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Abstract: The direct position determination approach was recently presented as a promising
technique for the localization of a transmitting source with accuracy higher than that of the
conventional two-step localization method. In this paper, the theoretical performance of a direct
position determination estimator proposed by Weiss is examined for situations in which the array
model errors are present. Our study starts from a matrix eigen-perturbation result, which expresses
the perturbation of eigenvalues as a function of the disturbance added to the Hermitian matrix.
The first-order asymptotic expression of the positioning errors is presented, from which an analytical
expression for the mean square error of the direct localization is available. Additionally, explicit
formulas for computing the probabilities of a successful localization are deduced. Finally, Cramér–Rao
bound expressions for the position estimation are derived for two cases: (1) array model errors are
absent and (2) array model errors are present. The obtained Cramér-Rao bounds provide insights
into the effects of the array model errors on the localization accuracy. Simulation results support and
corroborate the theoretical developments made in this paper.

Keywords: direct position determination (DPD); array signal processing; array model errors; mean
square error (MSE); success probability (SP); Cramér-Rao bound (CRB)

1. Introduction

The techniques of emitter localization using direction of arrival (DOA) measurements [1–5]
play an important role in many areas, including vehicle navigation, localization and tracking of
acoustic sources, and location services of satellite communications. In such localization systems, a
single moving observer or multiple stationary observers are used to determinate the positions of the
emitters. Generally, each observer is equipped with an antenna array for measuring the DOAs of
the transmitted sources, and the emitter can then be located at the intersection of a set of lines of
bearing [6–8]. The location procedure described above is typically called the two-step method. In
the first step, the signal parameters (e.g., DOA [1–5], time difference of arrival (TDOA) [9,10], time of
arrival (TOA) [11,12], frequency difference of arrival (FDOA) [13,14], frequency of arrival (FOA) [15],
and received signal strength (RSS) [16,17]) are separately measured at several stations. In the second
step, a central station uses the measurements to estimate the position coordinates of the sources.
The two-step procedure is also known as the decentralized approach [18]. Note that although the
two-step procedure is widely applied to the modern localization system, it is difficult to yield the
optimal position estimate from the point of view of statistical characteristics. The reason is that the
signal parameters are obtained by ignoring the constraint that all measurements must correspond to a
common source position. As a result, information loss between the two steps is unavoidable. Although
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it can be proved by the extended invariance principle (EXIP) [19] that the two-step method provides
an asymptotically efficient estimate under certain conditions, these requirements cannot be easily met
in practical scenarios.

To improve the accuracy of two-step location methods, a promising technique, called the direct
position determination (DPD) approach, is proposed over the past few years. DPD is a centralized
and single-step estimation technique in which the estimator uses exactly the same data as classical
two-step methods but searches for the source location directly. Generally, the DPD method outperforms
conventional two-step methods under low-signal-to-noise conditions and when there are relatively
few samples; moreover, it does not encounter the association problem. More importantly, the DPD
technique can be applied to many wireless positioning systems. Specifically, the DPD method for
locating a narrowband radio emitter based on a Doppler shift is presented in [20,21], and DPD methods
for locating a wideband source based on a time delay metric are proposed in [22–24]. Furthermore,
DPD estimators using both the Doppler frequency and time delay are developed in [25–28]. Note that
in the DPD methods mentioned above, multiple platforms each equipped with a single-antenna
receiver are used for position determination, and as a result, the DOA information of the impinging
signals cannot be exploited. In [29], a DPD method based on multiple static stations each equipped
with an antenna array is first proposed. In this single-step location method, the array response is
modeled as a function of the source position, and only a two-dimensional search is required although
there are many stray parameters in the array signal model. Following the work of [29], other DPD
estimators for special localization scenarios are developed in the literature. In particular, DPD methods
for multiple radio emitters are presented in [30,31], and some high-resolution DPD methods are
given in [32,33]. DPD estimators for the cases of known waveforms and multipath environments
are developed in [34] and [35,36], respectively. In addition, DPD methods tailored to special signals
(e.g., orthogonal frequency division multiplexing signals, cyclostationary signals, and intermittent
emissions) are proposed in [37–39]. It is noteworthy that all experiment results in [20–39] demonstrate
that the single-step approach outperforms the two-step method for a low signal-to-noise ratio (SNR)
and small number of samples. Meanwhile, although this kind of localization method may require
more computations and communication bandwidth, novel information technology [40–42] can be used
to overcome these difficulties. For example, the cloud computing and cloud storage technology [40,41]
can be used to reduce the computation loads, and the compressive sensing technology [42] is helpful
for reducing the communication bandwidth.

In the field of array signal processing, super-resolution DOA estimation methods are known to be
sensitive to uncertainties in the array manifold. In recent decades, much attention has been paid to the
analysis of the sensitivity of classical DOA estimation algorithms to array model errors. In [43–51], the
statistic performance of the multiple signal classification algorithm and its extensions in the presence
of array model errors is studied. An analysis of the estimation of signal parameters via rotational
invariance techniques under random sensor uncertainties is performed in [52], and a sensitivity analysis
of the weighted subspace fitting algorithm under the combined effects of array model errors and
finite samples is presented in [53]. The statistical performance of the maximum likelihood algorithm
is also investigated in [54,55] assuming that array calibration errors exist. Additionally, efficient
parameter estimation algorithms are proposed with an uncalibrated array [56,57] or partly calibrated
array [58–60].

Array model errors are typically caused by gain/phase uncertainties, mutual coupling, and sensor
position perturbations. Note that all DPD methods presented in [29–33,35–39] also rely on the accurate
knowledge of the array manifold and, therefore, it seems reasonable to expect that their localization
accuracy is also severely degraded by array uncertainties. Although the estimation performance of
the DPD method in the presence of array model errors is rigorously analyzed in [34,61,62], these
theoretical studies are simply performed for the case where signal waveforms are known. However,
this is rarely realistic for non-cooperative communications. In this paper, the location performance
of the DPD method in the presence of array model errors is examined when signal waveforms are
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not known in advance. Our theoretical analysis focuses on the DPD estimator in [29] because of its
fundamental role in the field of direct localization. Because the objective function of this DPD estimator
is formulated as the maximum eigenvalue of a Hermitian matrix, the theoretical development begins
with a matrix eigen-perturbation result, which expresses the perturbation of eigenvalues as a function
of the disturbance added to the Hermitian matrix. Subsequently, the first-order asymptotic expression
of the localization errors is given, from which the analytical formula for the mean square error (MSE)
of the DPD estimator is available. Furthermore, two exact formulations for the calculation of the
probabilities of a successful localization are also deduced, which offers another statistical perspective
on the study of the estimation performance. Finally, Cramér-Rao bound (CRB) expressions for the
position estimation are derived for two cases: (a) array model errors do not exist and (b) array model
errors are present and follow a Gaussian distribution. The obtained CRBs provide further insights into
how array model errors affect the localization performance.

The remainder of this paper is organized as follows. Section 2 lists the notational conventions that
will be used throughout the paper. In Section 3, the signal model for direct localization is formulated.
Section 4 briefly describes the DPD method, which is first proposed in [29]. Section 5 discusses the
statistical assumption and effects of the array model errors. In Section 6, the analytical formula for the
MSE of the DPD method is derived in presence of array model errors. Section 7 provides two explicit
formulas for the calculation of the probabilities of a successful localization. In Section 8, the CRB
expressions for the position estimation are derived for two cases. Numerical simulations are presented
in Section 9 to investigate the usefulness of the theoretical expressions for performance prediction.
Conclusions are drawn in Section 10. The proofs of the main results are given in the Appendixes.

2. Notation and Nomenclature

The notational conventions that will be used throughout this paper are summarized in Table 1.
The variables and parameters that are used in this paper will be defined when they first appear in
the following.

Table 1. Notational conventions.

Notation Explanation

⊗ Kronecker product
� Schur product

diag [·] a diagonal matrix with diagonal entries formed from the vector
blkdiag [·] a block-diagonal matrix formed from the matrices or vectors

[·]† Moore-Penrose inverse of the matrix
In n× n identity matrix

i(k)n the kth column vector of In

On×m n×m matrix of zeros
1n×1 n× 1 vector of ones

λmax{·} the largest eigenvalue of the matrix
|| · ||2 Euclidean norm
< · >n the nth entry of the vector
< · >nm the nmth entry of the matrix

Re{·} real part of the argument
Im{·} imaginary part of the argument
Pr{·} probability of the given event
E[·] mathematical expectation of the random variable

var[·] variance of the random variable

3. Signal Models for Direct Position Determination

3.1. Time-Domain Signal Model

Consider an emitter and N base stations intercepting the transmitted signal. Each base station
is equipped with an antenna array consisting of M elements. The transmitter’s position is denoted
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by an L× 1 vector of coordinates p. In practice, L is equal to two or three, and cannot be larger than
three. We consider the case where there is no multipath or non-line-of-sight (NLOS) phenomenon.
The complex envelopes of the signal observed by the nth base station are then modeled by [29]

xn(t) = βnan(p)s(t− τn(p )− t0) + εn(t) (1 ≤ n ≤ N) , (1)

where

• an(p) is the nth array response to the signal transmitted from position p,
• s(t− τn(p )− t0) is the unknown signal waveform transmitted at unknown time t0,
• τn(p ) is the signal propagation time from the emitter to the nth base station (i.e., distance divided

by signal propagation speed),
• βn is an unknown complex scalar representing the channel attenuation between the transmitter

and the nth base station,
• εn(t) is temporally white, circularly symmetric complex Gaussian random noise with zero mean

and covariance matrix σ2
ε IM.

Assuming the observation vector xn(t) is sampled with period T, the kth sampled data can be
expressed as

xn,k = βnan(p)s(kT − τn(p )− t0) + εn,k (1 ≤ k ≤ K) , (2)

where K is the number of snapshots.

