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Abstract: In this work, a linear birefringence measurement method is proposed for an optical fiber
current sensor (OFCS). First, the optical configuration of the measurement system is presented.
Then, the elimination method of the effect of the azimuth angles between the sensing fiber and the
two polarizers is demonstrated. Moreover, the relationship of the linear birefringence, the Faraday
rotation angle and the final output is determined. On these bases, the multi-valued problem on
the linear birefringence is simulated and its solution is illustrated when the linear birefringence is
unknown. Finally, the experiments are conducted to prove the feasibility of the proposed method.
When the numbers of turns of the sensing fiber in the OFCS are about 15, 19, 23, 27, 31, 35, and 39,
the measured linear birefringence obtained by the proposed method are about 1.3577, 1.8425, 2.0983,
2.5914, 2.7891, 3.2003 and 3.5198 rad. Two typical methods provide the references for the proposed
method. The proposed method is proven to be suitable for the linear birefringence measurement in
the full range without the limitation that the linear birefringence must be smaller than π/2.

Keywords: optical fiber current sensor; linear birefringence; multi-valued problem

1. Introduction

An optical fiber current sensor (OFCS) has a number of advantages over the conventional current
sensor, such as high precision, high sensitivity, wide dynamic range and immunity to electro-magnetic
interference. Thus, it has attracted wide attention in the past three decades. For example, an OFCS has
been proposed based on the Fabry-Perot interferometer using a fiber Bragg grating demodulation [1];
an OFCS has been reported based on a long-period fiber grating with a permanent magnet [2];
and an OFCS has been designed based on microfiber and chrome-nickel wire [3]. Moreover, the
most widely used OFCS mechanism by far, the Faraday effect, which has been explored in many
configurations [4–7]. In this case, the light propagating in a sensing fiber experiences a rotation in
the angle of polarization in the presence of an external magnetic field. The applications of the OFCS
using the Faraday effect include the direct current measurement for process control and protection in
electrowinning industry [6], the current measurement for revenue metering as well as for the substation
control and protection in electric power industry [7], and the current measurement for buried pipelines
protection in an urban rail transit system [8,9]. It is well known that the effect of linear birefringence
on OFCS is difficult to eliminate, which may degrade the performance of OFCS seriously. Effective
elimination methods have been developed based on two types of optical fibers, including the spun
high-birefringent optical fiber and the low-birefringent optical fiber. It is proven that the OFCS with
the spun high-birefringent optical fiber has a good thermal stability [10,11], however, the high cost
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of fabrication limits the applications of this optical fiber at present. Moreover, the low-birefringent
optical fiber is usually annealed [5], twisted [12] or wound along the designed geometric path [8,13]
to minimize the effect of linear birefringence. Among them, it is found that the annealed fiber is
easily damaged during the installation process. The twisted optical fiber produces the reciprocal
circular birefringence through the shearing stress, which may decrease as time goes on. The sensing
fibers wound along the cylindrical [8] and toroidal [13] spiral paths have been proposed based on the
geometrical rotation effect. In these sensing fibers, the produced circular birefringence only depends
on the geometrical parameters of the path rather than the stress, which provides the effective method
to eliminate the linear birefringence in the low-birefringent sensing fiber. In this method, the accurate
measurement of the linear birefringence can help to optimize the design of the geometrical path.

