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Abstract: In this study, a novel method based on a Bi/glassy carbon electrode (Bi/GCE) for 
quantitatively and directly detecting Cd2+ in the presence of Cu2+ without further electrode 
modifications by combining square-wave anodic stripping voltammetry (SWASV) and a 
back-propagation artificial neural network (BP-ANN) has been proposed. The influence of the 
Cu2+ concentration on the stripping response to Cd2+ was studied. In addition, the effect of the 
ferrocyanide concentration on the SWASV detection of Cd2+ in the presence of Cu2+ was 
investigated. A BP-ANN with two inputs and one output was used to establish the nonlinear 
relationship between the concentration of Cd2+ and the stripping peak currents of Cu2+ and Cd2+. 
The factors affecting the SWASV detection of Cd2+ and the key parameters of the BP-ANN were 
optimized. Moreover, the direct calibration model (i.e., adding 0.1 mM ferrocyanide before 
detection), the BP-ANN model and other prediction models were compared to verify the 
prediction performance of these models in terms of their mean absolute errors (MAEs), root mean 
square errors (RMSEs) and correlation coefficients. The BP-ANN model exhibited higher 
prediction accuracy than the direct calibration model and the other prediction models. Finally, the 
proposed method was used to detect Cd2+ in soil samples with satisfactory results. 

Keywords: bismuth-film electrode; artificial neural network; square-wave anodic stripping 
voltammetry; Cu2+; Cd2+; quantitative detection 
 

1. Introduction 

Recently, effectively detecting Cd2+ has become increasingly important because Cd2+ content in 
water and soil poses a serious threat to ecological systems and public health via the food chain due 
to its non-biodegradability and toxicity [1–3]. 

Anodic stripping voltammetry (ASV), an electrochemical technique, has been widely used for 
the analysis of heavy metal ions (HMs) at trace levels because of its extraordinary characteristics, 
such as good selectivity, portability, low cost, fast analysis speed and excellent sensitivity [4–8]. 
During the analysis of HMs using ASV, the HMs were electrodeposited onto the electrode surface 
via an electrodeposition process and then stripped off the electrode surface via a stripping process [9]. 
The concentration of the HMs was proportional to their stripping peak currents, which flow during 
the stripping process [10]. In addition, the type of HMs can be identified by the potential at which 
the stripping initiates. However, the presence of Cu2+, which is the most pronounced interference 
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ion, obviously influences the stripping currents of Cd2+ [11–13], leading to inaccurate detection 
results. This inhibitory action is presumably due to the formation of intermetallic compounds and 
competition for active sites on the electrode surface [14]. 

Numerous studies have been devoted to developing new electrode materials and electrode 
modifications and have attempted to improve the sensitivity and anti-interference performance of 
electrodes [15–17]. Chemically modifying electrodes effectively improves their sensitivity and 
anti-interference performance, but the presence of Cu2+ still observably diminishes the stripping 
peak currents of Cd2+ [18–20]. Adding ferrocyanide to the sample extract solutions can decrease the 
Cu2+ interference to some extent [21–23] because insoluble, stable copper-ferrocyanide complexes 
can form with the help of a ligand [24]. However, these complexes suffer several limitations, i.e., 
both too much and too little ferrocyanide will influence the Cu2+-shielding performance of 
ferricyanide. Furthermore, adding ferrocyanide requires an optimization process, which would 
decrease the efficiency of on-site Cd2+ detection in real samples. 

Although the presence of Cu2+ will decrease the stripping peak currents of Cd2+, ASV can 
simultaneously measure the stripping signals of Cd2+ and Cu2+. Thus, the stripping signals of Cd2+ 
and Cu2+ could be used to quantitatively reflect the concentration of Cd2+, indirectly reflecting the 
degree to which Cu2+ suppresses the stripping peak current of Cd2+. Analysing the measured ASV 
spectrogram revealed a multivariate nonlinear relationship between the stripping signals of Cd2+ 
and Cu2+ and the Cd2+ concentration over the concentration range studied. Thus, without further 
processing, linear models cannot accurately estimate the Cd2+ concentration over a wide range using 
the data from ASV measurements. Therefore, to correctly interpret these results, an interesting 
option is to use a versatile mathematical tool known as an artificial neural network (ANN) [25]. 
ANNs are algorithms that are very well suited to process, discover, and interpret nonlinear 
relationships in databases by creating simple and manageable mathematical models [26]. To 
inexpensively and easily detect Cd2+ using square-wave ASV (SWASV), a Bi-film-modified GCE was 
used in this study because of its wide potential window, low toxicity, simple preparation and ability 
to form alloys with many HMs [27–30]. 

