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Abstract: A number of studies have been conducted to enhance the pedestrian detection accuracy
of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a
challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing
number of studies have been performed on visible light camera-based pedestrian detection systems
using a convolutional neural network (CNN) in order to make the pedestrian detection process more
resilient to such conditions. However, visible light cameras still cannot detect pedestrians during
nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based
pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to
address such difficulties. However, when the solar radiation increases and the background temperature
reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect
pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features
within the images. Researchers have been trying to solve this issue by inputting both the visible light
and the FIR camera images into the CNN as the input. This, however, takes a longer time to process,
and makes the system structure more complex as the CNN needs to process both camera images.
This research adaptively selects a more appropriate candidate between two pedestrian images from
visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is
verified with a CNN. Three types of databases were tested, taking into account various environmental
factors using visible light and FIR cameras. The results showed that the proposed method performs
better than the previously reported methods.

Keywords: pedestrian detection; visible light and FIR cameras; fuzzy inference system; adaptive
selection; convolutional neural network

1. Introduction

A number of studies are currently being conducted with a view to increasing the accuracy of
the pedestrian detection schemes as intelligent surveillance systems are being advanced. In the past,
visible light cameras were widely used [1–7], however, these cameras are quite vulnerable to factors
such as varying shadows and lighting, and cannot accurately detect pedestrians during nighttime.
To address such constraints, numerous studies on pedestrian detection systems using far-infrared (FIR)
light cameras (thermal cameras) are being conducted [7–10]. However, pedestrian detection remains a
difficult challenge as the differences between the pedestrian and the non-pedestrian areas decrease as
the solar radiation causes the air temperature to reach the body temperature level. In order to address
such issues, researchers have been exploring methods to use both visible light and FIR camera images.
This includes a method of selecting the visible-light and thermal-infrared images under the dynamic
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environments as presented in [11], and a method of detecting the pedestrians by combining these two
images [12–14].

However, these methods may increase the processing time and computational complexity as they
have to take into account both visible light and FIR camera images, and process the convolutional
neural network (CNN) twice [13]. In order to overcome these limitations, our research suggests a
method that is able to detect the pedestrians under varying conditions. The proposed method is more
reliable than a single camera-based method, reduces the complexity of the algorithm, and requires
less processing time compared to the methods using both visible light and FIR camera images. This
is because our method adaptively selects one candidate between two pedestrian candidates derived
from visible light and FIR camera images based on a fuzzy inference system (FIS). To enhance the
detection accuracy and processing speed, only the selected one candidate is verified by the CNN.

The scenario where our system can be applied is the pedestrian detection by intelligent surveillance
cameras in outdoor environments. Therefore, all the experimental datasets were collected considering
this environment as shown in Section 4.1. The detected position of pedestrians by our method at
various times and in different environments can be used as basic information for face recognition,
behavior recognition, and abnormal pedestrian case detection, which are necessary for crime and terror
prevention, and the detection of emergency situations where a person suddenly falls down on the
street and does not move. The following Section 2 looks extensively into various pedestrian detection
scheme studies.

2. Related Works

The pedestrian detection studies that are available to date can be divided into two groups:
(a) single camera-based methods (infrared or visible-light cameras) [6,10,15–22], and (b) multiple
camera-based methods [11–13,22–24]. The former group includes the following methods: (i) adaptive
boosting (AdaBoost) cascade-based method, which is widely used as the representative facial detection
scheme [25,26], (ii) histogram of oriented gradient-support vector machine (HOG-SVM) method [18],
(iii) integral HOG [19] method, whose processing speed was reported to be significantly faster than the
existing HOG, (iv) neural network-based method using the receptive field approach [27] for pedestrian
detection [20], and (v) methods based on background generation with FIR cameras [21]. However,
these single camera-based methods have a common constraint that their detection performance
degrades when their surroundings vary. For instance, a visible light camera-based method barely
detects the pedestrians during dark nights, and is affected by varying shadows and lighting. Similarly,
an FIR camera-based method cannot detect the pedestrians when bright sunshine increases the ground
temperature up to the body temperature level.

To address these issues, studies on CNN-based pedestrian detection are being conducted. John et
al. used an FIR camera to study how to detect pedestrians based on adaptively fuzzy c-means clustering
and CNN [10]. Considering the daytime and the nighttime conditions, the researchers suggested a
more resilient algorithm. This work, however, did not include experiments under conditions where
the aforementioned background air temperature was similar to that of the pedestrians. In the study
of the pedestrian detection with a CNN [6], the authors showed that the large margin CNN method
outperformed the SVM method in pedestrian detection using a visible light camera. However, this
study did not include experiments on images under varying environmental factors, such as varying
lighting and shadows. Such CNN-based pedestrian detection methods showed better performance
compared to the previously studied methods while they still failed to overcome the limitations
associated with the varying environmental conditions, such as, varying lighting and shadows, and the
cases where the background had the same temperature as the pedestrians.

To address the above limitations, multiple camera-based detection methods were also being
studied. In a study involving multi-cue pedestrian detection and moving vehicle tracking [23], the
authors proposed a stereo visible light camera-based pedestrian detection method that employs shape
and texture information. Bertozzi et al. suggested an HOG-SVM-based pedestrian detection system
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based on tetra-vision using visible light and FIR camera images [24]. It used a vehicle’s headlights and
a combination of visible light and FIR camera images for pedestrian detection purposes. This method
was validated for nighttime conditions, which took a longer time to process. Another study on a
multi-spectral pedestrian detection method [22] using both visible light and near-infrared (NIR) light
camera images was conducted using HOG-SVM. In contrast, Serrano-Cuerda et al. conducted a study
on pedestrian detection systems under a more diverse environmental setting than the aforementioned
studies [11]. As the detection performance of the cameras appeared vulnerable to the weather and
environmental conditions, the study used confidence measures (based on the mean lighting and
standard deviation information) to select the more appropriate images from visible light and FIR
camera images.

Lee et al. combined visible-light and FIR camera-produced pedestrian data based on difference
images, and suggested a method for detecting the pedestrians [12]. However, there exists a doubt that
the cameras discussed in [11] and in [12] may have lower performance as no final verification was
provided in those publications. In addition, Wagner et al. suggested two methods in their study [13].
The first method was an early fusion CNN method, which converged both the visible light and FIR
images, that were fed to the CNN as inputs. The second method, called the late fusion CNN-based
method, employed training of the pedestrian and the background domains (each from visible light
and FIR images), and converging the features collected from the fully connected layers. Among the
two, the latter showed a better performance. However, this method may increase the processing time
and computational complexity as it has to take into account of visible light and FIR camera images,
and process the CNN twice.

In order to overcome these limitations, this paper suggests a method that is able to detect the
pedestrians under varying conditions. It is novel in the following three ways compared to the previously
published works:

- The proposed method is more reliable than a single camera-based method, reduces the complexity
of the algorithm, and requires less processing time compared to the methods using both visible
light and FIR camera images. This is because our method adaptively selects one candidate
between two pedestrian candidates derived from visible light and FIR camera images based on a
fuzzy inference system (FIS).

- The two input features of FIS vary owing to the fact that the input candidate images are of
the following types: pedestrian or non-pedestrian (background). Therefore, to remove such
uncertainties, this study applies Gaussian fitting to the distribution of the gradient-based
features of the input candidate images, and adds weights (resulting from such a fitted Gaussian
distribution) to the FIS output. By doing so, it enables a more accurate and adaptive selection
process for the FIS regardless whether the images were pedestrian type or non-pedestrian type.

- It increases the accuracy of the pedestrian detection process by verifying the FIS-selected
pedestrian candidate through the CNN. In addition, we have opened our database and trained
CNN model to other researchers in order to compare the performances.

Table 1 shows a comparison of the proposed and the previously researched pedestrian detection
methods, including their respective advantages and disadvantages. The remainder of this paper
consists of the following sections: Section 3 presents the details of the concepts behind the proposed
system. The experimental results and various performance comparisons (among the existing methods)
are presented in Section 4. Finally, Section 5 provides our conclusions.
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Table 1. Comparisons of the proposed and the previously researched methods.