The first one of the typical measurement methods of the linear birefringence has been proposed
by Ren, who applied the isotropy of circularly polarized light to measure the linear birefringence
of the low-birefringent sensing fiber [14]. In this method, the circularly polarized input light can
eliminate the effect of the azimuth angle between λ/4 plate and the low-birefringent sensing fiber.
An accuracy of 4% in the linear birefringence can be achieved by this method. The second typical
measurement method of the linear birefringence is the one proposed by Tentori [15]. In this method,
the input polarizer is rotated from 0◦ to 180◦. The polarization state of the output light from the
low-birefringent sensing fiber describes a major circle in Poincare sphere. Each point in the major circle
can be represented by the Stokes vector [S0; S1; S2; S3]. And the linear birefringence can be obtained
after determining the maximum or minimum value of the S3. The last of the typical measurement
methods of the linear birefringence has been proposed by Segura [16]. This method, based on the use
of the Faraday effect, and used to measure the linear birefringence with an accuracy of 5% seems to be
simple, fast and requires short lengths of fiber. It is noted however that this method needs to fix the
transmission axis of the Wollaston prism at 45◦ with respect to the input polarization. We can find that
the three methods described above are all suitable for the measurement of the linear birefringence of
the low-birefringent sensing fiber when the linear birefringence is not greater than π/2. If the linear
birefringence is greater than π/2, the above methods cannot determine the accurate value of the linear
birefringence due to the multi-valued problem that occurs during the measurement. It is known that
the linear birefringence of the low-birefringent sensing fiber in an OFCS is usually not smaller than
π/2 due to the bending-induced factor. If the OFCS works under varying temperature conditions, the
linear birefringence may be greater. Thus, the multi-valued problem may be one of the difficulties
to measure the linear birefringence in the OFCS. Moreover, it is known that the principle axes of the
low-birefringent sensing fiber are difficult to determine. This may be another difficulty.

In this paper, we propose a linear birefringence measurement method for the OFCS. The configuration
of the linear birefringence measurement system is illustrated firstly. The steps of the measurement
method are then demonstrated. Among these steps, the elimination method is proposed to eliminate
the effect of the azimuth angles between the sensing fiber and the two polarizers. The multi-valued
problem of the measurement result is simulated and its solution is presented. Finally, a series of
experiments based on the different sensor heads of the OFCS have been conducted to prove the
feasibility of our proposed method. When the linear birefringence is not greater than π/2, the typical
methods proposed by Ren [14] and Tentori [15] provide the references for our proposed method.

2. Linear Birefringence Measurement Method for the OFCS

The configuration of the linear birefringence measurement system is shown in Figure 1, which
mainly includes a distributed feedback (DFB) laser diode, a fixed polarizer, three aspheric lenses, a
sensor head of the OFCS, a rotated polarizer, and a power meter. The DFB laser diode (model DFB-I-50,
LabBang Co. Ltd., Beijing, China) was a central wavelength at 1550 nm and its −20 dB spectral width
is about 0.2 nm. Moreover, for the fixed polarizer and rotated polarizer (model LPIREA050-C, Thorlabs
Co. Ltd., Newton, NJ, USA), the extinction ratios are both greater than 2000:1 at 1550 nm. Finally, for
the sensing fiber (model LB 1550-125, Oxford Electronics Co. Ltd., Hants, UK) in the sensor head, its
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inherent linear birefringence is 4◦/4 m and its bending radius is defined as r in this work. During our
application in an urban rail transit system, the r is usually designed as about 40 cm.
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Figure 1. Configuration of the linear birefringence measurement system: L1 to L3 are the aspheric 
lenses, whose effective focal length is about 11 mm and NA is about 0.25; FP is the fixed polarizer; FR 
is the Faraday rotator, which is only applied to obtain the P3 and P4 shown in Equations (4) and (5); 
SF is the sensing fiber in the sensor head; CD is the conductor; RP is the rotated polarizer; PM is the 
power meter. 

In Figure 1, the light is first generated by the DFB laser diode. The pigtail of the DFB is the 
single mode fiber, whose mode field diameter is about 10 um. Thus, when the light is collimated by 
L1, the spot diameter and the divergence angle of the collimated light are estimated at 2.2 mm and 
0.052, respectively. Then, the collimated light passes through the FP to form a linearly polarized 
light. The linearly polarized light continues to enter into the SF through L2. It is assumed that the 
principle polarization axes of the SF are x axis and y axis, respectively. There are the linear 
birefringence and the Faraday rotation in the SF. Among them, the former one is induced by the 
refractive index difference between x-component and y-component while the latter one is induced 
by the current in the CD. Thus, the output light from the SF is elliptically polarized. The elliptically 
polarized light is collimated by L3 and is then analyzed by the RP. Finally, the light intensity from 
the RP is detected by the PM. 