In this paper, the interference of different concentrations of Cu2+ with the stripping peak 
current of Cd2+ was studied, and the shielding effect of various concentrations of ferrocyanide on the 
Cu2+ for the SWASV detection of Cd2+ was studied. In addition, a back-propagation ANN (BP-ANN) 
was developed to process, discover, and interpret the nonlinear relationships between the 
concentration of Cd2+ and the stripping signals of Cu2+ and Cd2+ and thus create a simple and 
manageable mathematical model for Cd2+ detection. Moreover, the prediction performance of the 
BP-ANN model, the direct calibration model and other prediction models were investigated and 
compared to verify the feasibility of the proposed method. To the best of our knowledge, very few 
reports have combined SWASV and BP-ANN to quantitatively and directly determine the 
concentration of Cd2+ in the presence of Cu2+. Consequently, the combination of ANNs and ASV has 
the potential to serve as a method for detecting and quantifying many different types of HMs in 
different kinds of natural samples. 

2. Materials and Methods 

2.1. Reagents and Instrumentation 

Stock solutions of Cu2+, Bi3+ and Cd2+ (1000 mg/L) were obtained from the National Standard 
Reference Materials Center of China (Beijing, China) and diluted as required. Acetate buffer solution 
(0.1 M) was used as the supporting electrolyte to supply the deposition and stripping conditions for 
Cd2+ and Cu2+. All other chemicals were used without further purification and were of analytical 
grade. We used Millipore-Q water (18.2 MW) obtained from Beijing Science and Technology 
Development Co., Ltd. (Beijing, China) for all experiments. Additionally, a CHI660D electrochemical 
workstation (Shanghai CH Instruments, Shanghai, China) was used to perform SWASV. A counter 
electrode made of platinum wire, an Ag/AgCl reference electrode and a Bi/glassy carbon working 
electrode (Φ = 3 mm) were used to build a three-electrode system. A magnetic stir bar was placed 



Sensors 2017, 17, 1558 3 of 15 

 

into a 25 mL cell to stir the solution used for all electrochemical measurements during the deposition 
and cleaning steps. The scanning electron microscopy (SEM) and energy dispersive spectroscopy 
(EDS) analysis were carried out on JSM-6701F field emission scanning electron microscope produced 
by JEOL Ltd. (Tokyo, Japan). 

2.2. Preparation of Bi-Film-Modified Glassy Carbon Electrode (GCE) 

The GCE surface was polished with 0.05-mm alumina powder, then sequentially rinsed with 1:1 
HNO3-H2O, absolute ethanol and water before modifying the electrode with the bismuth film, and 
finally was dried under a N2 atmosphere. Next, acetate buffer solution (20 mL, 0.1 M, pH 5.0) was 
added into a beaker, and then Bi3+ stock solution was added to achieve a solution containing 600 
μg/L Bi3+. Then, for the deposition step, the pretreated GCE was placed in the beaker at a potential 
of −1.2 V (versus Ag/AgCl) for 150 s while stirring the solution to obtain a Bi-film-modified GCE. 

2.3. SWASV Detection of Cd2+ in the Presence of Cu2+ 

Under the optimized conditions, SWASV for the detection of Cd2+ was performed as follows: 20 
mL of acetate buffer solution (0.1 M, pH 5.0) was added into a beaker, and the stock solutions of Bi3+, 
Cd2+ and Cu2+ were added to achieve a solution containing 600 μg/L Bi3+ and different 
concentrations of Cd2+ and Cu2+ ranging from 1 to 50 μg/L. Then, the three-electrode system 
consisting of the platinum wire electrode, Ag/AgCl electrode and Bi/GCE was placed in the beaker 
to carry out the following deposition and stripping process. During the deposition process, a 
magnetic stir bar was used to stir the solution in the beaker, and the deposition of HMs was 
performed at a potential of −1.2 V for 150 s. Then, after the stripping process was conducted at a 
frequency of 25 Hz, a voltammogram recorded as the potential was changed from −1.2 to +0.2 V 
without stirring. The frequency, step amplitude and pulse amplitude were 25 Hz, 5 mV and 25 mV, 
respectively. After the stripping process, an activation process using a constant potential of 0.31 V 
for 120 s was carried out to remove the residual bismuth film and metals on the surface of GCE. 

