
sensors

Article

Routing in Mobile Wireless Sensor Networks:
A Leader-Based Approach†

Unai Burgos 1,2, Ugaitz Amozarrain 1, Carlos Gómez-Calzado 2 and Alberto Lafuente 1,∗

1 University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Vizcaya, Spain;
unai.burgos@ehu.eus (U.B.); ugaitz.amozarrain@ehu.eus (U.A.)

2 Wimbi Technologies S.L., 20015 Donostia, Spain; unai.burgos@wimbitek.com (U.B.);
carlos.gomez@wimbitek.com (C.G.-C.)

* Correspondence: alberto.lafuente@ehu.eus; Tel.: +34-943-015-086
† This paper is an extended version of our paper published in Burgos, U.; Gómez-Calzado, C.; Lafuente, A.

Leader-Based Routing in Mobile Wireless Sensor Networks. In Lecture Notes in Computer Science, 10th
International Conference on Ubiquitous Computing and Ambient Intelligence, UCAmI 2016, San Bartolomé de
Tirajana, Gran Canaria, Spain, November 29–December 2, 2016, Proceedings, Part II; García, C.R., Caballero-Gil, P.,
Burmester, M., Quesada-Arencibia, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 10070,
pp. 218–229.

Received: 26 May 2017; Accepted: 3 July 2017; Published: 7 July 2017

Abstract: This paper presents a leader-based approach to routing in Mobile Wireless Sensor Networks
(MWSN). Using local information from neighbour nodes, a leader election mechanism maintains
a spanning tree in order to provide the necessary adaptations for efficient routing upon the
connectivity changes resulting from the mobility of sensors or sink nodes. We present two protocols
following the leader election approach, which have been implemented using Castalia and OMNeT++.
The protocols have been evaluated, besides other reference MWSN routing protocols, to analyse the
impact of network size and node velocity on performance, which has demonstrated the validity of
our approach.

Keywords: mobile wireless sensor networks; routing; leader election

1. Introduction

Wireless Sensor Networks (WSNs) [1] are used for monitoring and data gathering from the
physical world in many applications, such as environment monitoring, farming management, tracking
animals or goods, health care, transportation and ubiquitous home networks. Nowadays, WSNs are
attracting great attention in research (for a recent survey, see, for example, [2]).

A WSN consists of a usually big number of sensor nodes, also called motes, deployed in the
application scenario. Motes are equipped with the specific sensors demanded by the application,
and gather information about the environment, which is transmitted towards one or more sink nodes
(also called base stations). Sink nodes collect and process the received data in order to make it available
to the user. Although in a small WSN one-hop communication to the sink can be implemented,
in general, a multi-hop schema must be considered. In this case, regular motes are in charge of
executing a routing protocol in order to forward the information towards the sink.

Since motes must usually operate unattended for a long time, they have severe energy
constraints. This has a deep impact on the design of a WSN and specifically on the routing protocol.
Since communication is a costly resource in terms of energy consumption, a brute-force message
forwarding mechanism (i.e., flooding) is in general inadvisable. Instead, the design of the routing
protocol [3] is a critical aspect that should consider trade-offs between transmission power and
forwarding strategies in order to provide reliability and quality of service. Additionally, since a mote

Sensors 2017, 17, 1587; doi:10.3390/s17071587 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17071587
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1587 2 of 15

can crash due to battery exhaustion or other reasons, an efficient routing protocol should be flexible
enough to react to a failure by reconfiguring the network [4].

Traditional application scenarios of WSN include static deployments. In a static WSN, routing can
be initially configured to optimise communication and reduce latencies. However, some particular
nodes, specifically the ones closer to a sink are especially active in message forwarding, which results
in the drop of battery level, and henceforth in a higher probability of message loss due to the reduction
of its communication range. Thus, even in static WSN, maintaining an efficient level of operation
requires routing reconfiguration. This can be done on the basis of the information about the quality of
links [5].

As technology matures, WSN are gaining opportunities for application in mobile deployments [6].
There are two ways to introduce mobility in a Mobile WSN (MWSN). The simpler one is to have static
sensor nodes while the sink nodes are the ones moving. For example, crops on a farm may have
sensors that take measurement about the humidity or temperature and whenever a farmer walks by,
his smartphone acts a sink node in order to download that information. The second approach is to
maintain static sinks while sensor nodes are mobile, for example, when attached to animals in tracking
applications. In this case, a static sink can be used to collect tracking information stored in the sensor
nodes when the animals are in its range. Finally, both approaches can be combined, letting all nodes
in the WSN be mobile. For example, in a residential environment for aged people or for people with
disabilities, sensors attached to them can provide information to the mobile devices of the assistant
personnel [7].

Despite the additional complexity of routing protocols for MWSN, mobility brings the opportunity
of reducing the number of hops to the sink node. According to [8], the probability of having at least
a sensor node in the range of a sink increases with the communication radius, the velocity of the node
and the number of sinks, resulting in a reduction of the latency.

However, high mobility conditions could prevent many transmissions to successfully deliver
messages [9]. On the one hand, any wireless communication requires a minimum time to be completed.
On the other hand, a more complex routing protocol could require additional stability conditions for
a sensor node to communicate with the sink [10].

This paper, which extends a preliminary work of ours [11], presents a routing approach for
Mobile Wireless Sensor Networks. The approach is inspired on leader-election techniques for dynamic
systems that we have explored previously [9,12]. It uses a measure of the link quality to maintain
a reconfigurable spanning tree in the network graph in order to minimize the transmission cost
from the mobile sensor nodes to the mobile sink while providing a high message delivery rate.
We present two alternative protocols which implement this approach. The first one (LBR1) uses
a reactive, asynchronous forwarding mechanism to propagate leader election messages, while the
second protocol (LBR2) is based on a periodic communication pattern.