In Figure 1, there are two azimuth angles of the transmission axes of the FP and RP with respect 
to the principle polarization axes of SF, which are formed at the points A and B, respectively. And 
the azimuth angles are defined as α and β, respectively. Since the SF in the OFCS is the 
low-birefringent sensing fiber, the orientations of its principle polarization axes are usually difficult 
to determine, which causes that the azimuth angles α and β to be unknown. We believe that the 
linear birefringence can be measured only after the effect of the azimuth angles α and β has  
been eliminated. 

In this work, an effective method is proposed to measure the linear birefringence in the SF. It is 
divided into three steps: first, we keep the transmission axes of the FP and RP parallel, which is the 
feasible operation using the high-precision rotation mount; then, the effective elimination method 
on the effect of the azimuth angles α and β is proposed based on the orthogonal modulation and a 
Faraday rotator shown in Figure 2; finally, the multi-valued problem on the linear birefringence is 
solved. The material for the Faraday rotator is bismuth iron garnet. It is noted that the azimuth 
angles α and β are the same, which can be both represented by θ in this work. 

Figure 1. Configuration of the linear birefringence measurement system: L1 to L3 are the aspheric
lenses, whose effective focal length is about 11 mm and NA is about 0.25; FP is the fixed polarizer; FR
is the Faraday rotator, which is only applied to obtain the P3 and P4 shown in Equations (4) and (5);
SF is the sensing fiber in the sensor head; CD is the conductor; RP is the rotated polarizer; PM is the
power meter.

In Figure 1, the light is first generated by the DFB laser diode. The pigtail of the DFB is the
single mode fiber, whose mode field diameter is about 10 um. Thus, when the light is collimated by
L1, the spot diameter and the divergence angle of the collimated light are estimated at 2.2 mm and
0.052◦, respectively. Then, the collimated light passes through the FP to form a linearly polarized light.
The linearly polarized light continues to enter into the SF through L2. It is assumed that the principle
polarization axes of the SF are x axis and y axis, respectively. There are the linear birefringence and the
Faraday rotation in the SF. Among them, the former one is induced by the refractive index difference
between x-component and y-component while the latter one is induced by the current in the CD. Thus,
the output light from the SF is elliptically polarized. The elliptically polarized light is collimated by L3
and is then analyzed by the RP. Finally, the light intensity from the RP is detected by the PM.

In Figure 1, there are two azimuth angles of the transmission axes of the FP and RP with respect
to the principle polarization axes of SF, which are formed at the points A and B, respectively. And the
azimuth angles are defined as α and β, respectively. Since the SF in the OFCS is the low-birefringent
sensing fiber, the orientations of its principle polarization axes are usually difficult to determine, which
causes that the azimuth angles α and β to be unknown. We believe that the linear birefringence can be
measured only after the effect of the azimuth angles α and β has been eliminated.

In this work, an effective method is proposed to measure the linear birefringence in the SF. It is
divided into three steps: first, we keep the transmission axes of the FP and RP parallel, which is the
feasible operation using the high-precision rotation mount; then, the effective elimination method
on the effect of the azimuth angles α and β is proposed based on the orthogonal modulation and a
Faraday rotator shown in Figure 2; finally, the multi-valued problem on the linear birefringence is
solved. The material for the Faraday rotator is bismuth iron garnet. It is noted that the azimuth angles
α and β are the same, which can be both represented by θ in this work.

According to the configuration shown in Figure 1, it is assumed that the complex amplitude of
the light vector from the FP is Ein. Thus, the complex amplitude of the input light vector of the SF is
EA = [Eincosθ; Einsinθ]. Moreover, the linear birefringence and the Faraday rotation work together on
the SF. Thus, the Jones matrix Jsf of the SF can be obtained as Equation (1) [17]:

Js f =

 cos
√

F2 + (δ/2)2 + i(δ/2) sin
√

F2+(δ/2)2
√

F2+(δ/2)2 −F sin
√

F2+(δ/2)2
√

F2+(δ/2)2

F sin
√

F2+(δ/2)2
√

F2+(δ/2)2 cos
√

F2 + (δ/2)2 − i(δ/2) sin
√

F2+(δ/2)2
√

F2+(δ/2)2

, (1)

where, F is the Faraday rotation angle, F = VNI; V represents the Verdet constant of the SF,
V = 0.73 urad/A at 1550 nm; N is the number of turns in the fiber loop; I is the input current in
the CD; δ is the phase delay induced by the linear birefringence in the SF. The complex amplitude of
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the output light vector of the SF is EB = Jsf·EA. On this basis, the complex amplitude of the light vector
from the RP is Eout = EBxcosθ + EBysinθ. The light intensity from the RP can be derived as Equation (2):

P1 ≈
[

1+(cos 2θ)2+(sin 2θ)2 cos 2
√

F2+(δ/2)2

2 − F2

F2+(δ/2)2 sin2
√

F2 + (δ/2)2(cos 2θ)2
]
× E2

in. (2)

Then, the orientation of the FP remains the same. The RP is subjected to a 90◦ counter-clockwise
rotation with respect to its initial orientation. Thus, the azimuth angle of the transmission axis of the
RP with respect to the x axis of the SF is changed to (θ + π/2). The light intensity from the RP can be
derived as:

P2 ≈
[

1−(cos 2θ)2−(sin 2θ)2 cos 2
√

F2+(δ/2)2

2 + F2

F2+(δ/2)2 sin2
√

F2 + (δ/2)2(cos 2θ)2
]
× E2

in. (3)
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Moreover, the Faraday rotator is installed between the FP and the L2 to rotate the output
polarization state from the FP by 45◦ counterclockwise. With the help of the Faraday rotator, the
azimuth angle of the transmission axis of the FP with respect to the x axis of the SF is changed to
θ + π/4 and the azimuth angle of the RP is changed as θ + π/4. In this case, the light intensity from the
RP can be derived as:

P3 ≈
[

1+(sin 2θ)2+(cos 2θ)2 cos 2
√

F2+(δ/2)2

2 − F2

F2+(δ/2)2 sin2
√

F2 + (δ/2)2(sin 2θ)2
]
× E2

in. (4)

Finally, the azimuth angle of the FP keeps θ + π/4 using the Faraday rotator. The azimuth angle
of the RP is changed to (θ + 3π/4). In this case, the light intensity from the RP can be derived as:

P4 ≈
[

1−(sin 2θ)2−(cos 2θ)2 cos 2
√

F2+(δ/2)2

2 + F2

F2+(δ/2)2 sin2
√

F2 + (δ/2)2(sin 2θ)2
]
× E2

in. (5)

According to Equations (2) and (3), the heterodyne method is applied to process the light
intensities P1 and P2. The first heterodyne (W1) output is given as Equation (6). Then the heterodyne
method goes on to process the light intensities P3 and P4. The second heterodyne (W2) output is given
as Equation (7). Finally, the sum of the two heterodyne outputs can be obtained as Equation (8):

W1 = P1−P2
P1+P2

= (cos 2θ)2 + (sin 2θ)2 cos 2
√

F2 + (δ/2)2 − 2 F2

F2+(δ/2)2 sin2
√

F2 + (δ/2)2(cos 2θ)2. (6)
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W2 = P3−P4
P3+P4

= (sin 2θ)2 + (cos 2θ)2 cos 2
√

F2 + (δ/2)2 − 2 F2

F2+(δ/2)2 sin2
√

F2 + (δ/2)2(sin 2θ)2. (7)

U = W1 + W2 = 1 + cos 2
√

F2 + (δ/2)2 − 2
F2

F2 + (δ/2)2 sin2
√

F2 + (δ/2)2. (8)

According to Equation (8), the relationship of the F, the δ and the U can be obtained as:

2F2 + (δ/2)2

F2 + (δ/2)2 sin2
√

F2 + (δ/2)2 −
(

1− U
2

)
= 0. (9)

In Equation (9), the F and the U are known while the δ is unknown. We define the function f (δ) as:

f (δ) =
2F2 + (δ/2)2

F2 + (δ/2)2 sin2
√

F2 + (δ/2)2 −
(

1− U
2

)
. (10)