Category Methods Advantage Disadvantage

Single
camera-based

AdaBoost cascade [17]

- Faster processing speeds.
- Better performance under

low image resolutions. - Affected by various
environmental changes, such as,
changing lighting and shadows,
and cases where the background
temperature is similar to that of
the pedestrians’ body.

HOG–SVM [18,22], integral HOG [19],
neural network based on receptive

fields [20], and background
generation [21]

- More resilient in
simple conditions.

- Faster processing speed
than multiple
camera-based algorithm.

CNN-based method [6,10] More accurate than the past
single camera-based method.

Multiple
camera-based

Stereo visible
light cameras

Shape and texture
information [23]

Better detect pedestrians as it
is able to utilize more

information than the single
camera-based method.

- Longer time to process as it has to
process both the camera images.Visible light &

NIR cameras HOG-SVM [22]

Visible light &
FIR cameras

Tetra-vision-based
HOG-SVM [24]

Better night vision pedestrian
detection inside the car.

- No performance without
vehicle headlight.

- High number of calculation is
required as it needs to process
two camera images.

Camera selection
[11] Better performance under

various conditions.
- Detection capability is affected as

it has no final verification process
for the detected pedestrian area.

Difference
image-based fusion

[12]

Late fusion
CNN-based
method [13]

Higher CNN-based
detection accuracy.

- Processing hours and algorithm
complexity increases as the
method processes input from two
camera images to conduct
CNN twice.

Proposed method

- Increased detection
reliability (compared to the
single camera-based
method) by means of
adaptively selecting one
candidate between two
pedestrian candidates
received from visible light
and FIR camera images.
Applies a FIS, and reduces
algorithm complexity and
processing time.

- More resilient detection
capability under various
environmental changes by
means of intensively
training and using a
diverse dataset.

Design of the fuzzy rule tables and
membership function is needed for
the FIS.

3. Proposed Method

3.1. Overall Procedure of the Proposed System

Figure 1 describes the overall procedure of the proposed system. The system receives the data
from both visible light and FIR light images through dual cameras (step (1) and Figure 2a). It detects
the candidate based on background subtraction and noise reduction by using difference images
(Figure 2b) between the background image and the input images [12]. Here, the mean value of the
candidate within the difference image obtained from the visible light image is “feature 1”, and that
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gained by the FIR light image is “feature 2”. In general, the mean value of the difference images
increases along with the increase of difference between the pedestrian and the background, which
causes the consequent increment of possibility of correct pedestrian. However, as shown in Figure 2c,
the output candidate exists not only in the red box (pedestrian candidate) but also in the yellow box
(non-pedestrian candidate).
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As mentioned earlier, the pedestrian candidate usually has a high mean value in the difference
image while the non-pedestrian candidate has a low mean value in the difference image as shown in
Figure 2b. Nevertheless, because all the regions inside pedestrian candidate do not show high mean
value in the difference image of Figure 2b, a low threshold value for image binarization should be
used to correctly detect the whole regions inside pedestrian candidate, which causes the incorrect
detection of non-pedestrian candidate as pedestrian one as shown in Figure 2c. It is difficult to correctly
discriminate between the pedestrian and non-pedestrian candidates, and the FIS is designed using
the mean value of the gradient magnitude of pedestrian or non-pedestrian candidate in difference
images as “feature 3”. The system adaptively selects a more appropriate candidate to be verified by the
CNN between the two boxes of Figure 2c—after adding “feature 3” as weights, and using the FIS with
“feature 1” and “feature 2” as an input (see step (3) of Figure 1). Then, it uses the selected candidates of
pedestrian and non-pedestrian (Figure 2d) as the pre-trained input for the CNN to ultimately classify
it into a pedestrian or non-pedestrian case (see step (4) of Figures 1 and 2e).
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3.2. Adaptive Selection by FIS

The FIS in this paper is designed to adaptively select one candidate between two pedestrian
candidates derived from visible light and FIR camera images, which is deemed most appropriate for
the pedestrian detection process. Table 2 presents a fuzzy rule table designed through this research
to be used for the FIS. This research uses two features, and has “Low” and “High” as inputs, and
“Low” “Medium” and “High” as outputs. The two features consist of “feature 1”, a mean value of the
candidate gained from the visible light image, and “feature 2”, a mean value from the FIR light image.
That is because, in general, the bigger the difference between the pedestrian and the background is,
the bigger the mean value in difference image is, meaning that the outcome is more likely to be the
correct pedestrian.

For instance, as listed in Table 2a, when “feature 1” and “feature 2” are “Low” (a lower mean
value) and “High” (a higher mean value), respectively, the difference between the pedestrian and the
background of the FIR light images is larger than that of the visible light image. Therefore, the output
value becomes “High” meaning that the candidate of the FIR light image is selected. However, the
opposite case implies that the difference of the visible light image is larger than that of the FIR light
image. The output value becomes “Low” which in other words implies that the candidate of the visible
light image is selected. If the “feature 1” and “feature 2” are both “Low” or “High”, it is difficult to
determine which candidate is more desirable (between the two candidates of visible light and FIR light
images), giving the output a “Medium” Value.

However, as shown in Figure 2c, the selected candidate is present not only in the pedestrian
candidate (the red box) but also in the non-pedestrian candidate (the yellow box). Although
the pedestrian candidate has high mean value in the difference image as mentioned before, the
non-pedestrian candidate has a low mean value as shown in Figure 2b. Considering that, this study
designs the rule table for non-pedestrian features as shown in Table 2b in order to have opposite
features from Table 2a.

Table 2. Fuzzy rule table. Rule tables for pedestrians (a) and for non-pedestrian features (b).

(a)

Input Output
Feature 1 Feature 2

Low Low Medium
Low High High
High Low Low
High High Medium

(b)

Input Output
Feature 1 Feature 2

Low Low Medium
Low High Low
High Low High
High High Medium

In general, when the FIS uses two inputs, it employs the IF-THEN rule [28], and the output will
be produced by AND or OR calculation depending on the relationship between the FIS inputs. This
research selected an AND calculation among the IF-THEN rules as the FIS makes adaptive selection
while considering “feature 1” and “feature 2” together.

Figure 3 describes the linear membership function used in this research, which is widely used
in the FIS as its calculation speed is very fast and its algorithm is less complex compared to the
non-linear membership function [29–31]. As mentioned, the input images have pedestrian and



Sensors 2017, 17, 1598 8 of 32

non-pedestrian categories, and two fuzzy rule tables (see Table 2) were designed to reflect the
differences in their features. In this regard, two input membership functions were used: one for
the pedestrian and the other for the non-pedestrian. In order to more accurately determine the frame of
the linear input membership function, this study gained a data distribution for “feature 1” and “feature
2” (see Figure 3a,b) by using part of the training data of the CNN(to be illustrated in Section 3.3). Based
on this, each linear input membership function for pedestrian and non-pedestrian is separately (“Low”,
“High”) designed. Also, as shown in Figure 3c, the output membership functions were designed for three
outputs, “Low” “Medium” and “High”. Figure 3c is not related to the data of Figure 3a,b. In conventional
fuzzy inference system, the output membership function is usually designed heuristically. Therefore, we
use the three linear membership functions, which have been widely used in the fuzzy inference system.
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The “feature 1” (f1) and “feature 2” (f2) in this research can be “Low” and “High” each shown in
Table 2. Therefore, their outputs become (Gf1

L(f1), Gf1
H(f1)) and (Gf2

L(f2), Gf2
H(f2)) due to function

(Gf1
L(·),Gf1

H(·),Gf2
L(·), and Gf2

H(·)) of the input membership of Figure 3a,b. Four pairs of combinations
were obtained from this and these became (Gf1

L(f1), Gf2
L(f2)), (Gf1

L(f1), Gf2
H(f2)), (Gf1

H(f1), Gf2
L(f2)),

and (Gf1
H(f1), Gf2

H(f2)). The fuzzy rule table of the Max and Min rules [29], and the Table 2 help gain
four inference values from four pairs of combinations.