We also present an evaluation of the protocols, basically on the basis of the message delivery rate,
regarding their scalability and their resilience to mobility.

Approaches based on the use of a reconfigurable spanning tree have been proposed before [13].
However, as far as we know, our proposal is the first one for MWSN that uses leader election as a basis
for the reconfiguration.

The rest of the paper is organised as follows. In Section 2, we review some works related to ours.
Section 3 describes our approach and the two routing protocols that implement it. Section 4 presents
the evaluation environment and the performance results of our protocols in comparison with two other
related ones. Finally, Section 5 is devoted to conclude the work and present future research directions.

2. Related Work

In this section, we revise some routing techniques that have been developed in recent years,
specifically those that can be applied to MWSN.

Sensors 2017, 17, 1587 3 of 15

Many works address sink mobility; however, only a few consider the mobility of sensors nodes.
These works are the ones addressed in this section. Furthermore, we limit this section to proactive
protocols, a feature of ours.

In order to avoid flooding and be energy efficient, hierarchical routing has been adopted in many
works. For static WSNs, Heinzelman et al. proposed the Low-Energy Adaptive Clustering Hierarchy
(LEACH) protocol [14], which defines a set of clusters in the network. In every cluster, a Cluster Head
(CH) is in charge of aggregating the information of the cluster’s nodes and route it towards the sink.
In a variant of this protocol [15], a hierarchy of clusters is used to increase scalability.

In MWSN, the cluster approach is followed in the Enhanced Cluster-Based Routing protocol
(ECBR-MWSN) [16], which considers mobile sensor nodes; however, it assumes a static sink. The
CH is chosen on the basis of a combination of the highest residual energy, lowest mobility and least
distance from the sink. To face mobility, ECBR-MWSN elects a new CH periodically, which results in
new paths to the sink. Although we do not follow the same cluster-based approach as ECBR-MWSN,
our protocols perform periodic casts of the topology too.

In the protocol proposed in [17], nodes cooperate with each other with the objective of enhancing
the robustness of routing while using Wireless Broadcast Advantage (WBA) [18], as we also do.
In short, WBA refers to the fact that when a node sends a broadcast message all the nodes that are in
its transmission range will receive the message. They also assume that every node in the network has
a pre-established path between the node and the sink. Special nodes, called guard nodes, are also used
to support routing of the messages.

Proactive routing, used in early, static WSNs (e.g., the Destination-Sequenced Distance Vector
protocol, DSDV [14,19]), has been implemented in [16,17] for MWSN. A proactive routing protocol runs
independently from the application to maintain and update routing tables, with the aim of reducing
the end-to-end delay, a relevant Quality of Service (QoS) parameter.

As mentioned before, Crowcroft et al. [13] uses a reconfigurable spanning tree. Once the spanning
tree has been built, they apply a simple leader election mechanism to set the root of the tree. Contrary to
this, in our approach leader election is the basis for the spanning tree construction.

Ad-hoc On-Demand Distance Vector (AODV) protocol [20] is a classical on-demand routing
protocol originally designed for Mobile Ad-hoc Networks (MANETs) that has been taken as a reference
in many works. In AODV, a node floods route-request messages and waits for replay messages in
order to update its routing tables. Additional periodic messages are used to detect disconnections.

Some routing protocols avoid collisions by strongly relying on the Media Access Control MAC
layer mechanisms, as it is the case of the Robust Ad-hoc Sensor Routing RASeR protocol [21], which
uses Global Time Division Multiple Access (GTDMA). This requires perfect synchronization and a
static membership in the set of nodes. In common with our approach, RASeR uses the number of hops
as a criteria for routing.

In a previous work [11], we presented a leader election based protocol to build and maintain
a spanning tree. This protocol is a preliminary implementation of the approach we define in Section 3.
The preliminary version was reactive, like LBR1, and it included handshaking in communications.
In our current protocols, we have removed handshaking. Furthermore, as we have commented before,
LBR2 is not reactive.

In Section 4, we compare LBR1 and LBR2 to AODV and RASeR.

3. A Leader-Based Routing Approach (LBR)

In this section, we describe our approach to route messages in MWSN, which includes the
construction and maintaining of the spanning tree (described in Section 3.2) that is used for the routing
of application data (described in Section 3.3).

The construction and maintaining of the spanning tree, which is the core of our approach,
is based on dynamic leader election, commonly studied in the field of fault tolerant distributed
agreement [12,22,23]. We present two alternative protocols to implement this approach. The first one

Sensors 2017, 17, 1587 4 of 15

(Subsection 3.2.1) uses a reactive, asynchronous forwarding mechanism to propagate leader election
messages. Differently, the second protocol (Subsection 3.2.2) piggybacks the messages on periodic
heartbeats messages.

3.1. Notation and Assumptions

We consider an architecture with an unknown set of n resource-constrained mobile sensor nodes
and one more powerful mobile sink. We denote this set of sensor nodes as V = {p1, p2, . . . , pn}.
When required for simplicity, we will also refer to a node as p, q, etc. We will denote as s the sink node.
Every node of the system has a unique identifier and a local clock to measure real-time intervals.

Every node, including the sink node, can move. The mobility of a node is characterized according
to two dimensions: velocity and direction. At any time t, a node p moves towards some direction d(p, t)
with a velocity vl(p, t) ≤ VLmax, VLmax being the maximum velocity of every node p in the system.

A node can leave the system, due to a fault or disconnection, or join the system. Connections and
disconnections can be caused by mobility, as the node enters and comes out of the communication
range of other nodes in the system, or for other reasons. In the following, we formalise this concept.