There may be a multi-valued problem to determine δ during the process of solving the equation
f (δ) = 0. We conduct two simulations to demonstrate this multi-valued problem. In the first simulation,
the N is set as 15 and the input current is set as 40,000 A, which leads to F being about 0.438 rad.
The theoretical value of δ is about 1.337 rad (<π/2 rad) [18]. On these bases, the U is about 0.664 based
on Equation (8). The f (δ) versus the δ in the range of 0–30 rad is shown as the red curve in Figure 3.
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Figure 3. The {fi(δ)} versus the δ in the range of 0–30 rad: F1 = 0 rad and U1 = 1.232 while F2 = 0.438
rad and U2 = 0.664.

We can find that there are ten solutions to the equation f (δ) = 0, including the exact solution
δ = 1.337 rad (point 1). Given that the F and the U are changed as the input current while the δ is
unchanged, we believe that the δ can be solved based on the datasets {Fi} and {Ui} obtained in the
different input current. For example, when the input current is 0 and 40,000 A, the F is about 0 and
0.438 rad. Thus, the U is about 1.232 and 0.664, respectively. The corresponding functions are defined
as f 1(δ) and f 2(δ), respectively. The {fi(δ)} versus δ plots are shown in Figure 3. We can find that f 1(δ)
and f 2(δ) are all equal to zero only when the δ is equal to 1.337 rad (point 1). The other nine solutions
(point 2 to 10) of f 2(δ) = 0 are not the solutions of f 1(δ) = 0, which are shown in Figure 3. In the second
simulation, the N is set as 19 and the theoretical value of the δ is about 1.693 rad (>π/2 rad) [18]. When
the input current is about 0 and 40,000 A, F is about 0 and 0.5548 rad. Thus, the U is about 0.8777 and
0.1296, respectively. Similarly, the corresponding functions are defined as f 3(δ) and f 4(δ), respectively.
The {fi(δ)} versus δ curves are shown in Figure 4. Obviously, f 3(δ) and f 4(δ) are all equal to zero only
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when the δ is equal to 1.693 rad (point 1). The other nine solutions (point 2 to 10) of f 3(δ) = 0 are not
the solutions of f 4(δ) = 0, which are shown in Figure 4.
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Thus, according to the above simulation results, for solving the multi-valued δ problem, the
datasets {Fi} and {Ui} are firstly obtained based on the different values of the input current. On this
basis, the sets of equations {fi(δ) = 0} can be obtained as Equation (11).
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(
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. (11)

In this work, the effective solution of {fi(δ) = 0} has been proposed based on the newer version of
Matlab software (e.g., Matlab R2016a). It includes that: first, the particle swarm optimization is applied
to obtain the local optimal results of the δ; then, the ‘Multistart’ solver in the global optimization
toolbox is run from the random initial points that come from the local optimal results. In this step,
the ‘lsqnonlin’ solver starts each random initial point and finds a minimum of the sum of squares of
the functions described in {fi(δ)}. Finally, the minimum of the sum of squares in all initial points is
searched and the corresponding δ is the desirable result.

3. Experimental

In order to verify the feasibility of our proposed method, a series of experiments are conducted
based on the different sensor heads of our OFCS. What these sensors all have in common is that
their diameters are all 40 cm. Referring to the configuration shown in Figure 1, the magnetic field is
produced directly by the input current in the conductor, which requires a strong current generator.
In this experiment, the current generator is substituted by a magnetic field generator that can produce
the equivalent magnetic field of a maximum of 50,000 A. Moreover, an optical breadboard and a
five-axis kinematic optic mount (KOM) are very useful for the output light from the FP to enter into the
sensing fiber. The physical map and its illustration of the experimental system are shown in Figure 5.
Finally, it is noted that there are two input current during the experiments, one is 0 A and the other is
40,000 A.
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Thus, after solving the Equation (12), we can get the linear birefringence δ about 1.3577 rad in 
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extra linear birefringence that is produced during the winding of the sensing fiber. Thus, we believe 
this measurement result is right. As mentioned in the Introduction section, the measurement 
methods proposed by Ren [14] and Tentori [15] are both effective for the case that the δ is not larger 
than π/2 rad (about 1.5708 rad). They can provide the references for our proposed method in the 
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In the first experiment, the number of turns of the sensing fiber in the sensor head is about 15.
When the input current is 0 A, the four light intensities P1 to P4 shown in Equations (2) to (5) are 11.1,
5.6, 14.69 and 1.76 mW, respectively, which are all detected by the PM. The heterodyne outputs W1 and
W2 are about 0.3293 and 0.7860. The sum U is about 1.1154. Moreover, the Faraday rotation angle F is
about 0. When the input current is 40,000 A, the P1 to P4 are 10.5, 7.18, 12.97 and 3.42 mW, respectively.
The W1 and W2 are about 0.1878 and 0.5827. The U is about 0.7705. And the F is about 0.438 rad. Thus,
the equations in the first experiment can be obtained as: sin2(δ/2)− 0.4423 = 0