2.4. ANN Modelling 

ANNs, which are a type of machine learning algorithm [26,31], were inspired by biological 
neural systems and have been widely used in the area of modelling as a nonlinear prediction model 
due to their remarkable characteristics. For example, ANNs are flexible and do not need a rigid 
mathematical model, and the parameters for the prediction model can be determined via a learning 
step [32]. In this study, a BP-ANN was selected and used to discover and interpret nonlinear 
relationships present in databases due to its wide application, as it is one of the most widely used 
ANN methods [33–35]. The BP-ANN was trained with data from the SWASV spectrogram, which 
corresponded to known concentration of Cd2+ and Cu2+, under supervision because training and 
optimizing this ANN also required target data (in this case, known Cd2+ and Cu2+ concentrations) [36]. 

In this paper, a BP-ANN with three types of layers (an input layer, a hidden layer and an 
output layer) was used to build a nonlinear prediction model based on the data from SWASV 
voltammograms for the detection of Cd2+ in the presence of Cu2+ using a Bi-film-modified GCE. 
There are several nodes in the input layer; these nodes were determined by the number of 
independent variables that were employed in the model input [37]. As the actual calculation core of 
the BP-ANN, the hidden layer and output layer, which are composed of neurons, play an important 
role in the building of the BP-ANN. To determine the network topology that provides the best 
statistical results, the neuron number in the hidden layer (NNHL) should be optimized adequately. 

The correct definition of the NNHL is very important to the prediction accuracy of BP-ANN 
because the NNHL at a low level may negatively influence the learning ability of the BP-ANN. 
However, if the NNHL is too high, the resulting ANN may be over-fitted to the dataset employed [38]. 
Moreover, the neurons in output layer were determined based on the independent variable that was 
employed in the model output [39]. In this paper, the three-layer ANN was developed to build a 
nonlinear model for the prediction of Cd2+ concentration in the presence of Cu2+. There are two 
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inputs, i.e., the stripping peak current of Cd2+ and the stripping peak current of Cu2+, and one output, 
i.e., the concentration of Cd2+, in the ANN model, as shown in Figure 1. 

 

Figure 1. Schematic of the ANN structure used to predict the Cd2+ concentration. 

Some BP-ANN-related parameters were selected, whereas others were optimized to find the 
best possible model for estimating the concentration of Cd2+ in the presence of Cu2+. The best possible 
model was chosen based on the absolute error (MAE; Equation (1)), root mean square error (RMSE; 
Equation (2)) and R2 correlation coefficient (Equation (3)) of the model results. The NNHL, training 
function, and transfer function were selected as the parameters for optimizing the BP-ANN model. 
MATLAB R2012b software (MathWorks, Inc., Natick, MA, USA) was used for all ANN-related 
simulations and calculations.  

MAE = 1݊෍หܺ௣௜ − ܺ௔௜ห௡
௜ୀଵ  (1) 

RMSE = ඨ∑ ൫ܺ௣௜ − ܺ௔௜൯ଶ௡௜ୀଵ ݊  (2) 

ܴଶ = ݊∑ ܺ௣௜ܺ௔௜௡௜ୀଵ − ൫∑ ܺ௣௜௡௜ୀଵ ൯ሺ∑ ܺ௔௜௡௜ୀଵ ሻቀ݊൫∑ ܺ௣௜ଶ௡௜ୀଵ ൯ − ൫∑ ܺ௣௜௡௜ୀଵ ൯ଶቁ ൫݊൫∑ ܺ௔௜ଶ௡௜ୀଵ ൯ − ሺ∑ ܺ௔௜௡௜ୀଵ ሻଶ൯ (3) 

where n, Xpi, and Xai are the total number of predictions and the predicted and actual values (i.e., 
experimental values), respectively. 