Every node uses broadcast communication to exploit the Wireless Broadcast Advantage
(WBA) [18]. At any time t, a node p can communicate directly (i.e., at one hop) with a subset Np(t) ⊂ V,
which are the nodes that are at time t into a radius r from p, also referred as the neighbourhood of p.
The communication range r is a common parameter for all nodes in V. For simplicity, we consider that
message transmission delays are bounded.

We define the parameter link quality as a measure of the transmission power (in dBm), which can
be easily extracted in a node p at the reception of a message by p from q. We will use the notation
Wp←q(t) to refer to the link quality for a link (q, p) at time t. We assume that Wp←q(t) = Wq←p(t).
We define ξ(tech) as the threshold for the RSSI (Received Signal Strength Indicator) such that a link
can be considered to have good link quality.

When considering link quality, a graph G(t) representing the connectivity conditions in V at time
t is obtained. We also define a spanning tree T(t) ⊂ G(t). Ideally, T(t) will include only links with
good link quality.

Observe that partitions in G(t) are possible, but we assume that ∀t, s ∈ T(t). A node p can be
disconnected from T(t) due to either: (a) p 6∈ Nq(t) ∀q ∈ T(t), or (b) Wp←q(t) ≤ ξ(tech) ∀q ∈ T(t).

3.2. Building the Communication Tree

The goal of our approach is to provide an efficient communication route from any node p to the
root node s in scenarios where sensor devices are mobile. To do so, our approach creates a spanning
tree T(t) with the root in the sink node s. The spanning tree is continuously maintained in order to
represent the best routing options at time t on the basis of the link quality information, providing
a foundation for efficient routing by maximising the probabilities of successful communications,
and henceforth increasing message delivery rates and reducing communication costs.

Figure 1a–f illustrate how a spanning tree is built in situations of node movement, the arrival of a
new node (Figure 1d), or a disconnection (Figure 1f).

We now describe the algorithmic details of the approach. First, we focus on the common features
of the two alternative protocols we propose in this work. Then, we devote two specific subsections to
describe the different mechanisms used in each of the protocols. Please refer, for example, to the first
of the protocols (Algorithms 1 and 2) to check the details of the common description.

Both protocols are based on a broadcast primitive. Note that, apart from providing energy-efficiency
in the multi-hop information dissemination [18], broadcast is also useful to detect changes in
the neighbourhood.

The sink node s is in charge of generating new rounds in the spanning tree reconfiguration.
The spanning tree is created from the sink node s, which is the root of the tree, to the rest of nodes.

Sensors 2017, 17, 1587 5 of 15

In this regard, s sends LEADER messages with refreshed round numbers each β time (see Algorithm 2).
Every node pi is continuously listening to the communication channel.

s

p1

p2

p3

p4

(a)

sp1
p2

p3

p4

(b)

sp1
p2

p3

p4

(c)

sp1
p2

p3

p4
p5

(d)

s
p1

p2
p3

p4

p5

(e)

s
p1

p2
p3

p4

p5

(f)

Figure 1. Example sequence illustrating how a spanning tree is built by our algorithms. Solid lines
represent spanning tree arcs. (a) the sink node s starts executing the protocol; (b) the spanning tree is
built from s; (c) the spanning tree is complete. Observe that it has been reconfigured in the meanwhile;
(d) a new node, p5, joins the network; (e) a new reconfiguration due to mobility; and (f) node p2

disconnects from p1 and becomes not connected.

Every node pi ∈ V proposes its leader, denoted sinkByi. Leader election is executed at every node
pi at time t such that sinkByi ∈ Npi (t) and has the minimum distance to s in the spanning tree T(t).
Ties are broken on the basis of the node identifier.

The explicit perception that a node pi has about its connection with s is another common feature
of both protocols. This perception is represented by the variable activei, which is True when pi is
connected. This explicit knowledge of connectivity is provided by the monitorization of the sink node
s using the timer timer_connectivityi. Each time a node pi receives a new round identifier, pi re-sets
again the timer, denoting pi as connected. Otherwise, if timer_connectivityi expires, pi will consider
itself as not connected.

Observe that, while the round identifiers created by s lower-bounds the interval between
two consecutive reconfigurations, timer_connectivityi upper-bounds the interval between two
consecutive reconfigurations.

In the following subsections, we describe the two implementations of our leader-based routing
(LBR) approach, namely the reactive, eager version (LBR1) and the synchronous, lazy version (LBR2).

3.2.1. Protocol LBR1

Our first implementation relies on delivering the routing information as soon as possible in
a reactive way. In this regard, a node pi computes the sinkByi election during a whole round. When
a message with a higher round number is received by a node pi, pi broadcasts a LEADER message with
the result of the previous round computation and the increase of the distance received (The distance is
extracted from contextual information stored in the message.) (see Lines 5–11, of Algorithm 1). Thus,
pi sends its own LEADER message using the last distance to s known by pi. Observe in Algorithm 2
that no other node but s will send in its LEADER message a zero distance value.

These new LEADER messages sent by pi is essential for multi-hop scenarios. First, LEADER

messages propagate the existence of a sink node in the system. Second, the periodic broadcast of the
LEADER message allows for other nodes to become connected. Finally, LEADER messages provide the
required information to its neighbourhood to create the spanning tree. Consequently, the reception of
a new round identifier from s by a node pi enables a new election round in every pi, which eventually
results in a reconfiguration of the spanning tree.

Sensors 2017, 17, 1587 6 of 15

Algorithm 1: The algorithm LBR1 executed by any sensing node pi. Lines 26–38 are also shared
with LBR2.