For instance, when f1 = 0.7, f2 = 0.5 as shown in Figure 4, the output value gained by the input
membership function becomes (Gf1

L(0.7) = 0.24, Gf1
H(0.7) = 0.75), (Gf2

L(0.5) = 0.68, Gf2
H(0.5) = 0.32).

As mentioned earlier, these four output values lead to four combinations, including (0.24(L), 0.68(L)),
(0.24(L), 0.32(H)), (0.75(H), 0.68(L)), (0.75(H), 0.32(H)). An inference value may be determined for each
combination according to Min rule, Max rule, and fuzzy rule table of Table 2. If (0.24(L), 0.68(L)),
when applying the Min rule and the fuzzy rule of Table 2b (IF “Low” and “Low”, THEN “Medium”),
inference value will be determined as 0.2 (M). If (0.75(H), 0.68(L)) and applying the Max rule and
the fuzzy rule of Table 2a (IF “High” and “Low”, THEN “Low”), the inference value will be 0.75(L).
Likewise, the inference value resulting from the four combinations are described in Tables 3 and 4.

Table 3. An example of the Inference Value produced by Min and Max rules with fuzzy rule table of
Table 2a.

Feature 1 Feature 2
Inference Value

Min Rule Max Rule

0.24(L) 0.68(L) 0.24(M) 0.68(M)
0.24(L) 0.32(H) 0.24(H) 0.32(H)
0.75(H) 0.68(L) 0.68(L) 0.75(L)
0.75(H) 0.32(H) 0.32(M) 0.75(M)

Table 4. An example of the Inference Value produced by Min and Max rules with fuzzy rule table of
Table 2b.

Feature 1 Feature 2
Inference Value

Min Rule Max Rule

0.24(L) 0.68(L) 0.24(M) 0.68(M)
0.24(L) 0.32(H) 0.24(L) 0.32(L)
0.75(H) 0.68(L) 0.68(H) 0.75(H)
0.75(H) 0.32(H) 0.32(M) 0.75(M)
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Therefore, the final output value of the FIS will be calculated through various defuzzification
and the output membership function with its input of the inference values as shown in Figure 5.
This study employed the smallest of maximum (SOM), the middle of maximum (MOM), the largest of
maximum (LOM), Bisector, and Centroid methods, most widely used among various defuzzification
methods [32–34]. Among those, the SOM, MOM, and LOM methods establish the FIS output values
by maximum inference values among many inference values. The SOM and LOM methods establish
the final output values using the smallest and largest values, which are gained by maximum inference.
The MOM method uses the average value of the smallest and largest as the final output value. Figure 5a
is an example of a defuzzification process based on the inference values by Max rule of Table 3 (0.32(H),
0.68(M), 0.75(L), and 0.75(M)). This figure only uses these values as its maximum inference values
are 0.75(L) and 0.75(M). Therefore, as shown in Figure 5a, two output values (0.13 and 0.62) are
produced by SOM and LOM methods, and their average value is gained as (0.375 = (0.13 + 0.62)/2) by
MOM method.
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Bisector and centroid methods are the means to determine the FIS output value by using all the
inference values. The centroid method determines the FIS output value based on the geometric center
of the area from the area (the purple colored area of Figure 5a) defined by all the inference values.
The bisector method identifies the FIS output value based on the line dividing the defined area into
two having the same size. Figure 5b is an example of a defuzzification process based on the inference
values by Min rule of Table 4 (0.24(L), 0.24(M), 0.32(M), and 0.68(H)), which produces two output
value (0.56 and 0.68) by the centroid and bisector methods.
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Figure 5. An example of Output Value depending on various Defuzzification methods (a) Output
values by SOM and LOM methods with the inference values by Max rule of Table 3. (a) Output values
by Centroid and Bisector methods with the inference values by Min rule of Table 4.

As seen in Figure 2c, the produced candidate area exists not only in the red box (pedestrian
candidate) but also in the yellow box (non-pedestrian candidate). As mentioned earlier, the pedestrian
candidate has a higher mean value in the difference image while the non-pedestrian candidate has a
low mean value just as Figure 2b. In the current level, it is possible to know whether the produced
candidate area is under a pedestrian or a non-pedestrian category. Therefore, in order to design the
FIS based on that, this study used the mean value of the gradient magnitude in the difference image
within the produced candidate as “feature 3”. By reflecting such a “feature 3” as a weight into the FIS
output value, as shown in Figure 5, this work makes an adaptive selection among the two candidates,
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(the yellow and red boxes of Figure 2c), which results in one appropriate candidate for verification by
the CNN.

Figure 6 describes two distributions of “feature 3”, produced from the pedestrian and the
non-pedestrian data used in Figure 3a,b by using a Gaussian fitting. Similar to the difference image
of Figure 2b, the gradient magnitude of the pedestrian candidate is generally higher than that of the
non-pedestrian candidate. Therefore, the pedestrian distribution is on the right side of the non-pedestrian
distribution as shown in Figure 6.
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In this study, the FIS output value for the pedestrian, shown in Figure 5, is defined as op and
the FIS output value for the non-pedestrian is defined as on−p. It defines the probability for finding
a pedestrian to be (via Figure 6), and the probability for finding a non-pedestrian as pp and pn−p,
respectively. This leads to the final output value (oFIS) given through Equation (1):

oFIS =
op × pp + on−p × pn−p

pp + pn−p
(1)

Finally, as given in Equation (2), the system adaptively selects one candidate that is more
appropriate for the CNN-based classification of pedestrian and non-pedestrian. This selection is
done between two (pedestrian) candidates in visible light and FIR images. The optimal threshold of
Equation (2) is experimentally determined based on the pedestrian and non-pedestrian data used in
Figure 3a,b:

Selected candidate =

{
Candidate in visible light image, if oFIS < Threshold

Candidate in FIR image, otherwise
(2)

3.3. Classification of Pedestrian and Non-Pedestrian by CNN

This research uses a CNN in order to classify the chosen candidate by Equation (2). The
classification yields whether the candidate is of pedestrian or non-pedestrian (background) category.
As shown in Figure 2d, the candidate can be gained by visible light image or the FIR image. Therefore,
the candidate from the visible light image is used as the CNN input learned through the visible light
image training set. On the other hand, the candidate from the FIR image is used as the input learned
through the FIR image training set. Both structures are equal and are illustrated in Table 5 and Figure 7.
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Table 5. CNN architecture.

Layer Type Number of
Filters

Size of Feature Map (Width
× Height × Channel) Size of Filter Stride Padding

Image input layer 119 × 183 × 3

1st convolutional layer 96 55 × 87 × 96 11 × 11 × 3 2 × 2 0 × 0

Rectified linear unit
(ReLU) layer 55 × 87 × 96

Local response
normalization layer 55 × 87 × 96

Max pooling layer 1 27 × 43 × 96 3 × 3 2 × 2 0 × 0

2nd convolutional layer 128 27 × 43 × 128 5 × 5 × 96 1 × 1 2 × 2

ReLU layer 27 × 43 × 128

Local response
normalization layer 27 × 43 × 128

Max pooling layer 1 13 × 21 × 128 3 × 3 2 × 2 0 × 0

3rd convolutional layer 256 13 × 21 × 256 3 × 3 × 128 1 × 1 1 × 1

ReLU layer 13 × 21 × 256

4th convolutional layer 256 13 × 21 × 256 3 × 3 × 256 1 × 1 1 × 1

ReLU layer 13 × 21 × 256

5th convolutional layer 128 13 × 21 × 128 3 × 3 × 256 1 × 1 1 × 1

ReLU layer 13 × 21 × 128

Max pooling layer 1 6 × 10 × 128 3 × 3 2 × 2 0 × 0

1st fully connected layer 4096

ReLU layer 4096

2nd fully connected layer 1024

ReLU layer 1024

Dropout layer 1024

3rd fully connected layer 2

Softmax layer 2

Classification layer
(output layer) 2

Sensors 2017, 17, 1598  14 of 32 

 

ReLU layer  4096    

2nd fully connected 

layer 
 1024    

ReLU layer  1024    

Dropout layer  1024    

3rd fully connected layer  2    

Softmax layer  2    

Classification layer  

(output layer) 
 2    

 

Figure 7. The CNN architecture. 