2.5. Preparation of Soil Samples 

The soil samples were obtained from farmland in China. Briefly, the soil samples were dried in 
an oven for 2 h, then were pulverized on a portable soil crusher and subsequently were sieved 
through a 200 mm sieve. The soil samples (1 g) were placed in an extraction bottle and extracted with 
40 mL of 0.11 M acetic acid. The mixed samples were shaken in an end-over-end shaker for 16 h at 
room temperature. The mixed samples were subjected to centrifugal sedimentation for phase 
separation. The heavy metal extracts in the aqueous phase were then filtered with a membrane to 
remove micro-impurities from the solutions. The exchangeable fractions of heavy metals and 
carbonate bound heavy metals are more harmful to humans and the environment. The Cd2+ that we 
detected in the soil is in the carbonate bound form. According to the sequential extraction procedure 
for the speciation of particulate trace metals proposed by A. Tessier et al. [40] in 1979, the soil sample 
was leached at room temperature with NaOAc solution adjusted to pH 5.0 with acetic acid (HOAc) 
to obtain the carbonate bound metals. Moreover, according to the results presented in Section 3.1, 
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the maximum stripping peak current of the SWASV-based Bi/GCE appeared at pH 5.0. Considering 
the abovementioned factors, the pH of the extract solutions was adjusted to 5.0.  

3. Results and Discussion 

3.1. Optimization of Experimental Conditions 

To achieve better sensitivity for the determination of Cd2+ with the Bi/GCE, different 
experimental conditions of SWASV were optimized, such as the pH of the supporting electrolyte, 
concentration of Bi3+, deposition potential, and deposition time, as shown in Figure 2. According to 
the optimization of the experimental conditions, a pH of 5.0, a Bi3+ concentration of 600 μg/L, a 
deposition time of 150 s and a deposition potential of −1.2 V were finally chosen for the following 
experiments. 

 
Figure 2. Effects of (a) pH, (b) Bi3+ concentration, (c) deposition potential and (d) deposition time on 
the stripping peak currents of 50 μg/L Cd2+ in the presence of 20 μg/L Cu2+. 

3.2. Electrochemical Characteristics of the Bi/GCE 

The stripping voltammetry behaviours of Cd2+ on the bismuth-film-modified GCE were 
characterized using a CHI660D electrochemical workstation. The bismuth film was modified in situ 
with a Bi(III) concentration of 600 μg/L. As probe metal ions, the concentrations of both Cd2+ and 
Pb2+ were 20 μg/L. As shown in Figure 3A, the stripping peak signals of Cu2+ and Cd2+ on the bare 
GCE were weak and unclear. Comparatively, the Bi/GCE exhibited higher stripping peak signals 
for Cu2+ and Cd2+, suggesting that the presence of Bi could promote the reduction of Cu2+ and Cd2+ 
because of the unique advantages of the Bi-film-modified electrodes, such as the ability to form 
alloys with the HMs. Eight repetitive measurements of 20 μg/L Cu2+ and Cd2+ in acetate buffer 
solution (pH 5.0, 0.1 M) were performed to verify the reproducibility and stability of the 
bismuth-film-modified GCE, as shown in Figure 3B. The results indicate that the stripping peak 
signals of Cu2+ and Cd2+ on the bismuth-film-modified GCE were reproducible. The relative 
standard deviations (RSDs) of the eight repetitive measurements were 1.89% and 3.39% for Cu2+ 
and Cd2+, respectively. Under the optimum experimental conditions, the bismuth-film-modified 
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GCE exhibited remarkable stability and reproducibility in the stripping analysis of trace levels of 
Pb2+ and Cd2+, providing reliable and stable modelling data for training the BP-ANN model. 

 
Figure 3. (A) SWASV voltammograms of 20 μg/L Cd2+ and Cu2+ in a 0.1 M acetate buffer solution (pH 
5.0) on the GCE and Bi/GCE; (B) Stripping current measurements of 20 μg/L Cd2+ and Cu2+ on the 
Bi/GCE in a 0.1 M acetate buffer solution (pH 5.0). The insets correspond to data collected from every 
SWASV response over eight repetitions. RSD: relative standard deviation. 

3.3. Influence of Cu2+on the SWASV Detection of Cd2+ 

Additional SWASV measurements were performed on mixtures of Cu2+ and Cd2+ to further 
investigate the influence of various concentrations of Cu2+ on the stripping peak current of Cd2+. 
Several binary mixtures of the two species, in which the Cd2+ concentration ranged from 1.0 to 50 μg/L 
and the Cu2+ concentration was held constant at a specified value in the range of 0–50 μg/L, were 
prepared, as shown in Figure 4. Under the optimum conditions, the voltammogram data were 
obtained from the SWASV detection of the different concentration combinations of Cd2+ and Cu2+. 
As shown in Figure 4, the results indicate that there was an approximately linear relation between 
the concentration of Cd2+ and the stripping signals of Cd2+ in the range of 1.0 to 50 μg/L, whereas the 
stripping peak signals of Cd2+ were obviously interfered with by the presence of Cu2+, even at trace 
levels. 