1 Initially:
2 timeout← v {v > β};
3 call(reset());

4 || Task 1-a: when (j, LEADER, sender, round, distance) is received at time t such that j ∈ Ni(t) and
Wi←j(t) > ξ(tech) {When receiving a leader message}

5 if round > currentRoundi then
6 broadcast(LEADER, i, currentRoundi , sinkDistancei + 1);
7 sinkByi ← nextSinkByi ;
8 nextSinkByi ← sender;
9 sinkDistancei ← distance;

10 currentRoundi ← round;
11 set timer_connectivityi to timeout;
12 else if round = currentRoundi then
13 if sinkDistancei = distance and sender > sinkByi then
14 nextSinkByi ← sender;
15 sinkDistancei ← distance;
16 else if sinkDistancei > distance then
17 nextSinkByi ← sender;
18 sinkDistancei ← distance;
19 end
20 end
21 if not connectedi then
22 connectedi ← True;
23 sinkByi ← nextSinkByi ;
24 end
25 End

26 || Task 2: when timer_connectivityi expires {The node becomes not connected}
27 call(reset());
28 End

29 || Procedure reset: {Initializes variables}
30 timer_connectivityi ← −1;
31 connectedi ← False;
32 sinkByi ← −1;
33 nextSinkByi ← −1;
34 currentRoundi ← 0;
35 sinkDistancei ← ∞;
36 //Additional statements for LBR2
37 previousRoundi ← currentRoundi ;
38 End

Algorithm 2: Algorithm executed by the sink node s.
1 roundId← 0;

2 || Task 1: each β time {Sends heartbeats}
3 roundId← roundId + 1;
4 broadcast(LEADER, s, roundId, 0);
5 End

The fact that the sink node broadcasts LEADER messages periodically (Algorithm 2) allows for
a timer-based monitoring of connectivity changes. The first time that a node pi receives a LEADER

message (let us say, at time t) from any pj ∈ Npi (t), pi becomes connected and will remain connected
during the time interval (t, t + timeout] (The timeout variable has a common value slightly higher than
β in order to prevent premature time outs.) by setting the timer timer_connectivityi by Line 11. In this
way, every pi ∈ Ns(t) will become connected by Lines 21–24 and will change their variable sinkByi
pointing to s (Lines 7 and 8). If pi does not receive a new round identifier timely, then, either pi will

Sensors 2017, 17, 1587 7 of 15

shortly receive a new message by any other path, setting again timer_connectivityi by Line 11 and
reconfiguring the spanning tree, or, otherwise, pi is no longer connected to the spanning tree T(t). In the
last situation, the no reception of a new round identifier will cause timer_connectivityi to expire and pi
will become not connected. Thus, the timer_connectivityi variable represents the uncertainty of pi to be
connected to s and the expiration of timer_connectivityi results in pi not connected (Lines 26 and 28).
Figures 1e,f illustrate this situation for node p2.

3.2.2. Protocol LBR2

Observe than in our second protocol version, LBR2 (Algorithm 3), the broadcast at Line 6 of LBR1
in Figure 1 has been removed. Instead, in LBR2, we introduce a task executed in every node pi to
broadcast every α time the current routing information of pi when pi considers itself as connected
(see Lines 30–34 in Algorithm 3). This allows us to adopt a windowed mechanism at the MAC layer
and reduce the probability of collision in communications.

Algorithm 3: The modifications required by LBR2 to the previous algorithm to be executed by any
sensing node pi.

1 || Task 1-b: when (j, LEADER, sender, round, distance, msgList) is received at time t such that j ∈ Ni(t) and
Wi←j(t) > ξ(tech) {When receiving a leader message}

2 if round 6= prevRoundi then
3 if round > currentRoundi then
4 prevRound← 0;
5 sinkByi ← sender;
6 sinkDistancei ← distance;
7 currentRound← round;
8 set timer_connectivityi to timeout;
9 connectedi ← True;

10 else if round = currentRoundi then
11 if sinkDistancei > distance then
12 sinkByi ← sender;
13 sinkDistancei ← distance;
14 active_timer_neighbouri ← True;
15 set timer_neighbouri to timeout;
16 else if sinkDistancei = distance and sinkByi 6= sender and not active_timer_neighbouri and sender > sinkByi then
17 sinkByi ← sender;
18 active_timer_neighbouri ← True;
19 set timer_neighbouri to timeout;
20 else if sinkDistance = distance and sender = sinkByi then
21 active_timer_neighbouri ← True;
22 set timer_neighbouri to timeout;
23 end
24 end
25 end
26 End

27 || Task 3: when timer_neighbouri expires {The node suspects of its previous leader}
28 active_timer_neighbouri ← False;
29 End

30 || Task 4: each α time {pi Checks send buffer}
31 if connectedi then
32 broadcast(LEADER, i, currentRound, sinkDistancei + 1, msgListi);
33 end
34 End

Additionally, in this second protocol, we modify the leadership criteria as follows. The sinkByi
node will be the one with the lowest distance to s that firstly communicates with pi. This mechanism

Sensors 2017, 17, 1587 8 of 15

is a novel strategy that allows balancing the energy consumption in intermediate nodes at routing
time. If many of the nodes share the same sinkByi, this leader will eventually saturate and the system
performance will decrease in terms of battery. To correctly load balance the spanning tree, in LBR2, we
introduce an extra timer to monitor the current parent node. This timer_neighbouri is set when a new
sinkByi node is adopted by pi (Line 15 in Algorithm 3). Since every node pi sends its information
periodically by Line 32, sinkByi, it will also send a LEADER message resetting again the timer_neighbour
by Line 22. On the other hand, if timer_neighbouri expires (Lines 27–29), pi is allowed to re-elect another
sinkByi among those that have the same distance to s, i.e., the condition in Line 16 is satisfied since
active_timer_neighbouri has been previously set to false by Line 28.