Several previous studies, including AlexNet [36] and others [37,38], used a square shape with 

the same width and length as input images. However, the general pedestrian area, which this study 

aims to find, has longer length than its width. Therefore, when normalizing the size into a square 

shape, the image is unacceptably stretched toward its width compared to its length, and distorts its 

pedestrian area, making it difficult to extract the features accurately. Also, when selecting the CNN 

input image as a square shape without stretching toward the width direction, the background area 

(especially, on the left and right to the pedestrian), is heavily reflected on the output yielding 

inaccurate features. Considering this aspect, this study uses the pedestrian or the non-pedestrian 

images with a normalized size of 119-by-183 pixels (width-by-height) as the CNN input. Through 

such size normalization, when the object’s size changes depending on its location relative to the 

camera, such change can be compensated. In addition, this study normalized the brightness of the 

input image by the zero-center method discussed in [39]. The 119-by-183 pixels (width-by-height) 

used in this method is much smaller than the 227-by-227 pixels (height-by-width) discussed in 

AlexNet [36]. Therefore, we can significantly reduce the number of filters in each convolution layers 

and the number of nodes in fully-connected layers than those in stated in the AlexNet. Also, AlexNet 

was designed in order to classify 1000 classes. However, this research can reduce the training time as 

it can distinguish only two classes of the pedestrian and non-pedestrian areas [35]. 

In the 1st convolutional layer, 96 filters with the size of 11 × 11 × 3 are used at a stride of 2 × 2 

pixels in the horizontal and vertical directions. The size of the feature map is 55 × 87 × 96 in the 1st 

convolutional layer, such that 55 and 87 are the output width and height, respectively. The 

calculations are based on: (output width (or height) = (input width (or height) − filter width (or height) 

+ 2× padding)/stride + 1 [40]). For instance, in Table 5, input height, filter height, padding, and stride 

are 183, 11, 0, and 2, respectively. Therefore, the output height becomes 87 ((183 − 11 + 2× 0)/2 + 1). 

Unlike the previous studies [41,42], this research relatively enlarges the filter size of the 1st 

convolutional layer as the input image is very dark with high level of noise by its nature. Therefore, 

Figure 7. The CNN architecture.



Sensors 2017, 17, 1598 14 of 32

As seen in this table and figure, the CNN in this research includes five convolutional layers and
three fully connected layers [35]. Input images are the pedestrian and the non-pedestrian candidate
images. As each input candidate image has a different size, this paper considers the ratio of the width
and length of the general pedestrian, and resizes them into 119 pixels (width), 183 pixels (height), three
(channels) through bilinear interpolation.

Several previous studies, including AlexNet [36] and others [37,38], used a square shape with
the same width and length as input images. However, the general pedestrian area, which this study
aims to find, has longer length than its width. Therefore, when normalizing the size into a square
shape, the image is unacceptably stretched toward its width compared to its length, and distorts
its pedestrian area, making it difficult to extract the features accurately. Also, when selecting the
CNN input image as a square shape without stretching toward the width direction, the background
area (especially, on the left and right to the pedestrian), is heavily reflected on the output yielding
inaccurate features. Considering this aspect, this study uses the pedestrian or the non-pedestrian
images with a normalized size of 119-by-183 pixels (width-by-height) as the CNN input. Through such
size normalization, when the object’s size changes depending on its location relative to the camera,
such change can be compensated. In addition, this study normalized the brightness of the input
image by the zero-center method discussed in [39]. The 119-by-183 pixels (width-by-height) used in
this method is much smaller than the 227-by-227 pixels (height-by-width) discussed in AlexNet [36].
Therefore, we can significantly reduce the number of filters in each convolution layers and the number
of nodes in fully-connected layers than those in stated in the AlexNet. Also, AlexNet was designed in
order to classify 1000 classes. However, this research can reduce the training time as it can distinguish
only two classes of the pedestrian and non-pedestrian areas [35].

In the 1st convolutional layer, 96 filters with the size of 11 × 11 × 3 are used at a stride of 2 × 2
pixels in the horizontal and vertical directions. The size of the feature map is 55 × 87 × 96 in the 1st
convolutional layer, such that 55 and 87 are the output width and height, respectively. The calculations
are based on: (output width (or height) = (input width (or height) − filter width (or height) + 2×
padding)/stride + 1 [40]). For instance, in Table 5, input height, filter height, padding, and stride are
183, 11, 0, and 2, respectively. Therefore, the output height becomes 87 ((183 − 11 + 2× 0)/2 + 1). Unlike
the previous studies [41,42], this research relatively enlarges the filter size of the 1st convolutional
layer as the input image is very dark with high level of noise by its nature. Therefore, the enlarged
filter can control the feature, which can be extracted wrongly due to the noise. Therefore, a rectified
linear unit (ReLU) layer is used for the calculation as given by Equation (3) [43–45]:

y = max(0, x) (3)

where x and y are the input and output values, respectively. This formula can lessen the vanishing
gradient problem [46], which can cause a faster processing speed than a non-linear activation
function [35].

The local response normalization layer is used behind the ReLU layer, as described in Table 5,
which has a formula as follows:

bi
x,y =

ai
x,y

(p + α ∑
min(N−1, i+ n

2 )

j=max(0, i− n
2 )

(aj
x,y)

2
)

β
(4)

In Equation (4), bi
x,y is a value obtained by normalization [36]. In this research, we used 1,

0.0001, and 0.75 for the values of p, α, and β, respectively. ai
x,y is the neuron activity computed by

the application of the ith kernel at the location (x, y), and it performs normalization for the adjacent
n kernel maps at the identical spatial position [36]. In this study, n was set as 5. N implies the total
number of filters in the layer. In order to make the CNN structure resilient to the image translation and
local noise, the feature map gained through the local response normalization layer goes through the
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max pooling layer as given in Table 5. Max pooling layer uses the output after selecting the maximum
value among the figures within the defined mask ranges. This is similar to conducting a subsampling.
Once it goes through the Max pooling layer, it will produce 96 feature maps with sizes of 27 × 43
pixels as shown in Table 5 and Figure 7.

In order to fine-tune the 1st convolutional layer, as given in Table 5 and Figure 7, the 2nd
convolutional layer that has 128 filters with a size of 5 × 5 × 96, a stride of 1 × 1 pixels (in the
horizontal and vertical directions), and a padding of 2 × 2 pixels (in the horizontal and vertical
directions) can be used behind the 1st convolutional layer. Similar to the 1st convolutional layer, after
going through ReLU, cross channel normalization, and max pooling layers, we obtained 128 feature
maps with the size of 13 × 21 pixels as shown in Figure 7 and Table 5. The first two layers are used to
extract the low-level image features, such as blobs texture feature or edges.

Then, three additional convolutional layers are used for the high-level feature extraction as given
in Figure 7 and Table 5. In details, the 3rd convolutional layer adopts 256 filters with the size of 3 × 3
× 128, the 4th convolutional layer has 256 filters with the size of 3 × 3 × 256, and the 5th convolutional
layer uses 128 filters with the size of 3 × 3 × 256.