3.2. Frequency-Domain Signal Model

To determinate the emitter position directly from all observations, it is desirable to separate the
propagation delay τn(p ) and transmit time t0 from the signal waveform. This is easily achieved using
the frequency-domain representation of the problem. Taking the discrete Fourier transform (DFT) of
(2) produces [29]

xn,k = βnan(p)sk · exp{−jωk(τn(p) + t0)}+ εn,k (1 ≤ n ≤ N ; 1 ≤ k ≤ K) , (3)

where

• ωk = 2π(k− 1)/(KT) is the kth known discrete frequency point,
• sk is the kth Fourier coefficient of the unknown signal corresponding to frequency ωk,
• εn,k is the kth Fourier coefficient of the random noise corresponding to frequency ωk.

It must be emphasized that the unknown and deterministic parameter set in (3) consists of p ,
t0, βn and sk. However, only the location vector p is of interest for the DPD approach. In addition,
because the DFT is an orthogonal linear transformation, the distribution of the random noise vector
εn,k is the same as that of εn,k, with first- and second-order moments given by.

E[εn,k] = OM×1 ,
E[εn,kεT

n,k] = OM×M , E[εn,kεH
n,k] = σ2

ε IM ,
E[εn,kεT

n,l ] = E[εn,kεH
n,l ] = OM×M ,

(1 ≤ k , l ≤ K ; k 6= l) . (4)

Note that the DPD technique studied below is derived from (3).

4. Direct Position Determination Method

This section introduces the DPD method presented in [29]. The optimization model for direct
localization is established according to the least square criterion, which can be formulated as

min
p,{βn},{sk}

N
∑

n=1

K
∑

k=1
||xn,k − βnan(p)sk · exp{−jωk(τn(p) + t0)}||22 = min

p,{βn},{sk}

N
∑

n=1
||xn − (s′n ⊗ an(p))βn||22 , (5)
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where{
xn = [xH

n,1 xH
n,2 · · · xH

n,K]
H ,

s′n = [s1 · exp{−jω1(τn(p) + t0)} s2 · exp{−jω2(τn(p) + t0)} · · · sK · exp{−jωK(τn(p) + t0)}]T .
(6)

Obviously, (5) is a multidimensional nonlinear minimization problem. A direct minimization
involves a search over the parameter space and is computationally prohibitive. The technique of the
separation of variables can be applied to simplify the optimization problem.

First, the channel attenuation scalar βn that minimizes (5) is given by

βn =
1

||an(p)||22 · ||s′n||22
· (s′n ⊗ an(p))Hxn . (7)

It can be assumed, without loss of generality, that ||an(p)||2 = ||s′n||2 = 1. Then, substituting (7)
into (5) and applying algebraic manipulations leads to the concentrated problem [29]

max
p,s

sH

(
N

∑
n=1

AH
n (p)xnxH

n An(p)

)
s , (8)

where {
An(p) = blkdiag

[
a′n,1(p) a′n,2(p) · · · a′n,K(p)

]
s = [s1 · exp{−jω1t0} s2 · exp{−jω2t0} · · · sK · exp{−jωKt0}]T

(9)

with a′n,k(p) = an(p) · exp{−jωkτn(p)}. According to quadratic form theory, the cost function in (8)
is maximized by selecting the vector s as the eigenvector corresponding to the largest eigenvalue of

matrix
N
∑

n=1
AH

n (p)xnxH
n An(p). Therefore, (8) reduces to

max
p

J(p) = max
p

λmax{B(p)BH(p)} = max
p

λmax{BH(p)B(p)} , (10)

where
B(p) = [AH

1 (p)x1 AH
2 (p)x2 · · · AH

N(p)xN ] = AH(p)x (11)

with {
A(p) = [AH

1 (p) AH
2 (p) · · · AH

N(p)]H ,
X = blkdiag[x1 x2 · · · xN ] .

(12)

It is important to stress that the second equality in (10) holds owing to the fact that given any
matrix Z, the non-zero eigenvalues of ZHZ and ZZH are identical [63]. Moreover, note that the
dimensions of matrices B(p)BH(p) and BH(p)B(p) are respectively K × K and N × N. In practice,
K is typically much greater than N and it is therefore more computationally efficient to perform the
eigendecomposition on BH(p)B(p) instead of B(p)BH(p). Because the cost function in (10) is not a
closed-form expression for p, the most straightforward method of solving (10) is to perform a grid
search, as recommended in [29].

Note that when the location is estimated in multipath environments, the localization accuracy
may obviously improve if the information contained in the non-line-of-sight signal components is
exploited with the aid of appropriate channel modeling [35,36]. As a consequence, the signal model in
(1) and (3) and the estimation criterion in (5) must be further adjusted to give a desired solution for
the multipath model. Indeed, our performance analysis method also applies to the case of multipath
propagation, but we only consider the single-path signal model in this paper owing to limited space.
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5. Statistical Assumption and Effects of Array Model Errors

Assume that the actual array response, which differs from the nominal value, can be expressed as

ân(p) = an(p) + ϕ̃n , (13)

where ϕ̃n is the array model error. It must be emphasized that ϕ̃n is modeled as a stochastic variable
rather than a deterministic variable throughout this paper. Moreover, there exist a variety of statistical
assumptions that could be used to describe ϕ̃n in the literature. To make our results applicable to a
more general situation, {ϕ̃n}1≤n≤N is modeled as a set of independent complex Gaussian vectors with
first- and second-order moments given by [43–55]

E[ϕ̃n] = OM×1 ,

E[ϕ̃nϕ̃T
n ] = Φ

(1)
n , E[ϕ̃nϕ̃H

n ] = Φ
(2)
n

E[ϕ̃nϕ̃T
m] = E[ϕ̃nϕ̃H

m ] = OM×M ,
, (1 ≤ n , m ≤ N ; n 6= m) . (14)

Furthermore, array model error ϕ̃n is uncorrelated to sensor noise {εn,k}1≤k≤K for each base
station. It is noteworthy that (14) will be used to determine the MSE and the CRB of the DPD estimator
investigated in this paper.

When array model errors exist, the frequency-domain signal model in (3) becomes

x̂n,k = xn,k,0 + βnϕ̃nsk · exp{−jωk(τn(p) + t0)}+ εn,k , (15)

where xn,k,0 is the true value of x̂n,k in the absence of sensor noise and array model errors, and can be
expressed as

xn,k,0 = βnan(p)sk · exp{−jωk(τn(p) + t0)} . (16)

Defining the vectors and matrices{
x̂n = [x̂H

n,1 x̂H
n,2 · · · x̂H

n,K]
H

, xn,0 = [xH
n,1,0 xH

n,2,0 · · · xH
n,K,0]

H , εn = [εH
n,1 εH

n,2 · · · εH
n,K]

H ,
X̂ = blkdiag[x̂1 x̂2 · · · x̂N ] , x0 = blkdiag[x1,0 x2,0 · · · xN,0] , E = blkdiag[ε1 ε2 · · · εN ] ,

(17)

it is easily verified from (15) and (17) that

x̂n = xn,0 + εn + (rn ⊗ IM)ϕ̃n (1 ≤ n ≤ N) , (18)

where

rn = βn · [s1 · exp{−jω1(τn(p) + t0)} s2 · exp{−jω2(τn(p) + t0)} · · · sK · exp{−jωK(τn(p) + t0)}]T . (19)

From (17) and (18) we get

blkdiag[x̂1 x̂2 · · · x̂N ] = blkdiag[x1,0 x2,0 · · · xN,0] + blkdiag[ε1 ε2 · · · εN ]

+blkdiag[(r1 ⊗ IM)ϕ̃1 (r2 ⊗ IM)ϕ̃2 · · · (rN ⊗ IM)ϕ̃N ]⇔ X̂ = X0 + E + Ψ̃ ,
(20)

where
Ψ̃ = blkdiag[(r1 ⊗ IM)ϕ̃1 (r2 ⊗ IM)ϕ̃2 · · · (rN ⊗ IM)ϕ̃N ] . (21)

In the presence of array model errors, the emitter position is actually determined by

max
p

Ĵ(p) = max
p

λmax{B̂H(p)B̂(p)} , (22)

where B̂(p) = AH(p)X̂. We assume the optimal solution to (22) is p̂ and its estimate error is p̃ = p̂− p.
It is evident that the estimate error p̃ depends on both sensor noise and array model errors. In
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subsequent sections, the statistical performance of p̃ is derived under the combined effects of the two
sources of error.

For convenience in later formulae, we proceed by defining two error vectors

εc =

[
ε

ε∗

]
, ϕ̃c =

[
ϕ̃

ϕ̃∗

]
, (23)

where
ε = [εH

1 εH
2 · · · εH

N ]
H
= E1N×1 , ϕ̃ = [ϕ̃H

1 ϕ̃H
2 · · · ϕ̃H

N ]
H

. (24)

Obviously, εc and ϕ̃c are related to sensor noise and array model errors, respectively. Further, we
define two permutation matrices

Πε =

[
OMNK×MNK IMNK

IMNK OMNK×MNK

]
, Πϕ̃ =

[
OMN×MN IMN

IMN OMN×MN

]
, (25)

It can then be easily checked from (23) and (25) that εc = Πεε∗c and ϕ̃c = Πϕ̃ϕ̃∗c . In addition, it is
straightforward to deduce from (17), (21), and (24) that E = O(||ε||2) and Ψ̃ = O(||ϕ̃||2).

6. MSE of Direct Position Determination Method in Presence of Array Model Errors

In this section, the MSE for the DPD method stated above is addressed in the presence of
uncertainties in the model of the array manifold.

6.1. Perturbation Analysis on the Eigenvalues of Positive Semidefinite Matrix

Because the cost function in (22) is expressed as the maximal eigenvalue of some positive
semidefinite matrix, an eigenvalue perturbation result is formally stated in a proposition as follows.