Note that the higher β and timeout values are, the slower the graph connectivity change
detection is. This introduces a trade-off between the reaction time and the number of messages
sent by the system in order to provide good QoS and energy-efficiency at the same time.

Observe also that the global number of messages sent is linear with the number of nodes in the
system, which makes LBR2 scalable regarding communication cost.

3.3. Data Routing Protocol

Once an initial spanning-tree has been created, an application-data routing protocol is executed.
In contrast to the spanning-tree creation, where we use broadcast as the communication primitive,
for application data, we use one-to-one communication.

We have considered two different protocols for sending application data. The first one, which we
have adopted in combination with LBR1, consists in the immediate forwarding of the received content
to the sinkByi node (Algorithm 4).

Alternatively, content can be buffered while it is received and be periodically sent piggybacked
in LEADER messages. To do so, the broadcast(LEADER, i, actualRound, sinkDistancei + 1) primitive
must be redefined as broadcast(LEADER, i, actualRound, sinkDistancei + 1, msgListi). This approach
(Algorithm 5) is the one we have chosen in combination with LBR2.

Algorithm 4: Direct forwarding strategy executed by node pi.

1 || Task a: when m = (j, CONTENT, . . . , msg) is received at time t such that j ∈ Ni(t) {When receiving a content message}
2 if msgTo(msg) = i then
3 if i = s then
4 deliver(msg);
5 else
6 broadcast(msg) to sinkByi ;
7 end
8 end
9 End

Algorithm 5: Piggybacking strategy executed by node pi.

1 || Task b: when (j, X, . . . , msgList) is received at time t such that j ∈ Ni(t) {Where x is any kind of message.}
2 foreach message m in msgList do
3 if msgTo(m) = i then
4 if i = s then
5 deliver(m);
6 else
7 push_send_bu f f er(m);
8 end
9 end

10 end
11 End

Sensors 2017, 17, 1587 9 of 15

4. Evaluation

In this section, we describe an evaluation of the two versions of our approach, which have been
simulated using Castalia [24] and OMNeT++ [25]. To have a comparative assessment, we introduce
in the evaluation two reference protocols, AODV [20], particularly the implementation found in [26],
and RASeR [21].

4.1. Simulation Environment

Castalia is a simulator based on OMNeT++ and commonly used for extracting performance
metrics in WSNs [27].

Regarding the hardware configuration for Castalia, every simulation has been configured using
the CC2420 radio with 0 dBm of transmission power. Additionally, Castalia provides a parameter
called PLd0, which models the know path loss at a reference distance d0. When using this parameter,
Castalia provides the option of modifying the communication range [28]. The parameter PLd0 is
calculated as follows:

Tx_power−max(receiver_sesitivity, noise_ f loor + 5)− 10× path_loss_exponent× log(range).

In our case, we have used the default 50 meters value for the range variable. However, since we
consider communication collisions and interferences, the communication range is much lower than
the nominal.

For the MAC layer, we have adopted the Carrier Sense Multiple Access with Collision Avoidance
CSMA/CA protocol except for the case of RASeR, which imposes by default a Global TDMA MAC layer.

4.2. Experiment Description

We have carried out extensive experiments to evaluate the performance in terms of message
delivery rate (We define message delivery rate as the number of CONTENT messages delivered to the
sink divided by the total number of messages transmitted in the WSN.) and end-to-end delay.

Our main concerns in the evaluation are scalability and resiliency to node mobility. Henceforth,
the relevant configuration parameters to feed the evaluations have been network size (number of nodes)
and node mobility (maximum velocity).

We have defined a constant node density for all the tests, thus the network size determines the
simulation area.

Every node of our simulations (including the sink node) is assumed to move according to
a Random Walk mobility model [29]. A random direction and velocity, between 0 and the maximum
velocity, is generated every second. This movement is divided in five sub-movements, i.e., one every
200 milliseconds, in order to effectively make a smooth movement.

A summary of the configuration parameters used for the experiments is shown in Table 1.

Table 1. Simulation parameters.

Parameters Values

Buffer discharge time (seconds) 20
Number of nodes 8, 16, 32, 64, 128, 256
Node density (nodes per square meter) 0.003
Transmission range, r (meters) 50
Maximum node velocity (meters per seconds) 5, 10, 15, 20, 25
Message generation rate per node (messages per second) 4 (for most simulations), 10
Packet size (bytes) 10 for AODV and LBR1; 100 for RASeR and LBR2
Simulated interval (seconds) 600

Sensors 2017, 17, 1587 10 of 15

Preliminary evaluations of the algorithms LBR1 and LBR2 showed that timeout values should
be slightly higher than the heartbeat period, which is 0.2 s. We do not define bounds in buffer size.
Furthermore, results reported in [11] show that the best performances are obtained when messages are
not acknowledged by the receiver.

In the original work of RASeR [21], a transmission range of 250 m is used, which we consider
unrealistic for the kind of technology we used. Instead, in our simulations, we have assigned a common
range for all the protocols.

Finally, in order to optimise the performance of the protocols, we have adjusted the length of the
packet for each protocol. In the cases of LBR1 and AODV, we send a single content packet of 10 bytes,
whereas, for LBR2 and RASeR, we send a list of ten messages increasing the packet size to 100 bytes.

4.3. Evaluation Results

4.3.1. Delivery Rate

In order to compute the evaluation figures, data messages have been generated at the defined
rate of 0.2 per second and its reception checked at the sink node. We have simulated a set of
120 configurations, each one being a combination of the parameters reported in the previous subsection.
We have performed at least ten repetitions for every configuration. Variances obtained for each
configuration are low, between 0.001 and 0.09, thus the figures presented here refer only to the averages
of the results obtained.