Through these five convolutional layers, 128 feature maps with the size of 6 × 10 pixels are
finally obtained, which are fed to the additional three fully connected layers including 4096, 1024,
and 2 neurons, respectively. This research will finally classify two classes of pedestrian areas and
non-pedestrian areas through a CNN. Therefore, the last (3rd) fully connected layer (called as “output
layer”) of Figure 7 and Table 5 has only two nodes. The 3rd fully connected layer uses Softmax function,
as given through Equation (5) [44]:

σ(s)j =
esj

∑K
n=1 esn

(5)

Given that the array of the output neurons is set as s, we can obtain the probability of neurons
belonging to the jth class by dividing the value of the jth element by the summation of the values of all
the elements. As illustrated in the previous studies [36,47], the CNN-based recognition system has an
over-fitting problem, which can cause low recognition accuracy with testing data although the accuracy
with the training data is still high. To address such problems, this research employs data augmentation
and dropout methods [36,47], which can reduce the effects of over-fitting problem. More details about
the outcome of the data augmentation are presented in Section 4.1. For the dropout method, we adopt
the dropout probability of 50% to disconnect the connections several neurons between previous layer
and the next layers in the fully connected network [35,36,47].

4. Experimental Result

4.1. Experimental Data and Training

Table 6 and Figure 8 show the sample images from the database (DVLFPD-DB1), which were
used in this study. This database is built independently by our lab, and is available with our trained
CNN model to other researchers through [48] for the purposes of comparisons by other researchers.
In total, there are four sub-databases, and the total number of frames of visible light images and FIR
images is 4080 each.

To obtain the images, this study used a dual camera system [12] consisting of a Tau640 FIR camera
(19 mm, FLIR, Wilsonville, OR, USA) [49], and a C600 visible light web-camera (Logitech, Lausanne,
Switzerland) [50]. In order to record the filming conditions, a WH-1091 wireless weather station
(Chanju Tech., Paju-si, Gyeonggi-do, Korea) was used [51].

This research conducted the CNN training, and the tests in such a way that a four-fold cross
validation can be achieved by using the four sub-databases as shown in Figure 8. In addition, it
conducted a data augmentation step in order to solve the overfitting issue when conducting the
CNN training. For data augmentation, image translation and cropping was used based on previous
research [36]. In other words, the study gained four additional augmented candidate images from a
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single original candidate image listed in Table 5. This was achieved by adjusting five pixel translations
and cropping to box locations (up, down, right and left) that contained the pedestrian and the
non-pedestrian candidates. The augmented data were used only for the CNN training. For testing
purposes, non-augmented original candidate images were used.
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Table 6. Description of the database.

Sub-Database 1 Sub-Database 2 Sub-Database 3 Sub-Database 4

Number of image 598 651 2364 467

Number of pedestrian candidate 1123 566 2432 169

Number of non-pedestrian candidate 763 734 784 347

(range of width) ×
(range of height)

(pixels)

Pedestrian (27 ~91) × (87 ~231) (47 ~85) × (85 ~163) (31 ~105) × (79 ~245) (30 ~40) × (90 ~120)

Non-pedestrian (51 ~161) × (63 ~142) (29 ~93) × (49 ~143) (53 ~83) × (55 ~147) (60 ~170) × (50 ~110)

Weather Conditions

Surface temperature:
30.4 ◦C, Air

temperature: 22.5 ◦C,
Wind speed:

10 km/h, Sensory
temperature: 21.3 ◦C

Surface
temperature: 25.5

◦C, Air temperature:
24 ◦C, Wind speed:
5 km/h, Sensory

temperature:
23.5 ◦C

Surface temperature:
20 ◦C, Air

temperature: 21 ◦C,
Wind Speed:

6.1 km/h, Sensory
temperature: 21 ◦C

Surface temperature:
16 ◦C, Air

temperature: 20.5 ◦C,
Wind Speed:

2.5 km/h, Sensory
temperature: 20.8 ◦C

The experimental conditions in this research were as follows: all the tests were conducted in a
desktop computer consisting of Intel® Core™ i7-3770K CPU @ 3.50 GHz (four CPUs), main memory
of 16 GB, and a GeForce GTX 1070 (1,920 CUDA cores) graphics card (NVIDIA, Santa Clara, CA, USA)
with memory of 8 GB [52]. The algorithms of the CNN training and testing were implemented by
Window Caffe (version 1) [53].

This study used stochastic gradient descent (SGD) method for the CNN training [54]. The SGD
method is a tool to find the optimal weight, which minimizes the difference between the desired and
the calculated outputs based on the derivatives [35].

Unlike the gradient descent (GD) method, the SGD method defines the total number of iterations
by dividing the training set by the mini-batch size, sets the training completion time until it reaches the
total number of iterations (set as 1 epoch), and conducts the training for the preset number of epoch.
The CNN training parameters are as follows: base_lr = 0.01, lr_policy = step, minibatchsize = 128,
stepsize = 1013 (5 epoch), max_iter = 4054 (20 epoch), momentum = 0.9, gamma = 0.1, weight_decay
= 0.0001, regularization_type = L2. The detail explanations of these parameters can be found in the
following literature [53]. Figure 9 shows the loss and the training accuracy for the CNN training process
along with the number of iterations. The loss graph converges toward 0, and the training accuracy
reaches 100% as the iteration of the four folds increase. At this condition, the CNN is considered to be
fully trained.Sensors 2017, 17, 1598  18 of 32 
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Figure 9. Loss and accuracy graphs of the training procedure: (a) the 1st fold (visible light candidate
images); (b) the 1st fold (FIR candidate image); (c) the 2nd fold (visible light candidate images); (d) the
2nd fold (FIR candidate image); (e) the 3rd fold (visible light candidate images); (f) the 3rd fold (FIR
candidate image); (g) the 4th fold (visible light candidate images); (h) the 4th fold (FIR candidate image).

Figure 10 shows an example of 96 filters with 11 × 11 × 3 (as shown in Table 4) in the 1st
convolutional layer, as identified through the training. For the purposes of visibility, the filters
are resized five times as larger by bi-linear interpolation. In this study, the experiments used three
types of databases, (a) the original DVLFPD-DB1, (b) the degraded DVLFPD-DB1 (see Section 4.2),
which reflects Gaussian noise and Gaussian blurring into the original database, and (c) the open
database (see Section 4.2), or the Ohio State University (OSU) color-thermal database [55]. Therefore,
Figure 10 presents 96 filters - each gained from the CNN training by using these three types of
databases. As shown in the following Table 7 of Section 4.1, the Bisector method has the highest
performance among those various defuzzification methods, and therefore, Figure 10 shows the shape
of filter when using the Bisector method. By comparing the Figure 10a,b, the shapes of filters eligible
for edge detection in Figure 10a is more distinctive than those in Figure 10b. That is because the
edge strength in the degraded DVLFPD-DB1 is reduced by image blurring compared to that in the
original DVLFPD-DB1.

In addition, by comparing the shapes of filters of Figure 10a–c, we can find that the shapes of
left four filters of Figure 10c from OSU color-thermal database is simpler than those of Figure 10a,b.
In addition, the shapes of right four filters of Figure 10c do not show the characteristics of direction
compared to those of Figure 10a,b. That is because the pedestrian or non-pedestrian candidates in
OSU color-thermal database is smaller than those in the original DVLFPD-DB1 and the degraded
DVLFPD-DB1 as shown in Figures 8, 11 and 12. Therefore, more local features are extracted from
OSU color-thermal database through CNN training to discriminate the pedestrian and non-pedestrian
candidates than those from the original DVLFPD-DB1 and the degraded DVLFPD-DB1.
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Figure 10. Examples of 96 filters obtained from the 1st convolution layer through training with (a)
original DVLFPD-DB1, (b) degraded DVLFPD-DB1, and (c) OSU color-thermal database. In (a–c), left
four images show the 96 filters obtained by training with visible light candidate images whereas right
4 images represent those by training with FIR candidate images. In the left and right four images, the
left-upper, right-upper, left-lower, and right-lower images show the 96 filters obtained by training of
1st~4th fold cross validation, respectively.
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4.2. Testing of the Proposed Method

The classification accuracy from the FIS’s defuzzification method, proposed as the first test,
is measured and presented in Table 7. This study defines the pedestrian and the non-pedestrian
candidates as positive and negative data in order to test their performances. They are also defined as
true negative (TN), true positives (TP), false negatives (FN), and false positives (FP). TN is the case
where the background (non-pedestrian) candidate is correctly recognized as the background region,
whereas TP is the case where the pedestrian candidate is correctly recognized as the pedestrian region.
FN is the case where the pedestrian candidate is incorrectly recognized as the background region,
whereas FP is the case where the background (non-pedestrian) candidate is incorrectly recognized
as the pedestrian region. Based on these, we can define two errors of false negative rate (FNR) and
false positive rate (FPR). In addition, two accuracies of true positive rate (TPR) and true negative rate
(TNR) can be defined. In other words, TPR and TNR are calculated as 100-FNR (%) and 100-FPR
(%) respectively.