0.3837+(δ/2)2

0.1918+(δ/2)2 sin2
√

0.1918 + (δ/2)2 − 0.6148 = 0
. (12)

Thus, after solving the Equation (12), we can get the linear birefringence δ about 1.3577 rad in
the first experiment, which is slightly larger than the theoretical value (δ = 1.337 rad) shown in the
first simulation. In the first simulation, we only consider the bending-induced birefringence and the
inherent linear birefringence. However, in the first experiment, there may be a small amount of the
extra linear birefringence that is produced during the winding of the sensing fiber. Thus, we believe
this measurement result is right. As mentioned in the Introduction section, the measurement methods
proposed by Ren [14] and Tentori [15] are both effective for the case that the δ is not larger than
π/2 rad (about 1.5708 rad). They can provide the references for our proposed method in the first
experiment. According to [14], the first reference method proposed by Ren requires a λ/4 plate (model
WPQ05M-1550, Thorlabs Co. Ltd., Newton, NJ, USA) and a Wollaston prism (model WP10, Thorlabs
Co. Ltd., Newton, NJ, USA). For the sensor head in the first experiment, the measurement process
is shown in Figure 6a. The measurement result of the first reference method is about 0.9763, which
is equal to sin(δ). Thus, the value of δ is about 1.3526 rad, which is approximately consistent with
the measurement result of our proposed method (δ = 1.3577 rad). Moreover, the second reference
method proposed by Tentori [15] is also used to measure the δ of the sensor head in the first experiment.
Compared with our configuration shown in Figure 1, in the second reference method, the FP is replaced
by a RP and the output light from SF is detected directly by a polarimeter (model DOP-101D, General
Photonics Co. Ltd., Chino, CA, USA). It is assumed that the output light from the SF can be expressed
by the Stokes vector [S0; S1; S2; S3]. Among them, the S3 can be expressed as –sin 2αsin δ, where the α
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denotes the multi-parameter model, including the azimuth angle of the transmission axes of the RP
with respect to the principle polarization axes of SF. Since the sin 2α is in the range from −1 to 1, the
–sin 2αsin δ can reach its maximum sin δ or minimum –sin δ after rotating the RP. For the sensor head
in the first experiment, the measurement result of the second reference method is shown in Figure 6b.
It can be found that the minimum S3 is about −0.979. Thus, the δ is about 1.3655 rad, which is also
approximately consistent with the measurement results of our proposed method (δ = 1.3577 rad) and
the method proposed by Ren (δ = 1.3526 rad).
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In the second experiment, the number of turns of the sensing fiber in the sensor head is about 19.
When the input current is 0 A, the P1 to P4 are 9.23, 7.9, 13.46 and 2.93 mW. The W1 and W2 are about
0.0776 and 0.6425. The U is about 0.7201. The F is about 0. When the input current is 40,000A, the P1

to P4 are 6.64, 10.49, 10.18 and 5.68 mW, respectively. The W1 and W2 are about −0.2248 and 0.2837.
The U is about 0.059. And the F is about 0.5548 rad. Thus, the equations in the second experiment can
be obtained as:  sin2(δ/2)− 0.6399 = 0