Figure 2 illustrates the values of message delivery rates obtained for LBR1, LBR2, AODV and
RASeR. LBR1 (Figure 2a) shows the best performance, followed by LBR2, which is negatively affected
by high mobility. AODV (Figure 2c) presents low delivery rates in general, and poor scalability. On the
other hand, RASeR provides a decent message delivery rate up to 32 nodes, obtaining nearly 60%.
In this protocol, we have observed a problem related to message duplication, resulting in network
congestion. Intuitively, global TDMA imposes an upper bound on the number of messages sent
per cycle. Consequently, if the number of messages received is continuously higher than that upper
bound, eventually it will cause a buffer overflow. This situation can be appreciated in Figure 3,
which represents the overall number of messages that each protocol has used in order to route
multi-hop communications towards the sink (i.e., excluding the first hop), a parameter with hight
impact on energy consumption. Note that, despite LBR1, LBR2 and RASeR sharing the routing criteria
based on the number of hops, RASeR is very inefficient regarding the number of generated messages.

As a summary, Figure 4 illustrates some comparative results for the four protocols. Figure 4a
compares delivery rate for a fixed maximum velocity of 20 m/s, and Figure 4b compares delivery rate
for a network size of 64 nodes.

It should be noted that the delivery rate figures for LBR1 and LBR2 benefit in part from the fact of
disabling communications, since messages not transmitted do not account in total (We are assuming
that a not sent message is managed, and possibly re-sent as new, by the application layer.). Since
LBR1 is more reactive than LBR2, this mechanism is activated more frequently in the former. Figure 5a
shows that effectively LBR1 has sent much less number of messages than LBR2. This is beneficial from
an energy efficiency point of view with a positive impact on energy consumption. However, LBR2 is
more effective since it delivers a higher absolute number of messages to the sink (Figure 5b).

Recall that, for all the above experiments, we have used a message generation rate of four
messages per second and node. During the simulations, we have observed that, in the case of LBR2,
the message payload was not completely used. Thus, we have carried out a new series of experiments
increasing the message generation rate to 10 messages per second and node. The results can be seen in
Figure 6. As shown in Figure 6a,b, LBR2 performs better than LBR1 as the rate of message generation
increases. While LBR1 has to route each message individually, increasing network congestion, LBR2
is able to take advantage of its ability to send multiple messages in a single packet, increasing the
message delivery rate.

Sensors 2017, 17, 1587 11 of 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Maximum Velocity (m/s)

8 nodes
16 nodes
32 nodes
64 nodes

128 nodes
256 nodes

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Maximum Velocity (m/s)

8 nodes
16 nodes
32 nodes
64 nodes

128 nodes
256 nodes

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Maximum Velocity (m/s)

8 nodes
16 nodes
32 nodes
64 nodes

128 nodes
256 nodes

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Maximum Velocity (m/s)

8 nodes
16 nodes
32 nodes
64 nodes

128 nodes
256 nodes

(d)

Figure 2. Message delivery rates for the simulated protocols. Results for a generation rate of four
messages per node and second. (a) LBR1 message delivery rate; (b) LBR2 message delivery rate;
(c) AODV message delivery rate; (d) RASeR message delivery rate.

 1000

 10,000

 100,000

 1x106

 1x107

8 16 32 64 128 256

M
e
ss

a
g

e
s

R
o
u
te

d

Number of Nodes

LBR1
LBR2

RASeR

Figure 3. Number of messages routed towards the sink. Results for a maximum velocity of 20 m/s.
Note the logarithmic scale on the y-axis.

Sensors 2017, 17, 1587 12 of 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 32 64 128 256

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Nodes

LBR1
LBR2
AODV

RASeR

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Maximum Velocity (m/s)

LBR1
LBR2
AODV

RASeR

(b)

Figure 4. Comparative results for the delivery rate. (a) delivery rate regarding scalability; (b) delivery
rate regarding mobility.

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

8 16 32 64 128 256

M
e
ss

a
g

e
s

S
e
n
t

to
 N

e
tw

o
rk

Maximum Velocity (m/s)

LBR1
LBR2

(a)

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

8 16 32 64 128 256

M
e
ss

a
g

e
s

R
e
ce

iv
e
d

 b
y
 S

in
k

Maximum Velocity (m/s)

LBR1
LBR2

(b)

Figure 5. Number of messages sent and received by LBR1 and LBR2 for a maximum velocity of 20 m/s.
(a) messages sent to network; (b) messages received by the sink.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Maximum Velocity (m/s)

8 nodes
16 nodes
32 nodes
64 nodes

128 nodes
256 nodes

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

M
e
ss

a
g

e
 D

e
liv

e
ry

 R
a
te

Maximum Velocity (m/s)

8 nodes
16 nodes
32 nodes
64 nodes

128 nodes
256 nodes

(b)

Figure 6. Message delivery rate for LBR1 and LBR2. Results for a generation rate of 10 messages per
node and second. (a) LBR1 message delivery rate; (b) LBR2 message delivery rate.

4.3.2. End-to-End Delay

We have also measured the end-to-end delay and the number of hops. Figure 7 shows the results
for a velocity of 20 m/s. For the same parameters, Figure 8 summarizes the results regarding mobility
for the particular case of 64 nodes. Recall that in LBR1 and (specially) in LBR2, a node only sends
messages when it is connected, which results in high figures for these protocols for the number of
hops. On the other hand, LBR2 exhibits higher latencies than LBR1 due to its lazy forwarding strategy.