Proposition 1. Let Z ∈ CN×N be a positive semidefinite matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN ,
associated with unit eigenvectors u1 , u2 , · · · , uN , respectively. Moreover, λn differs from the other eigenvalues.
Assume Z is corrupted by a Hermitian error matrix Z̃ ∈ CN×N , and the corresponding perturbed matrix is
denoted Ẑ; i.e., Ẑ = Z + Z̃ ∈ CN×N . If the eigenvalues of matrix Ẑ are denoted λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂N , then
the relationship between λ̂n and λn can be described by

λ̂n = λn + uH
n Z̃un + uH

n Z̃UnZ̃un + o(||Z̃||22) , (26)

where

Un =
N

∑
i = 1
i 6= n

uiuH
i

λn − λi
. (27)

The proof of Proposition 1 can be found in [21]. Note that Proposition 1 plays a fundamental role
in our subsequent analysis.

6.2. Second-Order Perturbation Analysis on the Cost Function

Generally, first-order analysis is applied to predict the statistical performance of an estimator.
The reason is that this analysis method gives the linear relationship between the estimation errors
and measurement noise as well as model errors. As a result, the theoretical MSE of the estimator can
be obtained according to statistical assumptions of the two sources of error. Moreover, first-order
analysis is valid in most cases, provided that the error levels are not too high. In this paper, we employ
this approach to derive the performance of the DPD estimator described above. For this purpose,
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first-order perturbation analysis is performed on the first derivative of the objective function in (22),
or alternatively, second-order perturbation analysis is performed on the cost function in (22). Herein,
because the analytical expression for the derivative of the cost function is rather complex, we prefer
the second approach.

First, performing second-order perturbation analysis on matrix B̂(p̂) = AH(p̂)X̂ leads to

B̂(p̂) = AH(p̂)X̂ = B0 + B̃(1) + B̃(2) + o(||ξ̃||22) , (28)

where ξ̃ = [p̃T εT ϕ̃T]
T

consists of all error vectors, and

B0 = AH(p)x0

B̃(1) = AH(p)E + AH(p)Ψ̃ +
L
∑

l=1
< p̃ >l ·

.
A

H
l (p)x0 = O(||ξ||2)

B̃(2) =
L
∑

l=1
< p̃ >l ·

.
A

H
l (p)E +

L
∑

l=1
< p̃ >l ·

.
A

H
l (p)Ψ̃ + 1

2 ·
L
∑

l1=1

L
∑

l2=1
< p̃ >l1 · < p̃ >l2 ·

..
A

H
l1l2(p)x0 = O(||ξ||22)

(29)

with
.

Al(p) =
∂A(p)

∂ < p >l
,

..
Al1l2(p) =

∂2 A(p)
∂ < p >l1 ∂ < p >l2

. (30)

The explicit expressions for
.

Al(p) and
..
Al1l2(p) are given in Appendix A. It is seen from (28) and

(29) that B̃(1) and B̃(2) collect all first- and second-order perturbation terms, respectively. It is deduced
from (28) that

B̂H(p̂)B̂(p̂) = C0 + C(1) + C(2) + o(||ξ̃||22) , (31)

where {
C0 = BH

0 B0 , C(1) = BH
0 B̃(1) + B̃(1)HB0 = O(||ξ||2) ,

C(2) = B̃(1)HB̃(1) + BH
0 B̃(2) + B̃(2)HB0 = O(||ξ||22) .

(32)

From (31) and (32) we observe that C(1) and C(2) consist of all first- and second-order perturbation
terms, respectively.

Let λ1 ≤ λ2 ≤ · · · ≤ λN and u1, u2, · · · , uN be the eigenvalues and relevant unit eigenvectors
of matrix C0, respectively. Additionally, it is not unreasonable to assume that the source location
parameters are identifiable, which means that C0 has unique maximal eigenvalue λN . Meanwhile,
it is noteworthy that the eigenvalue perturbation theory is extensively applied to the performance
analysis in array signal processing for DOA estimation. To our best knowledge, there is no relevant
mathematical tool that can be used to prove that the eigenvalues of C0 are distinct. However, a large
number of numerical investigations demonstrate that the possibility of the case of equal eigenvalues is
small enough that we can ignore it. As a result, we define the matrix

UN =
N−1

∑
n=1

unuH
n

λN − λn
. (33)

By combining Proposition 1 and (31), the cost-function value at point p̂ is given by

Ĵ(p̂) = λmax{B̂H(p̂)B̂(p̂)} = λmax{C0}+ uH
N(C

(1) + C(2))uN + uH
NC(1)UNC(1)uN + o(||ξ̃||22)

= λN + λ̃
(1)
N + λ̃

(2)
N + o(||ξ̃||22) ,

(34)

where
λ̃
(1)
N = uH

N BH
0 B̃(1)uN + (uH

N BH
0 B̃(1)uN)

H
= O(||ξ̃||2) ,

λ̃
(2)
N = uH

N BH
0 B̃(1)UN BH

0 B̃(1)uN + (uH
N BH

0 B̃(1)UN BH
0 B̃(1)uN)

H
+ uH

N B̃(1)H(IK + B0UN BH
0 )B̃(1)uN

+ uH
N BH

0 B̃(1)UN B̃(1)HB0uN + uH
N BH

0 B̃(2)uN + (uH
N BH

0 B̃(2)uN)
H
= O(||ξ̃||22) .

(35)
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It is seen from (35) that λ̃
(1)
N and λ̃

(2)
N group together all the first- and second-order error terms,

respectively. The proof of (34) and (35) can be found in Appendix B. In the following, we express λ̃
(1)
N

and λ̃
(2)
N as functions of εc, ϕ̃c, and p̃.

First, inserting the second equality in (29) into the first equality in (35) produces

λ̃
(1)
N = hH

1 (p)εc + hH
2 (p)ϕ̃c + hT

3 (p)p̃ , (36)

where 
h1(p) = f1[B0uN , uN ] + Πε( f1[B0uN , uN ])

∗ ,
h2(p) = f2[B0uN , uN ] + Πϕ̃( f2[B0uN , uN ])

∗ ,
h3(p) = 2 · Re{ f3[B0uN , uN ]} ,

(37)

in which { fk[· , ·]}1≤k≤3 can be regarded as a set of vector functions, whose functional forms are
given by



f1[z1, z2] =

[
diag[z∗2 ⊗ 1MK×1] · a(p)z1

OMNK×1

]
,

f2[z1, z2] =

[
blkdiag[< z∗2 >1 ·(rH

1 ⊗ IM) < z∗2 >2 ·(rH
2 ⊗ IM) · · · < z∗2 >N ·(rH

N ⊗ IM)] · a(p)z1

OMN×1

]
,

f3[z1, z2] = [zH
1

.
A

H
1 (p)x0z2 zH

1

.
A

H
2 (p)x0z2 · · · zH

1

.
A

H
L (p)x0z2]

H
,

(∀z1 ∈ CK×1 , z2 ∈ CN×1) . (38)

The proof of (36) to (38) is provided in Appendix C. Secondly, substituting the second and third
equalities in (29) into the second equality in (35) leads to

λ̃
(2)
N = εH

c H1(p)εc + ϕ̃H
c H2(p)ϕ̃c + p̃TH3(p)p̃ + εH

c H4(p)ϕ̃c + εH
c H5(p)p̃ + ϕ̃H

c H6(p)p̃ , (39)

where

H1(p) = Fa1[B0uN , UN BH
0 , uN ] + (Fa1[B0uN , UN BH

0 , uN ])
H
+ Fb1[uN , IK + B0UN BH

0 , uN ]

+ Fc1[B0uN , UN , B0uN ] ,
H2(p) = Fa2[B0uN , UN BH

0 , uN ] + (Fa2[B0uN , UN BH
0 , uN ])

H
+ Fb2[uN , IK + B0UN BH

0 , uN ]

+ Fc2[B0uN , UN , B0uN ] ,
H3(p) = Fa3[B0uN , UN BH

0 , uN ] + (Fa3[B0uN , UN BH
0 , uN ])

H
+ Fb3[uN , IK + B0UN BH

0 , uN ]

+ Fc3[B0uN , UN , B0uN ] + G3[B0uN , uN ] + (G3[B0uN , uN ])
∗ ,

H4(p) = Fa4[B0uN , UN BH
0 , uN ] + Πε(Fa4[B0uN , UN BH

0 , uN ])
∗
Πϕ̃ + Fb4[uN , IK + B0UN BH

0 , uN ]

+ Fc4[B0uN , UN , B0uN ] ,
H5(p) = Fa5[B0uN , UN BH

0 , uN ] + Πε(Fa5[B0uN , UN BH
0 , uN ])

∗
+ Fb5[uN , IK + B0UN BH

0 , uN ]

+ Fc5[B0uN , UN , B0uN ] + G1[B0uN , uN ] + Πε(G1[B0uN , uN ])
∗ ,

H6(p) = Fa6[B0uN , UN BH
0 , uN ] + Πϕ̃(Fa6[B0uN , UN BH

0 , uN ])
∗
+ Fb6[uN , IK + B0UN BH

0 , uN ]

+ Fc6[B0uN , UN , B0uN ] + G2[B0uN , uN ] + Πϕ̃(G2[B0uN , uN ])
∗ ,

(40)

in which {Fak[· , ·, ·]}1≤k≤6, {Fbk[· , ·, ·]}1≤k≤6, {Fck[· , ·, ·]}1≤k≤6, and {Gk[· , ·]}1≤k≤3 can be viewed as
matrix functions, which are given by



Fa1[z1, Z, z2] =
K
∑

k=1
Πε( f1[z1, Zi(k)K ])

∗
( f1[i

(k)
K , z2])

H
,

Fa2[z1, Z, z2] =
K
∑

k=1
Πϕ̃( f2[z1, Zi(k)K ])

∗
( f2[i

(k)
K , z2])

H
,

Fa3[z1, Z, z2] =
K
∑

k=1
( f3[z1, Zi(k)K ])

∗
( f3[i

(k)
K , z2])