0.6156+(δ/2)2

0.3078+(δ/2)2 sin2
√

0.3078 + (δ/2)2 − 0.9705 = 0
. (13)

Thus, after solving Equation (13), we can get that the linear birefringence δ is about 1.8425 rad
for the sensor head in the second experiment. It is noted that there is the multi-valued problem
for the reference methods proposed by Ren [14] and Tentori [15] when the δ is larger than π/2 rad.
With regard to the sensor head in the second experiment, the measured sin δ using the two reference
methods are about 0.9693 and 0.946, which are shown in Figure 7. Obviously, it cannot determine the
accurate value of the δ only based on the sin δ. Thus, the accuracy of our proposed method has to be
evaluated indirectly based on the sin δ in the second experiment. The sin δ is about 0.9633 using our
proposed method, which is approximately consistent with the results obtained by the two reference
methods (sin δ = 0.9693 and sin δ = 0.946). Moreover, the δ in the second experiment (δ = 1.8425 rad) is
really larger than the first experiment (δ = 1.3577 rad) with the increasing the number of turns of the
sensing fiber.

We continue to test the linear birefringence of the different sensor heads. Among them,
the numbers of turns of the sensing fiber are 23, 27, 31, 35 and 39, respectively. It is rare that the number
of turns (N) is greater than 40 in our practical application of the stray current measurement [9]. Thus,
the sensor head with N ≥ 40 is not tested in this work. We can find that the δ obtained by our proposed
method is about 2.0983, 2.5914, 2.7891, 3.2003 and 3.5198 rad when the N is about 23, 27, 31, 35 and
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39. The δ is increased with the increase of the N. Since the sensing fiber is manually wound in the
sensor head, the linear birefringence produced in the manual operation cannot be the same for each
sensor head.
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Thus, this increase is close to linear, which is shown in Figure 8. Moreover, these sensor heads are
all measured by the two reference methods proposed by Ren [14] and Tentori [15]. In the reference
method proposed by Ren [14], the results (sin δ) are about 0.8754, 0.5341, 0.3049, −0.0511 and −0.357
when the N is about 23, 27, 31, 35 and 39. In the reference method proposed by Tentori [15], the
results (sin δ) are about 0.8616, 0.5091, 0.4161, −0.0657 and −0.3744 when the N is about 23, 27, 31,
35 and 39. The results (sin δ) obtained by our proposed method are about 0.8641, 0.5229, 0.3452,
−0.0587 and −0.3693 when the N is about 23, 27, 31, 35 and 39. Similarly with the first and second
experiments, the results obtained by these two reference methods can prove the feasibility of our
proposed method indirectly.
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4. Conclusions

In this paper, we propose a linear birefringence measurement method for an OFCS. First, the
optical configuration of the measurement system is presented. Then, the elimination method of the
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effect of the azimuth angles between the sensing fiber and the two polarizers is demonstrated based
on the orthogonal modulation and a Faraday rotator. The relationship of the linear birefringence, the
Faraday rotation angle and the final output is determined based on the Jones matrix calculus and the
heterodyne method. Moreover, the multi-valued problem on the linear birefringence is simulated
and its solution is illustrated when the linear birefringence is unknown. Finally, the experiments are
conducted to prove the feasibility of the proposed method. When the numbers of turns of the sensing
fiber in the OFCS are about 15, 19, 23, 27, 31, 35, and 39, the measured linear birefringence obtained by
the proposed method are about 1.3577, 1.8425, 2.0983, 2.5914, 2.7891, 3.2003 and 3.5198 rad. Two typical
methods provide the references for the proposed method. According to the comparison results, we
find that the proposed method is suitable for the linear birefringence measurement in the full range
without the limitation that the linear birefringence must be smaller than π/2. In this work, we only test
the bending induced and inherent linear birefringence, which have been used to verify the feasibility of
our proposed method. It is known that there is no accurate theory to express the temperature induced
linear birefringence. This linear birefringence is absolutely unknown. Thus, in the next work, we will
continue to test the temperature induced linear birefringence in the OFCS based on our proposed
method, which will very useful for the suppression of the temperature error in OFCS.
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