Sensors 2017, 17, 1587 13 of 15

Figure 7b highlights again the performance fall in RASeR for a size greater than 32 nodes, as we
have previously identified (Figure 4a).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 8 16 32 64 128 256

A
v
e
ra

g
e
 H

o
p

s
to

 S
in

k

Nodes

LBR1
LBR2
AODV

RASeR

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 8 16 32 64 128 256

A
v
e
ra

g
e
 E

n
d

-t
o
-E

n
d

 D
e
la

y
 (

s)

Nodes

LBR1
LBR2
AODV

RASeR

(b)

Figure 7. End-to-end delay results about scalability (network size). Results for a maximum velocity
of 20 m/s. Note the logarithmic scale on the y axis for Figure 7b. (a) hops to reach the sink (average);
(b) end-to-end delay (average).

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25

A
v
e
ra

g
e
 H

o
p

s
to

 S
in

k

Maximum Velocity (m/s)

LBR1
LBR2
AODV

RASeR

(a)

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25

A
v
e
ra

g
e
 E

n
d

-t
o
-E

n
d

 D
e
la

y
 (

s)

Maximum Velocity (m/s)

LBR1
LBR2
AODV

RASeR

(b)

Figure 8. End-to-end delay results about resilience to mobility. Results obtained for 64 nodes. Note
the logarithmic scale on the y axis for Figure 8b. (a) Hops to reach the sink (average); (b) End-to-end
delay (average).

5. Conclusions

We have presented a routing approach for mobile wireless sensor networks, which is based on the
election of a leader node and the construction of a spanning tree with the root in the sink node, which is
mobile as well. On the basis of local information about link quality, leader elections are performed in
order to restructure the spanning tree so that message delivery rates could be optimised.

We have designed two protocols to implement the approach, LBR1, and LBR2. Both protocols use
a heartbeat mechanism to react to node mobility. However, while LBR1 is fully reactive, in the sense
that leader-election messages are forwarded immediately providing a good delivery rate, LBR2 buffers
the messages to be forwarded periodically, resulting in a more effective performance at the price of
higher delays.

We have simulated our protocols in Castalia and carried out comparative evaluations with respect
to two other MWSN protocols, AODV and RASeR, to determine the behaviour of the protocols with
respect to their scalability and their resilience to mobility, measured as the node velocity. In general,
our protocols outperform the other two.

Although we have not identified a specific application scenario for our approach, evaluation
results show that it can be applied to MWSN including hundreds of elements that move freely in areas

Sensors 2017, 17, 1587 14 of 15

of a size in the order of at least tens of hectares, with velocities of up to 25 m/s. This includes practical
applications in smart cities or person and animal tracking, among others.

The approach has the potential for great scalability. Since, in our protocols, a node is conscious of
its connectivity and only sends messages when it is connected, message traffic could be optimised by
using buffering and opportunistic communication. In order to apply to a specific scenario, our approach
brings a combination of possibilities for finding the appropriated configurations that fits the trade-offs
among the different parameters, such as protocol version (LBR1 or LBR2), heartbeat frequency
(which has a high impact on reaction times and henceforth on mobility resilience), transmission
range, or packet size.

For future work, we will also focus on extensions of the approach oriented to the use of multiple
sinks and the combination of static and dynamic elements, in order to face high-scale problems.

Acknowledgments: Research supported by the Spanish Research Council (MINECO), Grant TIN2016-79897-P,
and the Department of Education, Universities and Research of the Basque Government, Grant IT980-16.

Author Contributions: U.B. and C.G.-C. designed the protocols; U.A. implemented the simulations and performed
the experiments; A.L. supervised the methodology; U.B., U.A., C.G.-C. and A.L. analysed the results and wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun. Mag.
2002, 40, 102–114.

2. Ogundile, O.O.; Alfa, A.S. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for
Wireless Sensor Networks. Sensors 2017, 17, 1084.

3. Al-Karaki, J.; Kamal, A. Routing techniques in wireless sensor networks: A survey. IEEE Wirel. Commun.
2004, 11, 6–28.

4. Yu, M.; Mokhtar, H.; Merabti, M. Fault management in wireless sensor networks. IEEE Wirel. Commun. 2007,
14, 13–19.

5. Burgos, U.; Soraluze, I.; Lafuente, A. Evaluation of a Fault-tolerant WSN Routing Algorithm Based on
Link Quality. In Proceedings of the 4th International Conference on Sensor Networks, Angers, France,
11–13 February 2015; pp. 97–102.

6. Kafi, M.A.; Challal, Y.; Djenouri, D.; Doudou, M.; Bouabdallah, A.; Badache, N. A Study of Wireless
Sensor Networks for Urban Traffic Monitoring: Applications and Architectures. Procedia Comput. Sci. 2013,
19, 617–626.

7. Ko, J.; Lu, C.; Srivastava, M.B.; Stankovic, J.A.; Terzis, A.; Welsh, M. Wireless Sensor Networks for Healthcare.
Proc. IEEE 2010, 98, 1947–1960.

8. Munir, S.A.; Ren, B.; Jiao, W.; Wang, B.; Xie, D.; Ma, J. Mobile Wireless Sensor Network: Architecture and
Enabling Technologies for Ubiquitous Computing. In Proceedings of the 21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW ’07), Niagara Falls, ON, Canada,
21–23 May 2007; Volume 2, pp. 113–120.

9. Gómez-Calzado, C.; Casteigts, A.; Lafuente, A.; Larrea, M. A Connectivity Model for Agreement in Dynamic
Systems. In Proceedings of the 21st International Conference on Parallel and Distributed Computing, Vienna,
Austria, 24–28 August 2015.