Table 7 shows TPR, TNR, FNR, and FPR after processing through the confusion matrix.
For instance, according to the LOM method in Table 7, TPR, TNR, FNR, and FPR are 99.74%, 99.35%,
0.26%, and 0.65%, respectively. Table 7 presents the average value of the four testing accuracies
produced by the four-fold cross validation. The test showed that the bisector method has a higher
classification accuracy compared to the other methods. Based on this, this study evaluated the testing
performance by using the bisector method-based FIS.

Table 7. Classification accuracies for defuzzification method (unit: %).

Defuzzification Method
Recognized Avg. of TPR and TNR

Pedestrian Non-Pedestrian

Actual

LOM
Pedestrian 99.74 0.26

99.55Non-pedestrian 0.65 99.35

MOM
Pedestrian 99.74 0.26

99.55Non-pedestrian 0.65 99.35

SOM
Pedestrian 99.74 0.26

99.57Non-pedestrian 0.61 99.39

Centroid
Pedestrian 99.72 0.28

99.58Non-pedestrian 0.57 99.43

Bisector
Pedestrian 99.63 0.37

99.61Non-pedestrian 0.41 99.59

The second test compared the classification accuracies among the HOG-SVM-based method [18,22],
the CNN and single camera-based method (visible light or FIR camera) [6,10], and the late fusion
CNN-based method [13], which are widely used in the previously reported pedestrian detection studies.
For fair comparisons, the same augmented data (as reported in the previous studies [6,10,13,18,22])
were used in our method. In addition, the same testing data were used for our method and the
previous methods. Table 8 shows the average value of the four testing accuracies produced by the
four-fold cross validation. As described in Table 8, the proposed method is far more accurate than the
previously studied methods.
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Table 8. Comparisons of classification accuracies with original DVLFPD-DB1 based on confusion
matrix (unit: %).

Method
Recognized Avg. of TPR and TNR

Pedestrian Non-Pedestrian

Actual

HOG-SVM based [18,22]
Pedestrian 97.86 2.14

96.28Non-pedestrian 5.31 94.69

CNN and single visible
light camera-based [6]

Pedestrian 97.69 2.31
97.59Non-pedestrian 2.52 97.48

CNN and single FIR
camera-based [10]

Pedestrian 96.53 3.47
96.95Non-pedestrian 2.64 97.36

Late fusion
CNN-based [13]

Pedestrian 98.38 1.62
98.03Non-pedestrian 2.33 97.67

Proposed method Pedestrian 99.63 0.37
99.61Non-pedestrian 0.41 99.59

Also, for performance comparisons, this research used precision, recall, accuracy, and F1 score
as given in Table 9. With TP, TN, FP, and FN, we have used the following four criteria for accuracy
measurements [56]:

Precision =
#TP

#TP + #FP
(6)

Recall =
#TP

#TP + #FN
(7)

Accuracy (ACC) =
#TP + #TN

#TP + #TN + #FP + #FN
(8)

F1 score = 2· Precision·Recall
Precision + Recall

(9)

where #TP, #TN, #FP, and #FN mean the numbers of TP, TN, FP, and FN, respectively. Minimum and
maximum values of precision, recall, accuracy, and F1 score are 0 (%) and 100 (%), respectively, where
0 (%) and 100 (%) represent the lowest and highest accuracies, respectively. Table 9 shows the average
value of the four testing accuracies produced by the four-fold cross validation. As described in Table 9,
the proposed method is significantly more accurate than the previous methods.

Table 9. Comparisons of classification accuracies with original DVLFPD-DB1 based on precision, recall,
accuracy, and F1 score (unit: %).

Method Precision Recall ACC F1 Score

HOG-SVM based [18,22] 96.78 97.86 96.66 97.32
CNN and single visible light camera-based [6] 98.42 97.69 97.58 98.05

CNN and single FIR camera-based [10] 98.32 96.53 96.37 97.42
Late fusion CNN-based [13] 98.57 98.38 98.11 98.47

Proposed method 99.75 99.63 99.61 99.69

As the third experiment, this research created the degraded dataset artificially including Gaussian
noise (sigma of 0.03) and Gaussian blurring (sigma of 0.5) in order to account for more environmental
variables into the original dataset and evaluate them for their accuracy. Such factors have negative
effects as they are able to exist in the actual intelligent surveillance camera system environment.
Therefore, in order to exhibit a strong performance under such a poor condition, this study created a
degraded dataset as shown in Figure 11.



Sensors 2017, 17, 1598 24 of 32

Sensors 2017, 17, 1598  24 of 32 

 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 11. Examples of original and degraded DVLFPD-DB1. Original images of (a) pedestrian 

candidate, and (b) non-pedestrian candidate. Degraded images of (c) pedestrian candidate, and (d) 

non-pedestrian candidate. In (a–d), left and right images show the candidates from visible light and 

FIR light images, respectively. 

Tables 10 and 11 show the average value of the four testing accuracies gained by the four-fold 

cross validation. As showed in Tables 10 and 11, even in the case of using the degraded dataset, the 

proposed method had better classification accuracy than the other methods.  

Table 10. Comparisons of classification accuracies with degraded DVLFPD-DB1 based on confusion 

matrix (unit: %). 

Method 

Recognized 
Avg. of TPR 

and TNR Pedestrian 
Non-

Pedestrian 

Actual 

HOG-SVM based [18,22] 

Pedestrian 96.11 3.89 

92.13 Non-

pedestrian 
11.85 88.15 

CNN and single visible light 

camera-based [6] 

Pedestrian 97.32 2.68 

89.16 Non-

pedestrian 
19.01 80.99 

CNN and single FIR camera-

based [10] 

Pedestrian 96.62 3.38 

95.33 Non-

pedestrian 
5.97 94.03 

Late fusion CNN-based [13] 

Pedestrian 95.96 4.04 

93.01 Non-

pedestrian 
9.94 90.06 

Proposed method 

Pedestrian 96.33 3.67 

97.23 Non-

pedestrian 
1.88 98.12 

Figure 11. Examples of original and degraded DVLFPD-DB1. Original images of (a) pedestrian
candidate, and (b) non-pedestrian candidate. Degraded images of (c) pedestrian candidate, and (d)
non-pedestrian candidate. In (a–d), left and right images show the candidates from visible light and
FIR light images, respectively.

Tables 10 and 11 show the average value of the four testing accuracies gained by the four-fold
cross validation. As showed in Tables 10 and 11, even in the case of using the degraded dataset, the
proposed method had better classification accuracy than the other methods.

Table 10. Comparisons of classification accuracies with degraded DVLFPD-DB1 based on confusion
matrix (unit: %).

Method
Recognized Avg. of TPR and TNR

Pedestrian Non-Pedestrian

Actual

HOG-SVM
based [18,22]

Pedestrian 96.11 3.89
92.13

Non-pedestrian 11.85 88.15

CNN and single visible
light camera-based [6]

Pedestrian 97.32 2.68
89.16

Non-pedestrian 19.01 80.99

CNN and single FIR
camera-based [10]

Pedestrian 96.62 3.38
95.33

Non-pedestrian 5.97 94.03

Late fusion
CNN-based [13]

Pedestrian 95.96 4.04
93.01

Non-pedestrian 9.94 90.06

Proposed method Pedestrian 96.33 3.67
97.23

Non-pedestrian 1.88 98.12
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Table 11. Comparisons of classification accuracies with degraded DVLFPD-DB1 based on precision,
recall, accuracy, and F1 score (unit: %).