H
,

Fa4[z1, Z, z2] =
K
∑

k=1
Πε(( f1[z1, Zi(k)K ])

∗
( f2[i

(k)
K , z2])

H
+ ( f1[i

(k)
K , z2])

∗
( f2[z1, Zi(k)K ])

H
) ,

Fa5[z1, Z, z2] =
K
∑

k=1
Πε(( f1[z1, Zi(k)K ])

∗
( f3[i

(k)
K , z2])

H
+ ( f1[i

(k)
K , z2])

∗
( f3[z1, Zi(k)K ])

H
) ,

Fa6[z1, Z, z2] =
K
∑

k=1
Πϕ̃(( f2[z1, Zi(k)K ])

∗
( f3[i

(k)
K , z2])

H
+ ( f2[i

(k)
K , z2])

∗
( f3[z1, Zi(k)K ])

H
) ,

(∀z1 ∈ CK×1 , z2 ∈ CN×1 , Z ∈ CN×K) , (41)
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Fb1[z1, Z, z2] =
K
∑

k=1
f1[Zi(k)K , z1] · ( f1[i

(k)
K , z2])

H
,

Fb2[z1, Z, z2] =
K
∑

k=1
f2[Zi(k)K , z1] · ( f2[i

(k)
K , z2])

H
,

Fb3[z1, Z, z2] =
K
∑

k=1
f3[Zi(k)K , z1] · ( f3[i

(k)
K , z2])

H
,

Fb4[z1, Z, z2] =
K
∑

k=1
( f1[Zi(k)K , z1] · ( f2[i

(k)
K , z2])

H
+ Πεc( f1[i

(k)
K , z2])

∗
( f2[Zi(k)K , z1])

T
Πϕ̃) ,

Fb5[z1, Z, z2] =
K
∑

k=1
( f1[Zi(k)K , z1] · ( f3[i

(k)
K , z2])

H
+ Πεc( f1[i

(k)
K , z2])

∗
( f3[Zi(k)K , z1])

T
) ,

Fb6[z1, Z, z2] =
K
∑

k=1
( f2[Zi(k)K , z1] · ( f3[i

(k)
K , z2])

H
+ Πϕ̃( f2[i

(k)
K , z2])

∗
( f3[Zi(k)K , z1])

T
) ,

(∀z1 ∈ CN×1 , z2 ∈ CN×1 , Z ∈ CK×K) , (42)



Fc1[z1, Z, z2] =
N
∑

n=1
f1[z2, I(n)N ] · ( f1[z1, Zi(n)N ])

H
,

Fc2[z1, Z, z2] =
N
∑

n=1
f2[z2, I(n)N ] · ( f2[z1, Zi(n)N ])

H
,

Fc3[z1, Z, z2] =
N
∑

n=1
f3[z2, I(n)N ] · ( f3[z1, Zi(n)N ])

H
,

Fc4[z1, Z, z2] =
N
∑

n=1
( f1[z2, I(n)N ] · ( f2[z1, Zi(n)N ])

H
+ Πεc( f1[z1, Zi(n)N ])

∗
( f2[z2, I(n)N ])

T
Πϕ̃c

) ,

Fc5[z1, Z, z2] =
N
∑

n=1
( f1[z2, I(n)N ] · ( f3[z1, Zi(n)N ])

H
+ Πεc( f1[z1, Zi(n)N ])

∗
( f3[z2, I(n)N ])

T
) ,

Fc6[z1, Z, z2] =
N
∑

n=1
( f2[z2, I(n)N ] · ( f3[z1, Zi(n)N ])

H
+ Πϕ̃c

( f2[z1, Zi(n)N ])
∗
( f3[z2, I(n)N ])

T
) ,

(∀z1 ∈ CK×1 , z2 ∈ CK×1 , Z ∈ CN×N) , (43)



G1[z1, z2] =

[
OMNK×L

diag[z2 ⊗ 1MK×1] · [
.

A
∗
1(p)z∗1

.
A
∗
2(p)z∗1 · · ·

.
A
∗
L(p)z∗1 ]

]
,

G2[z1, z2] =

 OMN×L
blkdiag[< z2 >1 ·(rT

1 ⊗ IM) < z2 >2 ·(rT
2 ⊗ IM) · · · < z2 >N ·(rT

N ⊗ IM)]

×[
.

A
∗
1(p)z∗1

.
A
∗
2(p)z∗1 · · ·

.
A
∗
L(p)z∗1 ]

 ,

G3[z1, z2] =
1
2 ·


zH

1

..
A

H
11(p)X0z2 zH

1

..
A

H
12(p)X0z2 · · · zH

1

..
A

H
1L(p)X0z2

zH
1

..
A

H
21(p)X0z2 zH

1

..
A

H
22(p)X0z2 · · · zH

1

..
A

H
2L(p)X0z2

...
...

. . .
...

zH
1

..
A

H
L1(p)X0z2 zH

1

..
A

H
L2(p)X0z2 · · · zH

1

..
A

H
LL(p)X0z2

 ,

(∀z1 ∈ CK×1 , z2 ∈ CK×1) . (44)

The proof of (39) to (44) is provided in Appendix D. Substituting (36) and (39) back into (34) yields

Ĵ(p̂) = λmax{B̂H(p̂)B̂(p̂)} ≈ λN + hH
1 (p)εc + hH

2 (p)ϕ̃c + hT
3 (p)p̃

+εH
c H1(p)εc + ϕ̃H

c H2(p)ϕ̃c + p̃TH3(p)p̃ + εH
c H4(p)ϕ̃c + εH

c H5(p)p̃ + ϕ̃H
c H6(p)p̃ .

(45)

Evidently, Equation (45) can be considered as the second-order perturbation expression with
respect to the error vectors εc, ϕ̃c, and p̃. From (45), we get the linear relationship between the
localization error p̃ and sensor noise εc as well as array model error ϕ̃c. The MSE of the DPD estimator
can then be derived according to the statistical assumptions on the two sources of error.

6.3. MSE of Direct Position Determination Method

In light of the maximum principle, the true position p and estimated position p̂ satisfy the relations
∂ Ĵ(p)

∂p

∣∣∣
ε = OMNK×1

ϕ̃ = OMN×1

= OL×1 ,

∂ Ĵ(p̂)
∂p̂ = OL×1 .

(46)

Obviously, the first equality in (46) leads to

∂ Ĵ(p)
∂p

∣∣∣∣
ε = OMNK×1

ϕ̃ = OMN×1

= h3(p) = 2 · Re{ f3[B0uN , uN ]} = OL×1 . (47)



Sensors 2017, 17, 1550 11 of 41

Additionally, using (45) and the second equality in (46), the localization error p̃ = p̂ − p is
obtained by

p̃ = arg max
z∈RL×1

{
hH

1 (p)εc + hH
2 (p)ϕ̃c + hT

3 (p)z + εH
c H1(p)εc + ϕ̃H

c H2(p)ϕ̃c
+zTH3(p)z + εH

c H4(p)ϕ̃c + εH
c H5(p)z + ϕ̃H

c H6(p)z

}
= arg max

z∈RL×1
{hT

3 (p)z + zTH3(p)z + εH
c H5(p)z + ϕ̃H

c H6(p)z} ,
(48)

which further implies

p̃ = − 1
2 H−1

3 (p)HT
5 (p)ε∗c − 1

2 H−1
3 (p)HT

6 (p)ϕ̃∗c − 1
2 H−1

3 (p)h3(p)

= − 1
2 H−1

3 (p)HT
5 (p)ε∗c − 1

2 H−1
3 (p)HT

6 (p)ϕ̃∗c = O

(∥∥∥∥∥
[

ε

ϕ̃

]∥∥∥∥∥
2

)
.

(49)

The second equality in (49) follows from (47). In (49), the linear relationship between the
localization error p̃ and the sensor noise εc as well as the array model error ϕ̃c is formulated. It is easily
observed from (49) that the positioning error vector p̃ consists of two terms. The first term is associated
with the sensor noise, which can be described as

p̃1 = −1
2

H−1
3 (p)HT

5 (p)ε∗c = O(||ε||2) . (50)

The second term is due to the array model errors, which can be written as

p̃2 = −1
2

H−1
3 (p)HT

6 (p)ϕ̃∗c = O(||ϕ̃||2) . (51)

According to the statistical assumptions in Sections 3 and 5, it is concluded that the localization
error p̃ is asymptotically Gaussian distributed with a zero mean and a covariance matrix given by

p = E[p̃p̃T] = 1
4 H−1

3 (p)HT
5 (p) · E[ε∗c εH

c ] · H5(p)H−T
3 (p) + 1

4 H−1
3 (p)HT

6 (p) · E[ϕ̃∗cϕ̃H
c ] · H6(p)H−T

3 (p) , (52)

where the second equality follows from (49) and the fact that εc and ϕ̃c are statistically independent.
Furthermore, (4), (14), and (23) together imply that

E[ε∗c εH
c ] =

[
OMNK×MNK σ2

εIMNK
σ2
εIMNK OMNK×MNK

]
,

E[ϕ̃∗cϕ̃H
c ] =

[
blkdiag[Φ(1)∗

1 Φ
(1)∗
2 · · · Φ

(1)∗
N ] blkdiag[Φ(2)∗

1 Φ
(2)∗
2 · · · Φ

(2)∗
N ]

blkdiag[Φ(2)
1 Φ

(2)
2 · · · Φ

(2)
N ] blkdiag[Φ(1)

1 Φ
(1)
2 · · · Φ

(1)
N ]

]
.