10. Gómez-Calzado, C. Contributions on Agreement in Dynamic Distributed Systems. Ph.D. Thesis, Universidad
del País Vasco-Euskal Herriko Unibertsitatea, Leioa, Vizcaya, Spain, 2015.

11. Burgos, U.; Gómez-Calzado, C.; Lafuente, A. Leader-Based Routing in Mobile Wireless Sensor Networks.
In Lecture Notes in Computer Science, 10th International Conference on Ubiquitous Computing and Ambient
Intelligence, UCAmI 2016, San Bartolomé de Tirajana, Gran Canaria, Spain, November 29–December 2, 2016,
Proceedings, Part II; García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 10070, pp. 218–229.

Sensors 2017, 17, 1587 15 of 15

12. Gómez-Calzado, C.; Lafuente, A.; Larrea, M.; Raynal, M. Fault-Tolerant Leader Election in Mobile Dynamic
Distributed Systems. In Proceedings of the 2013 IEEE 19th Pacific Rim International Symposium on
Dependable Computing (PRDC), Vancouver, BC, Canada, 2–4 December 2013; pp. 78–87.

13. Crowcroft, J.; Segal, M.; Levin, L. Improved structures for data collection in wireless sensor networks.
In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON,
Canada, 27 April–2 May 2014; pp. 1375–1383.

14. Heinzelman, W.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless
microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System
Sciences, Maui, HI, USA, 4–7 January 2000; Volume 2, p. 10.

15. Akkari, W.; Bouhdid, B.; Belghith, A. LEATCH: Low Energy Adaptive Tier Clustering Hierarchy. In Procedia
Computer Science, Proceedings of the 6th International Conference on Ambient Systems, Networks and Technologies
(ANT 2015), the 5th International Conference on Sustainable Energy Information Technology (SEIT-2015), London,
UK, 2–5 June 2015; Shakshuki, E.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 52,
pp. 365–372.

16. Anitha, R.U.; Kamalakkannan, P. Enhanced cluster based routing protocol for mobile nodes in wireless
sensor network. In Proceedings of the 2013 International Conference on Pattern Recognition, Informatics
and Mobile Engineering (PRIME), Salem, India, 21–22 February 2013; pp. 187–193.

17. Huang, X.; Zhai, H.; Fang, Y. Robust cooperative routing protocol in mobile wireless sensor networks.
IEEE Trans. Wirel. Commun. 2008, 7, 5278–5285.

18. Wieselthier, J.E.; Nguyen, G.D.; Ephremides, A. Algorithms for Energy-efficient Multicasting in Static Ad
Hoc Wireless Networks. Mob. Netw. Appl. 2001, 6, 251–263.

19. Broch, J.; Maltz, D.A.; Johnson, D.B.; Hu, Y.C.; Jetcheva, J. A Performance Comparison of Multi-hop Wireless
Ad Hoc Network Routing Protocols. In Proceedings of the 4th Annual ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom ’98), Dallas, TX, USA, 25–30 October 1998; pp. 85–97.

20. Perkins, C.; Belding-Royer, E.; Das, S. Ad hoc On-Demand Distance Vector (AODV) Routing. RFC 3561, RFC
Editor, 2003. Available online: http://www.rfc-editor.org/rfc/rfc3561.txt (accessed on 20 January 2017).

21. Hayes, T.P.; Ali, F.H. Robust Ad-hoc Sensor Routing (RASeR) protocol for mobile wireless sensor networks.
Ad Hoc Netw. 2016, 50, 128–144.

22. Arantes, L.; Greve, F.; Sens, P.; Simon, V. Eventual Leader Election in Evolving Mobile Networks. In Principles
of Distributed Systems; Springer: New York, NY, USA, 2013; pp. 23–37.

23. Melit, L.; Badache, N. An Ω-Based Leader Election Algorithm for Mobile Ad Hoc Networks. In Proceedings
of the 4th International Conference on Networked Digital Technologies, NDT 2012, Dubai, UAE,
24–26 April 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 293, pp. 483–490.

24. Boulis, A. Castalia: Revealing pitfalls in designing distributed algorithms in WSN. In Proceedings of the 5th
International Conference on Embedded Networked Sensor Systems, Sydney, Australia, 4–9 November 2007;
pp. 407–408.

25. Varga, A.; Hornig, R. An overview of the OMNeT++ simulation environment. In Proceedings of the 1st
International Conference on Simulation Tools and Techniques for Communications, Networks and Systems
& Workshops, Marseille, France, 3–7 March 2008; p. 60.

26. Machado, K.; Rosário, D.; Cerqueira, E.; Loureiro, A.A.; Neto, A.; de Souza, J.N. A routing protocol based on
energy and link quality for internet of things applications. Sensors 2013, 13, 1942–1964.

27. Minakov, I.; Passerone, R.; Rizzardi, A.; Sicari, S. A comparative study of recent wireless sensor network
simulators. ACM Trans. Sens. Netw. 2016, 12, 20.

28. Boulis, A. Castalia 3.2, User’s Manual; National ICT Australia Ltd.: Eveleigh, NSW, Australia, 2011.
29. Camp, T.; Boleng, J.; Davies, V. A survey of mobility models for ad hoc network research. Wirel. Commun.

Mob. Comput. 2002, 2, 483–502.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.rfc-editor.org/rfc/rfc3561.txt
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	A Leader-Based Routing Approach (LBR)
	Notation and Assumptions
	Building the Communication Tree
	Protocol LBR1
	Protocol LBR2

	Data Routing Protocol

	Evaluation
	Simulation Environment
	Experiment Description
	Evaluation Results
	Delivery Rate
	End-to-End Delay

	Conclusions