Method Precision Recall ACC F1 Score

HOG-SVM based [18,22] 92.98 96.11 93.09 94.52
CNN and single visible light camera-based [6] 89.29 97.32 91.10 93.13

CNN and single FIR camera-based [10] 96.31 96.62 95.63 96.46
Late fusion CNN-based [13] 94.03 95.96 93.72 94.99

Proposed method 98.80 96.33 97.02 97.55

The fourth experiment is based on the open database (OSU color-thermal database) [55] such
that a fair comparison can be done by other researchers. As shown in Figure 12, OSU color-thermal
database is an image gained by the FIR camera and visible light camera in the fixed outdoor with
various environmental factors.
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Figure 12. Examples of OSU color-thermal database. (a) Example 1, (b) example 2, (c) example 3, and 
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Figure 12. Examples of OSU color-thermal database. (a) Example 1, (b) example 2, (c) example 3, and
(d) example 4. In (a–d), left and right images show the visible light and FIR light images, respectively.
In (a–d), upper and lower images represent the candidates and original images, respectively.

Tables 12 and 13 show the average value of the four testing accuracies gained by the four-fold
cross validation. As Tables 12 and 13 present, the proposed method shows a higher accuracy even with
the OSU color-thermal database.

Table 12. Comparisons of classification accuracies with OSU color-thermal database based on the
confusion matrix (unit: %).

Method
Recognized

Avg. of TPR and TNR
Pedestrian Non-Pedestrian

Actual

HOG-SVM based [18,22]
Pedestrian 99.11 0.89

98.69
Non-pedestrian 1.73 98.27

CNN and single visible
light camera-based [6]

Pedestrian 99.64 0.36
98.75

Non-pedestrian 2.14 97.86

CNN and single FIR
camera-based [10]

Pedestrian 99.51 0.49
98.54

Non-pedestrian 2.44 97.56

Late fusion
CNN-based [13]

Pedestrian 99.28 0.72
98.90

Non-pedestrian 1.49 98.51

Proposed method Pedestrian 99.58 0.42
99.02

Non-pedestrian 1.54 98.46
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Table 13. Comparisons of classification accuracies with OSU color-thermal database based on precision,
recall, accuracy, and F1 score (unit: %).

Method Precision Recall ACC F1 Score

HOG-SVM based [18,22] 98.34 99.36 98.83 98.85
CNN and single visible light camera-based [6] 97.86 99.64 98.74 98.74

CNN and single FIR camera-based [10] 97.62 99.51 98.54 98.56
Late fusion CNN-based [13] 98.53 99.28 98.83 98.90

Proposed method 98.52 99.58 99.03 99.05

Figure 13 shows TPR and FPR-based receiver operation characteristic (ROC) curves among the
proposed method and the others with regard to three types of the databases. The figure presents the
average graph of the four testing accuracies gained by the four-fold cross validation.
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Figure 13. ROC curves with (a) original DVLFPD-DB1, (b) degraded DVLFPD-DB1, and (c) OSU
color-thermal database.

As explained before, FNR (100-TPR (%)) has the trade-off relationship with FPR. According to
threshold of classification, larger FNR causes smaller FPR, and vice versa. Equal error rate (EER) is
the error rate (FNR or FPR) when FNR is same to FPR. As shown in Figure 13, the accuracy of the
proposed method is significantly higher than that of the previous methods.

Figure 14 shows the examples of correct classification. Although the candidates were obtained
in various environments of noise, blurring, size, and illuminations, all the cases of TP and TN are
correctly recognized.
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Figure 14. Examples of correct classification with (a) original DVLFPD-DB1, (b) degraded
DVLFPD-DB1, and (c) OSU color-thermal database. In (a–c), left and right images show the examples
of TP and TN candidates, respectively.
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Figure 15 shows the examples of incorrect classification. In Figure 15a–c, the left and right images
show the FP and FN cases, respectively. The FP errors happen when the shape of background is similar
to a pedestrian (Figure 15a), lots of noise are included (Figure 15b), and the shape of a shadow is
similar to that of a pedestrian (Figure 15c). The FN errors occur when the part of pedestrian is occluded
in the candidate box (Figure 15a), lots of noises are included (Figure 15b), and a large background area
is included in the detected pedestrian box (Figure 15a,c).
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Figure 15. Examples of incorrect classification with (a) original DVLFPD-DB1, (b) degraded
DVLFPD-DB1, and (c) OSU color-thermal database. In (a–c), left and right images show the FP
and FN cases, respectively.

5. Conclusions

This paper made an adaptive selection to find the most appropriate candidate for pedestrian
detection among the two pedestrian candidates of visible light and FIR camera images by using
the FIS and suggested a new method to verify that candidate with the CNN. In order to test the
accuracy of the algorithm under the various conditions, the study used not only the independently
designed DVLFPD-DB1 but also the degraded DVLFPD-DB1 combining the original DVLFPD-DB1
with Gaussian blurring and noise. Also, the OSU color-thermal database, an open database, was used
as well in order to compare the accuracy of the proposed method with the others.

CNN has been widely used for its performance in various fields. However, intensive training
is required for the usage of CNN with lots of training data. In many applications, it is often the
case that collecting lots of training data is a difficult procedure, so a subsequent data augmentation
process is performed. To lessen this disadvantage of CNN-based methods, we have made our trained
CNN model with our collected DVLFPD-DB1 and degraded one by Gaussian blurring and noise
publically available to other researchers for the purpose of performing comparisons. In future work,
the proposed method can form the basis for studying crime recognition and face detection of criminals.
Further, there are plans to conduct research to sense emergency situations in vehicular environments
by detecting various subjects through the front camera in the vehicle in order to utilize the proposed
method for a driver assistance system.
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Poznań, Poland, 23–25 September 2015; pp. 185–190.

10. John, V.; Mita, S.; Liu, Z.; Qi, B. Pedestrian detection in thermal images using adaptive fuzzy c-means
clustering and convolutional neural networks. In Proceedings of the 14th IAPR International Conference on
Machine Vision Applications, Tokyo, Japan, 18–22 May 2015; pp. 246–249.

11. Serrano-Cuerda, J.; Fernández-Caballero, A.; López, M.T. Selection of a visible-light vs. thermal infrared
sensor in dynamic environments based on confidence measures. Appl. Sci. 2014, 4, 331–350. [CrossRef]

12. Lee, J.H.; Choi, J.-S.; Jeon, E.S.; Kim, Y.G.; Le, T.T.; Shin, K.Y.; Lee, H.C.; Park, K.R. Robust pedestrian
detection by combining visible and thermal infrared cameras. Sensors 2015, 15, 10580–10615. [CrossRef]
[PubMed]

13. Wagner, J.; Fischer, V.; Herman, M.; Behnke, S. Multispectral pedestrian detection using deep fusion
convolutional neural networks. In Proceedings of the European Symposium on Artificial Neural Networks,
Bruges, Belgium, 27–29 April 2016; pp. 509–514.

14. González, A.; Fang, Z.; Socarras, Y.; Serrat, J.; Vázquez, D.; Xu, J.; López, A.M. Pedestrian detection at
day/night time with visible and FIR cameras: A comparison. Sensors 2016, 16, 1–11. [CrossRef] [PubMed]

15. Enzweiler, M.; Gavrila, D.M. Monocular pedestrian detection: Survey and experiments. IEEE Trans. Pattern
Anal. Mach. Intell. 2009, 31, 2179–2195. [CrossRef] [PubMed]

16. Dollár, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian detection: An evaluation of the state of the art.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 743–761. [CrossRef] [PubMed]

17. Viola, P.; Jones, M.J.; Snow, D. Detecting pedestrians using patterns of motion and appearance. Int. J.
Comput. Vis. 2005, 63, 153–161. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2013.01.007
http://dx.doi.org/10.1109/TITS.2004.838222
http://dx.doi.org/10.3390/app4030331
http://dx.doi.org/10.3390/s150510580
http://www.ncbi.nlm.nih.gov/pubmed/25951341
http://dx.doi.org/10.3390/s16060820
http://www.ncbi.nlm.nih.gov/pubmed/27271635
http://dx.doi.org/10.1109/TPAMI.2008.260
http://www.ncbi.nlm.nih.gov/pubmed/19834140
http://dx.doi.org/10.1109/TPAMI.2011.155
http://www.ncbi.nlm.nih.gov/pubmed/21808091
http://dx.doi.org/10.1007/s11263-005-6644-8


Sensors 2017, 17, 1598 31 of 32

18. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005;
pp. 886–893.