(53)

Inserting (53) back into (52) leads to

P = 1
4 H−1

3 (p)HT
5 (p) ·

[
OMNK×MNK σ2

ε IMNK
σ2

ε IMNK OMNK×MNK

]
· H5(p)H−T

3 (p)

+ 1
4 H−1

3 (p)HT
6 (p) ·

[
blkdiag[Φ(1)∗

1 Φ
(1)∗
2 · · · Φ

(1)∗
N ] blkdiag[Φ(2)∗

1 Φ
(2)∗
2 · · · Φ

(2)∗
N ]

blkdiag[Φ(2)
1 Φ

(2)
2 · · · Φ

(2)
N ] blkdiag[Φ(1)

1 Φ
(1)
2 · · · Φ

(1)
N ]

]
· H6(p)H−T

3 (p) .
(54)

From (54) we see that the covariance matrix p is composed of two parts. The first part, due to the
sensor noises, is expressed as

P1 =
1
4

H−1
3 (p)HT

5 (p) ·
[

OMNK×MNK σ2
ε IMNK

σ2
ε IMNK OMNK×MNK

]
· H5(p)H−T

3 (p) . (55)



Sensors 2017, 17, 1550 12 of 41

The second part, due to the array model errors, is given by

P2 = 1
4 H−1

3 (p)HT
6 (p) ·

[
blkdiag[Φ(1)∗

1 Φ
(1)∗
2 · · · Φ

(1)∗
N ] blkdiag[Φ(2)∗

1 Φ
(2)∗
2 · · · Φ

(2)∗
N ]

blkdiag[Φ(2)
1 Φ

(2)
2 · · · Φ

(2)
N ] blkdiag[Φ(1)

1 Φ
(1)
2 · · · Φ

(1)
N ]

]
· H6(p)H−T

3 (p) . (56)

Remark 1. It is evident that the trace of P can be viewed as the MSE of localization errors under the combined
effects of sensor noise and array model errors.

Remark 2. When Φ
(1)
n → O and Φ

(2)
n → O , the trace of P can be viewed as the MSE of the localization

errors when no array model errors are present. Moreover, the value of the trace of P approaches the CRB for the
case of none of array model errors, which will be shown in Section 8.1. This is because the DPD method studied
here is derived from the maximum likelihood (ML) criterion, which provides an asymptotically efficient solution.

Remark 3. When σ2
ε → 0 , the trace of P can be used to quantify the sensitivity of positioning accuracy to array

model errors, and represents the additional estimation errors resulting from uncertainties in the array manifold.

Remark 4. It is easily seen from (55) and (56) that both P1 and P2 rely on matrix H3(p), which is the p-corner
of the Hessian matrix of the cost function. If this matrix has a large condition number, the positioning accuracy
might be high and, conversely, if this matrix is nearly singular, the location error may be extremely large.

Remark 5. From (54), it is observed that covariance matrix P is related to H3(p), H5(p), and H6(p).
According to (38) and (40)–(44), the ijth element of matrix H3(p) is given by

< H3(p) >ij= uH
N

 XH
0

.
Ai(p)B0UN XH

0
.

Aj(p)B0 + BH
0

.
A

H
i (p)X0UN BH

0

.
A

H
j (p)X0

+BH
0

.
A

H
j (p)X0UN XH

0
.

Ai(p)B0 + XH
0

.
Ai(p)(IK + B0UN BH

0 )
.

A
H
j (p)X0

uN + Re{uH
N BH

0

..
A

H
ij (p)X0uN} . (57)

In addition, the expressions for matrices H5(p) and H6(p) can be obtained from (38) and
(40)–(44). However, the two formulas are complicated and we therefore have to omit them because of
space limitations.

7. Success Probability of Direct Position Determination Method in Presence of Array Model Errors

The aim of this section is to deduce the success probability (SP) of the DPD method when array
model errors exist. Two quantitative criterions are introduced to justify whether the localization is
successful. Additionally, two analytical expressions for the SP of positioning are derived.

7.1. The First Success Probability of Direct Position Determination

Definition 1. If condition “| < p̃ >1 | ≤ ∆1 , | < p̃ >2 | ≤ ∆2 , · · · , | < p̃ >L | ≤ ∆L” is satisfied, then
the localization is successful.

It must be emphasized that the set of parameters {∆l}1≤l≤L in Definition 1 shall be appropriately
chosen according to the practical scenario. The difference in these parameters reflects the importance
of localization accuracy in distinct orientation. If the importance for each direction is identical, then
these parameters can be set to the same value.

According to Definition 1, the joint probability density function of positioning error vector p̃
is required for the calculation of the first localization SP. Applying the results in Section 6.3, the
probability density function of random vector p̃ is given by

f p̃(z) = (2π)−L/2 · |det[P]|−1/2 · exp{−zTP−1z/2} . (58)
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Consequently, the first localization SP can be determined by

Pr{| < p̃ >1 | ≤ ∆1 , | < p̃ >2 | ≤ ∆2 , · · · , | < p̃ >L | ≤ ∆L}
=
∫ ∆L
−∆L
· · ·
∫ ∆2
−∆2

∫ ∆1
−∆1

(2π)−L/2 · |det[P]|−1/2 · exp{−zT p−1z/2}dz1dz2 · · ·dzL .
(59)

It is apparent from (59) that the first SP can be approximately obtained via numerical integration
over a cube in high dimensional Euclidean space.

However, the high-dimensional numerical integration is not attractive from a computational
viewpoint. If possible, it is preferable to get an explicit formula. Obviously, this is a non-trivial
task and we only consider two-dimensional (2-D) localization scenarios (i.e., L = 2) for simplicity of
mathematical analysis. First, an explicit formula with which to evaluate the joint probability of the
Gaussian distribution is formally concluded in a proposition as below.

Proposition 2. Consider two joint Gaussian random variables z1 and z2. The mean and variance of z1 are m1

and v11, respectively. The mean and variance of z2 are m2 and v22, respectively. In addition, the covariance of
the two random variables is v12. It follows that

Pr
{

z1 ≤ α1 , z2 ≤ α2} = Γ0[α10/
√

v11] · Γ0[(α2 − E[z2])/
√

var[z2]] , (60)

where 
E[z2] = m2 −

v12·exp{−α2
10/(2v11)}√

2πv11·Γ0[α10/
√

v11]

var[z2] = v22 −
v2

12√
2πv11·Γ0[α10/

√
v11]
·
(

α10·exp{−α2
10/(2v11)}√

v11
+

exp{−α2
10/v11}√

2π·Γ0[α10/
√

v11]

) (61)

with α10 = α1 −m1 and Γ0[x] =
∫ x
−∞

1√
2π
· exp{−t2/2} · dt.

Appendix E shows the proof of Proposition 2, which is along the lines of incomplete conditional
moments theory presented in [46]. Note that Proposition 2 plays a significant role in the subsequent
derivation process.

When L = 2, it can be verified by algebraic manipulation that

Pr{| < p̃ >1 | ≤ ∆1 , | < p̃ >2 | ≤ ∆2}
= Pr{−∆1 ≤< p̃ >1≤ ∆1} − Pr{< p̃ >2≥ ∆2} − Pr{< p̃ >2≤ −∆2}+ Pr{− < p̃ >1≤ −∆1 , − < p̃ >2≤ −∆2}
+Pr{< p̃ >1≤ −∆1 , − < p̃ >2≤ −∆2}+ Pr{− < p̃ >1≤ −∆1 , < p̃ >2≤ −∆2}+ Pr{< p̃ >1≤ −∆1 , < p̃ >2≤ −∆2} .

(62)

The proof of (62) is shown in Appendix F. Applying the result in Proposition 2 and the definition
of Γ0[x], we have

Pr{| < p̃ >1 | ≤ ∆1 , | < p̃ >2 | ≤ ∆2}
= Γ0[∆1/

√
< P >11]− Γ0[−∆1/

√
< P >11]− 2 · Γ0[−∆2/

√
< P >22]

+2 · Γ0[−∆1/
√
< P >11] · (Γ0[(−∆2 + κ1)/

√
κ2] + Γ0[(−∆2 − κ1)/

√
κ2]) ,

(63)

where
κ1 =

<P>12· exp{−∆2
1/(2·<P>11)}√

2π·<P>11·Γ0[−∆1/
√
<P>11]

,

κ2 =< P >22 − (<P>12)
2

√
2π·<P>11·Γ0[−∆1/

√
<P>11]

·
(
−∆1·exp{−∆2

1/(2·<P>11)}√
<P>11

+
exp{−∆2

1/<P>11}√
2π·Γ0[−∆1/

√
<P>11]

)
.

(64)

Remark 6. The value of Γ0[x] for arbitrary x is available from a table given in a textbook on probability theory.
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Remark 7. It must be pointed out that the above analytical results cannot be directly applied to the
three-dimensional (3-D) case; i.e., L = 3. This can even be regarded as an open problem. Nevertheless,
we can use numerical methods to compute this kind of SP in 3-D space. Indeed, there exist a number
of efficient numerical integration methods with which to calculate the probability in (59), such as the
Richardson extrapolation algorithm, Simpson algorithm, and Monte Carlo algorithm.

7.2. The Second Success Probability of Direct Position Determination

Definition 2. If condition “

√
1
L

L
∑

l=1
< p̃ >2

l ≤ ∆” is satisfied, then the localization is successful.

It is readily seen from Definition 2 that the second SP of positioning is equal to Pr{||p̃|| 22 ≤
L∆2}. To proceed, let us express p̃ as p̃ d

= p1/2 p̃0, where p̃0 is a zero-mean Gaussian random vector

with covariance matrix IL, and d
= indicates that both sides have the same probability distribution.

