly:
∂G(y, z|v)

∂Ui·
= −H(z− i)s

(
Wi·v + Ui·ey + ci

)
ey (A3)

∂

∂d
G(y, z|v) = −H(z− i)ey (A4)

∂

∂ci
G(y, z|v) = −H(z− i)s

(
Wi·v + Ui·ey + ci

)
(A5)

where:

H(z− i) =

{
0, z < i
1, z ≥ i

substituting (A2)–(A5) into (A1), we get:

∂F(y|v)
∂Wi·

= −
∞
∑

z=1
P(z|v, y)H(z− i)s

(
Wi·v + Ui·ey + ci

)
v

= P(z ≥ i|v, y)s
(
Wi·v + Ui·ey + ci

)
v

(A6)

∂F(y|v)
∂Ui·

= −
∞
∑

z=1
P(z|v, y)H(z− i)s

(
Wi·v + Ui·ey + ci

)
ey

= P(z ≥ i|v, y)s
(
Wi·v + Ui·ey + ci

)
ey

(A7)

∂F(y|v)
∂d

= −
∞

∑
z=1

P(z|v, y)ey = −ey (A8)

∂F(y|v)
∂ci

= −
∞
∑

z=1
P(z|v, y)H(z− i)s

(
Wi·v + Ui·ey + ci

)
= P(z ≥ i|v, y)s

(
Wi·v + Ui·ey + ci

) (A9)

where, P(z ≥ i|v, y) = 1−
i

∑
z′=1

P(z′|v, y).
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