The Bi film was largely used for modifying the electrode to improve its sensitivity for Cd2+ 
detection, an effect that was attributed to the ability of Bi to “alloy” with Cd2+. To the best of our 
knowledge, there is no obvious relationship between the concentration of Cd2+ and stripping 
currents of Bi3+. Cu2+ is the most pronounced interference ion, and the presence of Cu2+ obviously 
limits the stripping currents of Cd2+. The influence of Cd2+ on the stripping currents of Bi3+ in the 
presence of different concentrations of Cu2+ is likely due to the formation of intermetallic 
compounds between Cd, Bi and Cu, which would interfere with the stripping currents of each 
other. 

As shown in Figure 5a, the calibration curves obtained with the different concentrations of Cd2+ 
obviously changed as the Cu2+ concentration was altered compared with the calibration curve in the 
absence of Cu2+. When the concentration of Cu2+ was approximately 35 μg/L, Cu2+ most significantly 
interfered with the stripping response to Cd2+. When the concentration of Cu2+ was approximately 50 
μg/L, Cu2+ still interfered with the stripping peak currents of Cd2+ but had a more significant effect 
on the lower concentrations of Cd2+ (1.0 to 25 μg/L), as shown in Figure 5b. The standard deviations 
obtained from five repeated SWASV measurements of the stripping signal are shown as error bars in 
Figure 5b and were distributed between 0.32 and 0.93. The influence of Cu2+ on the stripping current 
of Cd2+ may be due to the generation of intermetallic compounds, which may create competition on 
the surface of electrode and thereby inhibit the reduction of Cd2+ and oxidation of Cd on the surface 
of electrode during the deposition step and stripping step. 
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Figure 4. Voltammograms of Cd2+ ranging from 1.0 to 50.0 μg/L in the presence of different 
concentrations of Cu2+: (a) 0 μg/L, (b) 1 μg/L, (c) 5 μg/L, (d) 10 μg/L, (e) 15 μg/L, (f) 20 μg/L, (j) 25 
μg/L, (h) 30 μg/L, (i) 35 μg/L, (j) 40 μg/L, (k) 45 μg/L and (l) 50 μg/L Cu2+. Deposition time: 150 s. 
Deposition potential: −1.2 V. Concentration of Bi3+: 600 μg/L. 

The significance of the linear regression equations and the confidence level were estimated, as 
shown in Table S1 in the Supplementary Materials. The standard errors of intercept and slope from 
the linear regression equation can also be seen in Table S1. The results indicated that the linear 
regression equations were highly significant because the values of “Prob > F” were all less than 0.01. 
The high significance of the linear regression equations is likely due to the remarkable 
characteristics of ASV used for the detection of HMs. During the ASV detection of HMs, the HMs 
were electrodeposited onto the electrode surface with a constant potential; then, the HMs were 
stripped off the electrode surface electrochemically accompanied by the generation of stripping 
peak signals. The stripping peak signals that flow during the stripping process showed a good 
linear relationship with the concentration of the target HMs. In addition, satisfactory experimental 
errors could be expected because of the high repeatability and stability of the Bi/GCE mentioned 
above (cf. Section 3.2). However, there were still some problems in real sample detection, although 
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the linear regression equations were highly significant. These problems arose from the presence of 
various Cu2+ concentrations, which will lead to the changes in the intercept and slope of the linear 
regression equations. More importantly, we did not know the Cu2+ concentration in the real samples 
before the detection of the target HMs; therefore, we did not know which linear equation should be 
chosen to determine the target HMs in such a situation. 

 

Figure 5. (a) Effects of different concentrations of Cu2+ on the fitting curve of Cd2+. (b) Effects of 
different concentrations of Cu2+ on the stripping peak currents of Cd2+. 