Consequently, ||p̃|| 22 can be formulated as the quadratic form of p̃0:

||p̃|| 22
d
= p̃T

0 Pp̃0 . (65)

In light of the relationship between the cumulative distribution function and characteristic
function [64], we have

Pr{||p̃|| 22 ≤ L∆2} = 1
2
− 1

π
·
∫ +∞

0

1
t
· Im{exp{−jL∆2t} · φ||p̃|| 22(t)}dt , (66)

where φ||p̃|| 22
(t) denotes the characteristic function of ||p̃|| 22. Suppose that matrix P has eigenvalues

γ1 , γ2 , · · · , γL. Applying the property of the characteristic function, it can be proved that

φ||p̃|| 22
(t) =

L

∏
l=1

(1 + 4γ2
l t2)

−1/4 · exp{j(arctan(2γl t)/2)} . (67)

The substitution of (67) into (66) produces

Pr{||p̃|| 22 ≤ L∆2} = 1
2
− 1

π
·
∫ +∞

0

1
t
· sin(δ1(t))

δ2(t)
dt , (68)

where 
δ1(t) =

L
∑

l=1
arctan(2γlt)/2− L∆2t ,

δ2(t) =
L
∏
l=1

(1 + 4γ2
l t2)

1/4 .
(69)

Remark 8. It is clear from (68) that a one-dimension numerical integration over [0 , +∞) is required to evaluate
the second SP. To this end, the values of the integrand shall be analyzed as t→ 0 and t→ +∞ .

Remark 9. Applying L’Hospital’s rule leads to

lim
t→0

1
t
· sin{δ1(t)}

δ2(t)
= lim

t→0

cos{δ1(t)} ·
.
δ1(t)

δ2(t) + t
.
δ2(t)

=
.
δ1(0) =

L

∑
l=1

γl − L∆2 . (70)
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Remark 10. The numerator of the integrand is bounded and the denominator tends to infinity when t→ +∞
and, therefore, the integrand will be arbitrarily close to zero when t→ +∞ . The integral upper limit in (68)
can then be replaced by a sufficiently large positive number for the sake of simplicity.

Remark 11. It can be rigorously proved that the first SP is always smaller than the second SP, provided
that ∆1 = · · · = ∆L = ∆. The reason is that the first probability is computed by the numerical integral over a
cube, while the second probability is equal to the integral over a circumscribed sphere of the cube.

As a byproduct of (68), we can present a new method of determining the radius of circular error
probable (CEP), which is first defined in [65]. We denote rCEP by the radius of CEP, and it follows from
its definition and (68) that

1
2
= Pr{||p̃|| 22 ≤ r2

CEP} =
1
2
− 1

π
·
∫ +∞

0

1
t
·

sin
(

L
∑

l=1
arctan(2γlt)/2− r2

CEPt
)

L
∏
l=1

(1 + 4γ2
l t2)

1/4
dt , (71)

which implies that

∫ +∞

0

1
t
·

sin
(

L
∑

l=1
arctan(2γlt)/2− r2

CEPt
)

L
∏
l=1

(1 + 4γ2
l t2)

1/4
dt = 0 . (72)

As a consequence, a reasonable criterion for calculating rCEP is given by

min
x


∫ +∞

0

1
t
·

sin
(

L
∑

l=1
arctan(2γlt)/2− x2t

)
L
∏
l=1

(1 + 4γ2
l t2)

1/4
dt


2

, (73)

which can be solved via a one-dimensional grid search. In addition, it is noteworthy that although
the solution for estimating rCEP is presented in [65], it is only applicable to 2-D localization scenarios.
In contrast, the method proposed here is suitable for not only 2-D localization but also the 3-D scenario.

8. Cramér-Rao Bound on Covariance Matrix of Localization Errors

The CRB is a commonly used lower bound on the estimation error covariance of any unbiased
estimator. In other words, the difference between the covariance and the CRB is a positive semi-definite
matrix. Moreover, the CRB is expected to be a good predictor for the performance of the maximum
likelihood estimator (MLE) at a moderate noise level. In this section, we derive the CRB for the estimate
of the transmitter’s position in two cases: (1) array model errors are absent and (2) array model errors
are present. To this end, we first introduce the following proposition whose proof can be found in [66].

Proposition 3. Assuming that the CRB matrix for the real vector z is equal to CRB(z), and defining a
novel real vector as z′ = Jz, where J is an invertible matrix, the CRB matrix for vector z′ is given by
CRB(z′) = J ·CRB(z) · JT.

8.1. Cramér-Rao Bound on Position Estimate in Absence of Array Model Errors

This subsection is devoted to deriving the CRB for localization in the absence of array model
errors. We begin by introducing a parameter vector that gathers all unknowns

ηa = [σ2
ε pT (Re{β})T (Im{β})T (Re{s})T (Im{s})T]

T
= [σ2

ε µT
a ]

T
, (74)



Sensors 2017, 17, 1550 16 of 41

where
µa = [pT βT

r (Re{s})T (Im{s})T]
T

(75)

with βr = [(Re{β})T (Im{β})T]
T

. To proceed, the data vector is defined as

x = [xH
1 xH

2 · · · xH
N ]

H
= [xH

1,1 xH
1,2 · · · xH

1,K xH
2,1 xH

2,2 · · · xH
2,K · · · · · · xH

N,1 xH
N,2 · · · xH

N,K]
H , (76)

whose mean vector is given by

x0 = E[x] = [xH
1,1,0 xH

1,2,0 · · · xH
1,K,0 xH

2,1,0 xH
2,2,0 · · · xH

2,K,0 · · · xH
N,1,0 xH

N,2,0 · · · xH
N,K,0]

H
. (77)

Then, applying the results in [66,67], the CRB matrix for vector µa can be obtained by

CRB(µa) =
σ2

ε

2
· (Re{ΩH

µa Ωµa})
−1

, (78)

where
Ωµa =

∂x0

∂µT
a
= [Ωp ΩRe{β} ΩIm{β} ΩRe{s} ΩIm{s}] . (79)

Using (16) and (77) and performing algebraic manipulations, the sub-matrices in (79) are
described as

Ωp = ∂x0
∂pT = diag[β⊗ 1MK×1] · diag[1N×1 ⊗ s⊗ 1M×1] · ∂a′(p)

∂pT ,

ΩRe{β} =
∂x0

∂(Re{β})T = diag[1N×1 ⊗ s⊗ 1M×1] · blkdiag[a′1(p) a′2(p) · · · a′N(p)] ,

ΩIm{β} =
∂x0

∂(Im{β})T = j · ∂x0
∂(Re{β})T = j · diag[1N×1 ⊗ s⊗ 1M×1] · blkdiag[a′1(p) a′2(p) · · · a′N(p)] ,

ΩRe{s} =
∂x0

∂(Re{s})T = diag[β⊗ 1MK×1] · a(p) ,

ΩIm{s} =
∂x0

∂(Im{s})T = j · ∂x0
∂(Re{s})T = j · diag[β⊗ 1MK×1] · a(p) ,

(80)

where 
a′(p) = [a′H1 (p) a′H2 (p) · · · a′HN (p)]H ,

∂a′(p)
∂pT =

[(
∂a′1(p)

∂pT

)H ( ∂a′2(p)
∂pT

)H
· · ·

(
∂a′N(p)

∂pT

)H
]H

,

a′n(p) =
[

a′Hn,1(p) a′Hn,2(p) · · · a′Hn,K(p)
]H

= an(p)1K×1 (1 ≤ n ≤ N) .

(81)

Note that only the p corner of the CRB matrix is of interest here. However, it is easily observed
from (78) that matrix CRB(µa) does not exhibit a block-diagonal structure, because there might be
correlation between the parameters. Hence, it is somewhat difficult to obtain the CRB for position
vector p. To overcome this difficulty, we adopt the idea of [59,67] to redefine a parameter vector whose
CRB matrix becomes block-diagonal. The new parameter vector is defined as

µa = [pT βT
r (Re{s}+ Re{W1} · p + Re{W2} · βr)

T (Im{s}+ Im{W1} · p + Im{W2} · βr)
T]

T
, (82)

where {
W1 = Ω†

Re{s}Ωp ,

W2 = Ω†
Re{s} · [ΩRe{β} ΩIm{β}] .

(83)

It is worth highlighting that because the vector µa includes the source location parameters, it is
meaningful to derive the CRB matrix for µa. In addition, there is a one-to-one mapping between the
new and old vectors µ and µa. The relationship between them can be written in matrix form as
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µa = Jµa =


I O O O
O I O O

Re{W1} Re{W2} I O
Im{W1} Im{W2} O I

 · µa , (84)

where

J =


I O O O
O I O O

Re{W1} Re{W2} I O
Im{W1} Im{W2} O I

 . (85)

Then, combining the results in Proposition 3 and (84), the CRB matrix for µa is given by

CRB(µa) = J ·CRB(µa) · JT =
σ2

ε

2
· (Re{(Ωµa J−1)

H
(Ωµa J−1)})

−1
, (86)

where

J−1 =


I O O O
O I O O

−Re{W1} −Re{W2} I O
−Im{W1} −Im{W2} O I

 . (87)

Combining (79), (83), and (87) leads to the orthogonal projection matrix

Ωµa J−1 =
[

T⊥
[
ΩRe{s}

]
·Ωp T⊥

[
ΩRe{s}

]
· [ΩRe{β} ΩIm{β}] ΩRe{s} j ·ΩRe{s}

]
, (88)

where
T⊥
[
ΩRe{s}

]
= I −ΩRe{s}Ω

†
Re{s} = I −ΩRe{s}(Ω

H
Re{s}ΩRe{s})

−1
ΩH

Re{s} (89)

Inserting (88) back into (86) gives

CRB(µa) =
σ2

ε

2
·
[

V1 O
O V2

]−1

, (90)

where
V1 =

 Re{ΩH
p · T⊥

[
ΩRe{s}

]
·Ωp} Re{ΩH

p · T⊥
[
ΩRe{s}

]
· [ΩRe{β} ΩIm{β}]}

Re{[ΩRe{β} ΩIm{β}]
H · T⊥

[
ΩRe{s}

]
·Ωp} Re{[ΩRe{β} ΩIm{β}]

H · T⊥
[
ΩRe{s}

]
· [ΩRe{β} ΩIm{β}]}

 ,

V2 =

[
Re{ΩH

Re{s}ΩRe{s}} −Im{ΩH
Re{s}ΩRe{s}}

Im{ΩH
Re{s}ΩRe{s}} Re{ΩH

Re{s}ΩRe{s}}

]
.