19. Zhu, Q.; Avidan, S.; Yeh, M.-C.; Cheng, K.-T. Fast human detection using a cascade of histograms of oriented
gradients. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, New York, NY, USA, 17–22 June 2006; pp. 1491–1498.

20. Wöhler, C.; Anlauf, J.K. An adaptable time-delay neural-network algorithm for image sequence analysis.
IEEE Trans. Neural Netw. 1999, 10, 1531–1536. [CrossRef] [PubMed]

21. Jeon, E.S.; Choi, J.-S.; Lee, J.H.; Shin, K.Y.; Kim, Y.G.; Le, T.T.; Park, K.R. Human detection based on
the generation of a background image by using a far-infrared light camera. Sensors 2015, 15, 6763–6788.
[CrossRef] [PubMed]

22. Yuan, Y.; Lu, X.; Chen, X. Multi-spectral pedestrian detection. Signal Process. 2015, 110, 94–100. [CrossRef]
23. Gavrila, D.M.; Munder, S. Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J.

Comput. Vis. 2007, 73, 41–59. [CrossRef]
24. Bertozzi, M.; Broggi, A.; Del Rose, M.; Felisa, M.; Rakotomamonjy, A.; Suard, F. A pedestrian detector

using histograms of oriented gradients and a support vector machine classifier. In Proceedings of the IEEE
Intelligent Transportation Systems Conference, Seattle, WA, USA, 30 September–3 October 2007; pp. 143–148.

25. Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [CrossRef]
26. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA,
8–14 December 2001; pp. I-511–I-518.

27. Fukushima, K.; Miyake, S.; Ito, T. Neocognitron: A neural network model for a mechanism of visual pattern
recognition. IEEE Trans. Syst. Man Cybern. 1983, SMC-13, 826–834. [CrossRef]

28. Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic—Theory and Applications; Prentice-Hall: Upper Saddle River, NJ,
USA, 1995.

29. Zhao, J.; Bose, B.K. Evaluation of membership functions for fuzzy logic controlled induction motor
drive. In Proceedings of the IEEE Annual Conference of the Industrial Electronics Society, Sevilla, Spain,
5–8 November 2002; pp. 229–234.

30. Bayu, B.S.; Miura, J. Fuzzy-based illumination normalization for face recognition. In Proceedings of the IEEE
Workshop on Advanced Robotics and Its Social Impacts, Tokyo, Japan, 7–9 November 2013; pp. 131–136.

31. Barua, A.; Mudunuri, L.S.; Kosheleva, O. Why trapezoidal and triangular membership functions work so
well: Towards a theoretical explanation. J. Uncertain Syst. 2014, 8, 164–168.

32. Defuzzification Methods. Available online: https://kr.mathworks.com/help/fuzzy/examples/
defuzzification-methods.html (accessed on 4 April 2017).

33. Leekwijck, W.V.; Kerre, E.E. Defuzzification: Criteria and classification. Fuzzy Sets Syst. 1999, 108, 159–178.
[CrossRef]

34. Broekhoven, E.V.; Baets, B.D. Fast and accurate center of gravity defuzzification of fuzzy system outputs
defined on trapezoidal fuzzy partitions. Fuzzy Sets Syst. 2006, 157, 904–918. [CrossRef]

35. Kim, J.H.; Hong, H.G.; Park, K.R. Convolutional neural network-based human detection in nighttime images
using visible light camera sensors. Sensors 2017, 17, 1–26.

36. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25; Curran Associates, Inc.: New York, NY, USA, 2012;
pp. 1097–1105.

37. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

38. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. Deepface: Closing the gap to human-level performance in
face verification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708.

39. Grant, E.; Sahm, S.; Zabihi, M.; van Gerven, M. Predicting and visualizing psychological attributions with a
deep neural network. In Proceedings of the 23rd International Conference on Pattern Recognition, Cancun,
Mexico, 4–8 December 2016; pp. 1–6.

40. CS231n Convolutional Neural Networks for Visual Recognition. Available online: http://cs231n.github.io/
convolutional-networks/#overview (accessed on 16 May 2017).

http://dx.doi.org/10.1109/72.809100
http://www.ncbi.nlm.nih.gov/pubmed/18252656
http://dx.doi.org/10.3390/s150306763
http://www.ncbi.nlm.nih.gov/pubmed/25808774
http://dx.doi.org/10.1016/j.sigpro.2014.08.003
http://dx.doi.org/10.1007/s11263-006-9038-7
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1109/TSMC.1983.6313076
https://kr.mathworks.com/help/fuzzy/examples/defuzzification-methods.html
https://kr.mathworks.com/help/fuzzy/examples/defuzzification-methods.html
http://dx.doi.org/10.1016/S0165-0114(97)00337-0
http://dx.doi.org/10.1016/j.fss.2005.11.005
http://dx.doi.org/10.1109/5.726791
http://cs231n.github.io/convolutional-networks/#overview
http://cs231n.github.io/convolutional-networks/#overview


Sensors 2017, 17, 1598 32 of 32

41. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA,
7–9 May 2015; pp. 1–14.

42. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. Going deeper with convolutions. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

43. Convolutional Neural Network. Available online: https://en.wikipedia.org/wiki/Convolutional_neural_
network (accessed on 16 May 2017).

44. Heaton, J. Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks; Heaton Research,
Inc.: St. Louis, MS, USA, 2015.

45. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814.

46. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the 14th
International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

47. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

48. Dongguk Visible Light & FIR Pedestrian Detection Database (DVLFPD-DB1) & CNN Model. Available
online: http://dm.dgu.edu/link.html (accessed on 16 May 2017).

49. Tau®2 Uncooled Cores. Available online: http://www.flir.com/cores/display/?id=54717 (accessed on
16 May 2017).

50. Webcam C600. Available online: https://support.logitech.com/en_us/product/5869 (accessed on 16 May 2017).
51. WH-1091. Available online: http://www.cjtech21.com/goods/goods_view.php?goodsNo=1000000612

(accessed on 16 May 2017).
52. Geforce GTX 1070. Available online: https://www.nvidia.com/en-us/geforce/products/10series/geforce-

gtx-1070/ (accessed on 16 May 2017).
53. Caffe. Available online: http://caffe.berkeleyvision.org (accessed on 16 May 2017).
54. Stochastic Gradient Descent. Available online: https://en.wikipedia.org/wiki/Stochastic_gradient_descent

(accessed on 16 May 2017).
55. Davis, J.W.; Sharma, V. Background-subtraction using contour-based fusion of thermal and visible imagery.

Comput. Vis. Image Underst. 2007, 106, 162–182. [CrossRef]
56. Precision and Recall. Available online: https://en.wikipedia.org/wiki/Precision_and_recall (accessed on

16 May 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
http://dm.dgu.edu/link.html
http://www.flir.com/cores/display/?id=54717
https://support.logitech.com/en_us/product/5869
http://www.cjtech21.com/goods/goods_view.php?goodsNo=1000000612
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1070/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1070/
http://caffe.berkeleyvision.org
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://dx.doi.org/10.1016/j.cviu.2006.06.010
https://en.wikipedia.org/wiki/Precision_and_recall
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Proposed Method 
	Overall Procedure of the Proposed System 
	Adaptive Selection by FIS 
	Classification of Pedestrian and Non-Pedestrian by CNN 

	Experimental Result 
	Experimental Data and Training 
	Testing of the Proposed Method 

	Conclusions 