3.4. Effects of Ferricyanide on the SWASV Detection of Cd2+ 

Cu2+ was one of the well-known interference ions that might inhibit the stripping current 
signals of Cd2+, particularly on electroplated bismuth-film electrodes (BiFEs). According to previous 
reports, this effect may be due to the formation of mixed intermetallic compounds and the 
undesired deposition of the target metals on electroplated Cu instead of on Bi [41,42]. The formation 
of intermetallic compounds can seriously interfere with the determination of Cd2+ by ASV on BiFEs. 
The structure characterization of Bi/GCE with the deposition of Cu2+ and Cd2+ also were evaluated 
using SEM image, as shown in Figure 6a, which revealed a slightly wrinkled texture. EDS mapping 
acquired across representative areas of the corresponding Bi/GCE with the deposition of Cu2+ and 
Cd2+ reveals that Cu2+ and Cd2+ has been both electrodeposited onto the electrode surface, as shown 
in Figure 6b,c, which likely in the form of intermetallic compounds. 

 

Figure 6. (a) SEM image surface morphology of Bi/GCE with the deposition of Cu2+ and Cd2+. (b) and 
(c) Energy dispersive spectroscopy for Cu2+ and Cd2+ deposited on the surface of GCE. 

The interference of Cu2+ on the stripping response of Cd2+ is commonly alleviated by adding 
ferrocyanide ions, which form a stable complex with Cu2+, as suggested previously [24]. Thus, in this 
section, 0.1 mM ferrocyanide was used to alleviate the interference of 45 μg/L Cu2+ with the stripping 
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signals of 45 μg/L Cd2+, thus demonstrating the evident shielding effect of ferricyanide on Cu2+, as 
shown in Figure 7. 

 

Figure 7. Improvement in the SWASV detection of 45 μg/L Cd2+ in the presence of 45 μg/L Cu2+ by 
adding 0.1 mM ferrocyanide. 

In addition, the influence of the ferrocyanide concentration on the SWASV detection of 45 μg/L 
Cd2+ in the presence of 45 μg/L Cu2+ was also investigated in this paper. As the ferricyanide 
concentration increased, the stripping peak currents of Cd2+ decreased gradually, as shown in Figure 8, 
thus demonstrating the obvious influence of the ferricyanide concentration on the Cu2+ shielding 
performance of ferricyanide.  

 
Figure 8. Influence of different concentrations of ferrocyanide on the SWASV detection of 45 μg/L 
Cd2+ in the presence of 45 μg/L Cu2+. Inset: SWASV voltammograms of 45 μg/L Cd2+ in the presence 
of 45 μg/L Cu2+ before and after adding 1.0 mM ferrocyanide. 

However, ferrocyanide is not effective unless its concentration is optimized based on specific 
real samples prior to adding ferrocyanide because copper is commonly found in environmental 
samples and was observed to be a major interferent in the ASV detection of Cd2+ [43,44]. However, 
the additional optimization process of ferricyanide concentration would doubtlessly decrease the 
on-site heavy metal detection efficiency. As shown in the upper inset of Figure 7, there are two 
bumps after the stripping peaks of Bi3+and Cu2+, which are due to the presence of ferrocyanide 
positively shifting the stripping peaks of Cu2+ (~250 mV). However, the shift in the stripping peak of 
Cu2+ will not interfere with identifying the stripping peaks of Cd2+. 
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3.5. Proposed ANN Model for the Cd2+ Detection in the Presence of Cu2+ 

Because of the drawbacks of adding ferrocyanide to mask the suppression effect of Cu2+ on the 
SWASV detection of Cd2+, in this work, the SWASV voltammograms measured at various 
concentrations of Cd2+ and Cu2+ were used to design a mathematical model that relies on ANNs to 
assess the concentration of Cd2+ in the presence of Cu2+. 

3.5.1. ANN Model Optimization 

A BP-ANN model comprising three layers with two inputs and one output (cf. Figure 1) was 
developed to predict the concentration of Cd2+. Each layer is interconnected by processing elements 
known as neurons. The model complexity of an ANN is determined by the number of hidden 
neurons [45]. To ensure the precision of the prediction of the BP-ANN model, the BP-ANN must be 
trained, which entails using a training dataset to train the network [28]. Furthermore, to verify the 
prediction accuracy of the proposed BP-ANN model, a testing dataset was used in this study. The 
sample data of both the training dataset and testing dataset were normalized to improve the 
performance of the network convergence and eliminate the effect of the magnitude. The input and 
output variables were normalized based on Equation (4):  ܺ௞ᇱ = ሺݔ௠௔௫ᇱ − ௠௜௡ᇱݔ ሻሺݔ௞ − ௠௔௫ݔ௠௜௡ሻሺݔ − ௠௜௡ሻݔ + ௠௜௡ᇱݔ  (4) 

where xmax and xmin represent the maximum and minimum values, respectively, and x'max and x'min 
were set to 1 and −1, respectively. The variables were normalized in the range of −1 to 1. 