(91)

We define three matrices
V1,1 = ΩH

p Ωp −ΩH
p ΩRe{s}(Ω

H
Re{s}ΩRe{s})

−1
ΩH

Re{s}Ωp ,

V1,2 = [1 j]⊗ (ΩH
p ΩRe{β} −ΩH

p ΩRe{s}(Ω
H
Re{s}ΩRe{s})

−1
ΩH

Re{s}ΩRe{β}) ,

V1,3 =

[
1 j
−j 1

]
⊗ (ΩH

Re{β}ΩRe{β} −ΩH
Re{β}ΩRe{s}(Ω

H
Re{s}ΩRe{s})

−1
ΩH

Re{s}ΩRe{β}) .

(92)

The details of calculating the matrices in (92) are provided in Appendix G. Invoking the partitioned
matrix inversion formula, the CRB matrix for position vector p is given by

CRB(p) = σ2
ε
2 · ((Re{V1,1})−1 + (Re{V1,1})−1 · Re{V1,2} · (Re{V1,3} − Re{VH

1,2} · (Re{V1,1})−1 · Re{V1,2})
−1
· Re{VH

1,2} · (Re{V1,1})−1) . (93)
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Remark 12. The diagonal elements of CRB(p) give the bounds for the estimation variance of the components
in p when the array manifold is perfectly calibrated.

Remark 13. The trace of CRB(p) is the bound for the localization MSE in the absence of array model errors.

Remark 14. Although there is no rigorous proof, it is expected that the trace of P1 is asymptotically close to
that of CRB(p). The reason for this is that the least square estimator in (5) is equivalent to the MLE, which is
statistically efficient under the Gaussian noise model.

Remark 15. By comparing the trace of CRB(p) with that of P, we can assess the expected degradation of the
emitter location accuracy with respect to the amount of array model error. If the difference is significant, it can be
concluded that the DPD method in [29] is sensitive to array model errors.

8.2. Cramér-Rao Bound on Position Estimate in Presence of Array Model Errors

This goal of this subsection is to derive the CRB for the position estimate in the presence of
array uncertainties. Because in the present case the full parameter set contains both the deterministic
parameters p, β, s, and σ2

ε and the stochastic parameter ϕ̃, the CRB derivation should follow the
Bayesian theory frame [68–70]. It is noteworthy that the CRB derivation can also be used for stochastic
parameters, as processed in [68–70]. To this end, a novel parameter vector that comprises all the
deterministic and stochastic unknowns is introduced

ηb = [σ2
ε pT (Re{β})T (Im{β})T (Re{s})T (Im{s})T (Re{ϕ̃})T (Im{ϕ̃})T]

T
= [σ2

ε µT
b ]

T
, (94)

where
µb = [pT (Re{β})T (Im{β})T (Re{s})T (Im{s})T (Re{ϕ̃})T (Im{ϕ̃})T]

T
. (95)

By performing similar algebraic manipulation in [68,69], the CRB matrix for vector µb is
formulated as

CRB(µb) =

(
2
σ2

ε
· Re{ΩH

µb
Ωµb}+

[
O O
O Φ−1

])−1

, (96)

where
Ωµb =

∂x0

∂µT
b
= [Ωp ΩRe{β} ΩIm{β} ΩRe{s} ΩIm{s} ΩRe{ϕ̃} ΩIm{ϕ̃}] , (97)

Φ = E

[ Re{ϕ̃}
Im{ϕ̃}

]
·
[

Re{ϕ̃}
Im{ϕ̃}

]T


= 1
2 ·
[

blkdiag[Re{Φ(1)
1 + Φ

(2)
1 }Re{Φ(1)

2 + Φ
(2)
2 } · · · Re{Φ(1)

N + Φ
(2)
N }] blkdiag[Im{Φ(1)

1 −Φ
(2)
1 } Im{Φ(1)

2 −Φ
(2)
2 } · · · Im{Φ(1)

N −Φ
(2)
N }]

blkdiag[Im{Φ(1)
1 + Φ

(2)
1 } Im{Φ(1)

2 + Φ
(2)
2 } · · · Im{Φ(1)

N + Φ
(2)
N }] blkdiag[Re{Φ(2)

1 −Φ
(1)
1 }Re{Φ(2)

2 −Φ
(1)
2 } · · · Re{Φ(2)

N −Φ
(1)
N }]

]
.

(98)

Note that (98) comes from the statistical assumption in (14). Appendix H provides the proof
of (96).

Owing to the second term in the bracket of (96), it is impossible to get a CRB matrix with block
diagonality as in (90) by linear transformation. As a result, the CRB matrix for position estimation can
only be obtained from (96), although it may be computationally complex. Meanwhile, because the
expressions for matrices Ωp, ΩRe{β}, ΩIm{β}, ΩRe{s}, and ΩIm{s} are given in (80), here we only need
to deduce the expressions for matrices ΩRe{ϕ̃} and ΩIm{ϕ̃}. Applying (16) and (77) and performing
algebraic manipulations gives ΩRe{ϕ̃} =

∂x0
∂(Re{ϕ̃})T = diag[β⊗ 1MK×1] · blkdiag[s′1 ⊗ IM s′2 ⊗ IM · · · s′N ⊗ IM] ,

ΩIm{ϕ̃} =
∂x0

∂(Im{ϕ̃})T = j · ∂x0
∂(Re{ϕ̃})T = j · diag[β⊗ 1MK×1] · blkdiag[s′1 ⊗ IM s′2 ⊗ IM · · · s′N ⊗ IM] .

(99)
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Substituting (97) and (98) into (96) leads to

CRB(µb) =



2
σ2

ε
· Re



ΩH
p Ωp ΩH

p ΩRe{β} ΩH
p ΩIm{β} ΩH

p ΩRe{s} ΩH
p ΩIm{s} ΩH

p ΩRe{ϕ̃} ΩH
p ΩIm{ϕ̃}

ΩH
Re{β}Ωp ΩH

Re{β}ΩRe{β} ΩH
Re{β}ΩIm{β} ΩH

Re{β}ΩRe{s} ΩH
Re{β}ΩIm{s} ΩH

Re{β}ΩRe{ϕ̃} ΩH
Re{β}ΩIm{ϕ̃}

ΩH
Im{β}Ωp ΩH

Im{β}ΩRe{β} ΩH
Im{β}ΩIm{β} ΩH

Im{β}ΩRe{s} ΩH
Im{β}ΩIm{s} ΩH

Im{β}ΩRe{ϕ̃} ΩH
Im{β}ΩIm{ϕ̃}

ΩH
Re{s}Ωp ΩH

Re{s}ΩRe{β} ΩH
Re{s}ΩIm{β} ΩH

Re{s}ΩRe{s} ΩH
Re{s}ΩIm{s} ΩH

Re{s}ΩRe{ϕ̃} ΩH
Re{s}ΩIm{ϕ̃}

ΩH
Im{s}Ωp ΩH

Im{s}ΩRe{β} ΩH
Im{s}ΩIm{β} ΩH

Im{s}ΩRe{s} ΩH
Im{s}ΩIm{s} ΩH

Im{s}ΩRe{ϕ̃} ΩH
Im{s}ΩIm{ϕ̃}

ΩH
Re{ϕ̃}Ωp ΩH

Re{ϕ̃}ΩRe{β} ΩH
Re{ϕ̃}ΩIm{β} ΩH

Re{ϕ̃}ΩRe{s} ΩH
Re{ϕ̃}ΩIm{s} ΩH

Re{ϕ̃}ΩRe{ϕ̃} ΩH
Re{ϕ̃}ΩIm{ϕ̃}

ΩH
Im{ϕ̃}Ωp ΩH

Im{ϕ̃}ΩRe{β} ΩH
Im{ϕ̃}ΩIm{β} ΩH

Im{ϕ̃}ΩRe{s} ΩH
Im{ϕ̃}ΩIm{s} ΩH

Im{ϕ̃}ΩRe{ϕ̃} ΩH
Im{ϕ̃}ΩIm{ϕ̃}


+

[
O O
O Φ−1

]



−1

=

(
2

σ2
ε
· Re

{
Z1 Z2

ZH
2 Z3

}
+

[
O O
O Φ−1

])−1

,

(100)

where

Z1 = ΩH
p Ωp ,

Z2 = [ [1 j]⊗ (ΩH
p ΩRe{β}) [1 j]⊗ (ΩH

p ΩRe{s}) [1 j]⊗ (ΩH
p ΩRe{ϕ̃}) ] ,

Z3 =



[
1 j
−j 1

]
⊗ (ΩH

Re{β}ΩRe{β})

[
1 j
−j 1

]
⊗ (ΩH

Re{β}ΩRe{s})

[
1 j
−j 1

]
⊗ (ΩH

Re{β}ΩRe{ϕ̃})[
1 j
−j 1

]
⊗ (ΩH

Re{s}ΩRe{β})

[
1 j
−j 1

]
⊗ (ΩH

Re{s}ΩRe{s})

[
1 j
−j 1

]
⊗ (ΩH

Re{s}ΩRe{ϕ̃})[
1 j
−j 1

]
⊗ (ΩH

Re{ϕ̃}ΩRe{β})

[
1 j
−j 1

]
⊗ (ΩH

Re{ϕ̃}ΩRe{s})

[
1 j
−j 1

]
⊗ (ΩH

Re{ϕ̃}ΩRe{ϕ̃})


.

(101)

The details of calculating the matrices in (101) appear in Appendix I. Through the application of
the partitioned matrix inversion formula, the CRB matrix for position vector p is given by

CRBe(p) = σ2
ε

2 ·

 (Re{Z1})−1 + (Re{Z1})−1 · Re{Z2} ·
(

Re{Z3} − Re{ZH
2 } · (Re{Z1})−1 · Re{Z2}+

[
O O
O σ2

εΦ−1/2

])−1

×Re{ZH
2 } · (Re{Z1})−1

 . (102)

Note that the subscript “e” in (102) is used to distinguish the matrix CRB(p) for the case where
the knowledge of the array manifold is accurate.