The training parameters such as the training function, transfer function and NNHL play a key 
role in the simulation efficiency of the network in the process of training [32,46,47]. Thus, 
determining the optimal combination of these parameters is very important. In this study, the best 
prediction scheme for the ANN was determined by simulating different training functions, different 
transfer functions, and different numbers of neurons. As shown in Equation (5), an empirical 
formula was used to determine the NNHL [48]. In this equation, no is the number of output layer 
neurons, nh is the NNHL, ni is the number of input layer neurons, and l is a constant that varies from 
1 to 10.  ݊௛ = ඥ݊௜ + ݊௢ + ݈ (5) 

According to Equation (5), the NNHL was selected in the range of 2 to 13. Different training 
functions, such as Trainbr and Traingdx, and transfer functions, such as Purelin and Logsig, were 
tested to determine the best modelling network. For example, Figure 9 shows that the minimum 
RMSE corresponds to position “A”, which corresponds to the learning functions Purelin and Logsig 
for the output layer and hidden layer, respectively, and indicates that these function are optimal for 
the prediction of Cd2+ detection in the presence of Cu2+. The trace detection of heavy metals requires 
the detection of micrograms per litre. Therefore, the ANN model was optimized to achieve as high 
of a prediction precision as possible, and the modelling network with 11 neurons was used for this 
study. 

3.5.2. Establishment and Validation of the Improved ANN Model 

The optimized parameter combination was used to build the ANN model. In total, 81 sets of 
experimental data were used as the training dataset for training the ANN model, and 40 sets of 
experimental data were used as the testing dataset to verify the ANN model. The prediction results 
of the training dataset and testing dataset using the well-trained model are shown in Table S2 and 
Table S3 (Supplementary Materials). To evaluate the prediction precision of the proposed BP-ANN 
model, several statistical parameters were used, including the correlation coefficient, RMSE and 
MAE, as shown in Equations (1)–(3). Table 1 shows the comparison of the prediction performance of 
the testing dataset and training dataset based on the proposed method, which was conducted by 
statistical analysis. The reasonable values of R2, RMSE and MAE for both the testing dataset and 
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training dataset demonstrated that the proposed BP-ANN model was capable of predicting the 
concentration of Cd2+ in the presence of Cu2+. 

 
Figure 9. Selection and optimization of the ANN parameters. The transfer functions and training 
functions were Logsig and Purelin (LP), Logsig and Logsig (LL), Purelin and Purelin (PP), Purelin 
and Logsig (PL), Trainbr (Tb) and Traingdx (Tg). 

Table 1. Prediction results of the BP-ANN model on the training and testing datasets. 

Data Set MAE (μg/L) RMSE (μg/L)
Training dataset 1.22 1.48 
Testing dataset 1.42 1.76 

The predicted outputs (concentration of Cd2+) of the testing dataset from both the well-trained 
BP-ANN model and the direct calibration model were compared with the actual values, as shown in 
Figure 10a,b. The linear regression analysis shown in Figure 10c,d indicated that the predicted 
values from the BP-ANN model correlated (R2 = 0.99) more strongly with the actual values than 
those of the direct calibration model (R2 = 0.64). 

 
Figure 10. Comparison between the prediction results of the (a) direct calibration and (b) improved 
BP-ANN models. Linear regression analysis of the prediction results of the (c) direct calibration and 
(d) improved BP-ANN models. 
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Moreover, to further evaluate the prediction precision and applicability of the proposed 
method, the statistical parameters, such as R2, RMSE and MAE, of the direct calibration model (i.e., 
adding 0.1 mM ferrocyanide before detection), the BP-ANN model and other prediction models 
were compared, and the results can be seen in Table 2. 

Under the optimum conditions, the MAE, RMSE and R2 of the BP-ANN model were estimated 
to be 1.42 μg/L, 1.76 μg/L and 0.99, respectively. The corresponding statistical parameters of the 
direct calibration model were 11.67 μg/L, 14.77 μg/L and 0.64 μg/L, respectively. Further statistical 
analysis shows that the BP-ANN model exhibited higher prediction accuracy than the direct 
calibration model and the other prediction models (i.e., binary linear regression and binary 
nonlinear regression). According to [49], the BP-ANN model having the highest prediction 
performance among the models may be due to the tendency of ANNs to approximate the 
nonlinearity of the system. 

Table 2. Comparison of the prediction results of various prediction models. 

Prediction Model MAE (μg/L) RMSE (μg/L) R2 
Direct calibration (with ferrocyanide) 11.67 14.77 0.64 

Binary linear regression (without ferrocyanide) 4.07 4.92 0.84 
Binary nonlinear regression (without ferrocyanide) 2.85 3.77 0.92 

ANN (without ferrocyanide) 1.42 1.76 0.99 

The effect of other metal cation commonly found in soil samples that could interfere with the 
SWASV peak currents of Cd2+ was assessed by comparing the signal currents of a solution of only 10 
μg/L Cd2+ with that of the same solution plus a foreign ion at 10 μg/L. Based on a relative error of 
greater than 5% being set as the criterion for interference, no interference from the presence of Na+, 
As3+, Cr2+, K+, Ca2+, Pb2+ and Zn2+ cations was detected. However, we found that high concentrations 
of both Pb2+ and Zn2+ could have a significant inhibitory effect on the stripping peak current of Cd2+. 

To further verify its applicability, the proposed method was used to determine the 
concentration of Cd2+ in real soil samples, and the results were compared with those obtained using 
the standard addition method (SAM), as shown in Table 3. The results show satisfactory recovery 
results with an average recovery of 98.31%, which indicates that the proposed method is suitable for 
detecting Cd2+ in real samples. Moreover, compared with previous work, the analytical performance 
of the method developed in this work is comparable or even better [21–23,50], as it requires less 
detection time and has a lower detection cost. 

Table 3. Results of the simultaneous detection of Cd2+ in soil sample extracts. 

Sample 
No. 

Added 
(μg/L) 

Found by 
SWASV-ANN (μg/L) 

Found by 
SAM (μg/L) 

Recovery (%) 
(SWASV-ANN) 

Recovery (%)
(SAM) 

Cd2+ Cd2+ Cd2+ Cd2+

1 
- 4.67 4.96 0.00 0.00 

4.0 8.39 9.14 93.00 101.75 
8.0 12.82 13.06 101.88 98.75 

2 
- 2.54 2.73 0.00 0.00 

5.0 7.63 7.82 99.60 97.80 
10.0 12.45 12.95 98.10 102.20 

3 
- 8.16 8.28 0.00 0.00 

10.0 17.98 18.39 98.20 91.10 
15.0 23.02 23.31 99.07 100.20 

4. Conclusions 

To overcome the negative suppression effect of Cu2+ on the ASV detection of Cd2+, a novel 
method for quantitatively and directly determining the concentration of Cd2+ in the presence of Cu2+ 
was proposed in this paper. This method was based on a combination of SWASV and a BP-ANN but 
did not require further electrode modifications or added ferrocyanide. Importantly, this work not 
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only focuses on the mathematical modelling itself but also integrates potential causative variables 
(i.e., Cd2+ and Cu2+) into the models, exploiting the characteristics of ASV, which can simultaneously 
record the stripping signals of both Cu2+ and Cd2+. Furthermore, the relationship governing the 
interference of different concentrations of Cu2+ with the stripping voltammetric response to Cd2+ was 
studied. In addition, the interference of different concentrations of ferrocyanide with the SWASV 
detection of Cd2+ in the presence of Cu2+ was studied. The statistical results obtained using both the 
testing dataset and training dataset were reasonable. Comparing the statistical parameters of the 
direct calibration model, the BP-ANN model and other prediction models shows that the BP-ANN 
model had the best detection accuracy. Furthermore, for the real samples tested, an average recovery 
percentage of 98.31% was obtained using the proposed method, which meets the requirements for 
analysing real samples. The results of this study indicate that combining ASV and machine learning 
algorithms, such as ANNs, is a promising method to accurately predict the concentration of HMs for 
food safety supervision, environmental control, and many other applications and fields. 

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/7/1558/s1, 
Table S1: Calibration equations of Cd2+ in the presence of different concentrations of Cu2+, Table S2: 
Experimental design and results of the training dataset, Table S3: Experimental design and results of the testing 
dataset. 
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