Remark 16. The trace of CRBe(p) is the bound for the localization MSE when array model errors exist.

Remark 17. It is apparent that the trace of CRBe(p) is larger than that of CRB(p) as the array model errors
increase the uncertainties in parameter estimation.

Remark 18. It can be readily proved that CRB(p) = CRBe(p) when Φ
(1)
n → O and Φ

(2)
n → O . Therefore,

the CRB results derived in the presence of array model errors contain those for the case of no array model errors.

Remark 19. Although there is no strict proof, it is not hard to conclude that the trace of P is greater than that
of CRBe(p). The reason is that the DPD estimator discussed here does not take the array model errors into
account and, thus, it is not statistically efficient for this case. Hence, a comparison of the trace of CRBe(p) with
that of P allows us to decide whether a new DPD method that accounts for the array model errors is necessary to
improve the emitter location accuracy.

9. Simulation Results

This section presents a set of Monte Carlo simulations to support the theoretical development
in the previous sections. The empirical performances of the DPD method with and without array
model errors are given, and they are compared both to the theoretical prediction values given in
Sections 6 and 7 and to the CRBs presented in Section 8. The simulated values are averaged over
5000 independent trials. Moreover, the root-mean-square-error (RMSE), SP of localization, and radius
of CEP are used to assess and compare the performance.
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9.1. Discussion on RMSE of Direct Localization

This subsection focuses on the RMSE of the DPD method. Two sets of experiments are reported to
illustrate the usefulness of the obtained results.

9.1.1. The First Set of Experiments

In the first set of experiments, the location estimation is performed on a 2-D plane and a simple
array error model is used, which corresponds to case 1 in Section 4 in [44]. Specifically, ϕ̃n follows a
circularly symmetric complex Gaussian distribution with second-order moments given by

E[ϕ̃nϕ̃T
n ] = Φ

(1)
n = OM×M , E[ϕ̃nϕ̃H

n ] = Φ
(2)
n = σ2

ϕ̃ IM (1 ≤ n ≤ N) , (103)

where σϕ̃ is the standard deviation of the array model error.
The location geometry of the first set of experiments is shown in Figure 1, where both base stations

and transmitter lie on a plane. We consider four base stations with coordinates [0, 1000] m, [0,0] m,
[0,1000] m, and [0, 3000] m, while the emitter position is fixed at [2000, 2000] m. The transmitted
waveforms are realizations of a normal Gaussian random process, and are unknown to the receivers.
Each base station is equipped with a uniform linear array. The channel attenuation magnitude is fixed
at 1, and the channel phase is selected at random from a uniform distribution over [−π, π). In addition,
unless stated otherwise, we use the settings (1) K = 64 samples; (2) SNR of 5 dB; (3) M = 5 sensors;
(4) σϕ̃ = 0.1; and (5) sensor elements are separated by a half wavelength. Figures 2–6 display the
RMSEs of the DPD method, as functions of the SNR of the emitter signal, the standard deviation
of array model error σϕ̃, the number of array elements M, the ratio of the intersensor spacing to
wavelength, and the number of snapshots K.
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Figures 2–6 reveal that the theoretical RMSE provided by (54) is in close agreement with the 
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study in Section 6 is confirmed. Furthermore, when array model errors are absent, the empirical 
RMSE is very close to the CRB given by (92) and the theoretical RMSE in (55), which implies the 
asymptotical efficiency of the DPD method presented in [29], provided that the array is accurately 
calibrated. It is also seen that, as expected, the presence of array model errors leads to considerable 
deteriorations in location accuracy. Furthermore, Figures 2 and 6 show that the RMSE of the DPD 
method remains approximately constant no matter how much the SNR and sample number 
increase. The reason for this is that when the SNR or the sample number is large enough, the effects 
of sensor noise can be neglected and the localization errors are therefore primarily caused by array 
model errors, whose affects cannot be effectively eliminated in this DPD method yet. Additionally, 
we find that the RMSE performance in the presence of array uncertainties is significantly greater 
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Figures 2–6 reveal that the theoretical RMSE provided by (54) is in close agreement with the
simulation result in the presence of array model errors. Consequently, the validity of the theoretical
study in Section 6 is confirmed. Furthermore, when array model errors are absent, the empirical RMSE
is very close to the CRB given by (92) and the theoretical RMSE in (55), which implies the asymptotical
efficiency of the DPD method presented in [29], provided that the array is accurately calibrated. It is
also seen that, as expected, the presence of array model errors leads to considerable deteriorations
in location accuracy. Furthermore, Figures 2 and 6 show that the RMSE of the DPD method remains
approximately constant no matter how much the SNR and sample number increase. The reason for
this is that when the SNR or the sample number is large enough, the effects of sensor noise can be
neglected and the localization errors are therefore primarily caused by array model errors, whose
affects cannot be effectively eliminated in this DPD method yet. Additionally, we find that the RMSE
performance in the presence of array uncertainties is significantly greater than the CRB provided by
(102), especially when the standard deviation σϕ̃ increases (see Figure 3). Consequently, a new DPD
method that accounts for array model errors is needed to improve the location accuracy.
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9.1.2. The Second Set of Experiments

In the second set of experiments, the source location is estimated in 3-D space and we assume
that the array error is caused by sensor gain and phase uncertainties, which corresponds to case 2 in
Section 4 in [44]. The second-order moments of ϕ̃n can then be expressed as E[ϕ̃nϕ̃T

n ] = Φ
(1)
n = (σ2

ϕ̃1
− σ2

ϕ̃2
)� diag[an(p)an(p)] ,

E[ϕ̃nϕ̃H
n ] = Φ

(2)
n = (σ2

ϕ̃1
+ σ2

ϕ̃2
)� diag[an(p)a∗n(p)] ,

(1 ≤ n ≤ N) , (104)

where σϕ̃1
and σϕ̃2 are the sensor gain and phase perturbation standard deviation, respectively.

Moreover, we assume σϕ̃1
= 2σϕ̃2 hereafter, and thus if σϕ̃1

is changed, σϕ̃2 alters accordingly.
Figure 7 illustrates the geometry for the source location in the second set of experiments.

Obviously, it depicts a 3-D localization scenario. The source is positioned at [1000, 500, 1500] m,
and the coordinates of three base stations are set to [0, 2000, 0] m, [0, 0, 0] m, and [0, −2000, 0] m. Each
base station is equipped with a uniform circular array. The envelope of the transmitted signal and
array model errors are generated in exactly the same manner as previously. Additionally, unless stated
otherwise, we adopt the settings (1) K = 64 samples; (2) SNR of 5 dB; (3) M = 5 sensors; (4) σϕ̃1

= 0.1;
and (5) an array radius equal to the wavelength. Figures 8–12 show the RMSEs of the DPD method by
varying the SNR of the emitter signal, standard deviation of sensor gain perturbation σϕ̃1

, the number
of array elements M, the ratio of array radius to wavelength, and the number of snapshots K.
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The results presented in Figures 8–12 coincide with the results presented Figures 2–6 although
the dimensionality of the localization scenario and the model of the array error differ from each other.
Owing to limited space, we do not present the results again. We simply highlight that the good
agreement between the empirical and theoretical RMSE once again demonstrates the effectiveness of
the theoretical development in Section 6.

9.2. Discussion on Success Probability of Direct Localization

This subsection focuses on the SP of the DPD method. Two sets of experiments are carried out to
validate the obtained probability formulas, and the simulation parameters are the same as those in
Section 9.1.

9.2.1. The First Set of Experiments

Both the localization scenario and the array error model for the first set of experiments are the
same as those in Section 9.1.1. Moreover, the parameters ∆1 and ∆2, which are used to specify the
first SP, are set to the same value of 40, and the parameter ∆, which is related to the second SP, is also
selected as 40. Because the localization scenario is on a 2-D plane, the theoretical value of the first SP
can be obtained with (63). In Figures 13–15, we plot the two kinds of SP of the DPD method against the
SNR of the emitter signal, standard deviation of the array model error σϕ̃, and number of snapshots K.
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of localization versus SNR of the emitter signal. (b) The second SP of localization versus SNR of the
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Figure 15. SP of localization versus number of snapshots. (a) The first SP of localization versus number
of snapshots. (b) The second SP of localization versus number of snapshots.

Figures 13–15 reveal that there is a close match between the analytical results and the simulation
results and hence the validity of (63) and (68) can be supported. Furthermore, the simulated values in
the absence of array model errors approach the lower bound calculated with the CRB in (93), which
further indicates that the DPD estimator can achieve the CRB accuracy as long as the array is perfectly
calibrated. However, when array model errors exist, the empirical values deviate significantly from
the lower bound. Moreover, the difference increases with the standard deviation of array model error
(see Figure 14). We thus need to develop a new DPD estimator with improved robustness against array
model errors. Furthermore, it is seen that the first SP is always smaller than the second SP, which is
consistent with the analysis in Remark 11.

9.2.2. The Second Set of Experiments

Both the localization scenario and the array error model for the second set of experiments are
the same as those in Section 9.1.2. Because the situation is a 3-D localization scenario, the theoretical
value of the first SP must be calculated with numerical integration methods. Herein, the Richardson
extrapolation algorithm is exploited. Figures 16–18 depict the two kinds of SP of the DPD method as
functions of the SNR of the emitter signal, standard deviation of sensor gain perturbation σϕ̃1

, and
number of snapshots K.
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SP of localization as a function of standard deviation of sensor gain perturbation. (b) The second SP of
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For Figures 16–18 we make similar observations as for Figures 13–15. We simply emphasize that
the good agreement between empirical and analytical SP once again validates the probability formulas
obtained in Section 7.

9.3. Discussion on Radius of CEP

This subsection discusses the radius of CEP of the DPD method. Two simulation experiments are
conducted to illustrate the validity of (73), which is used to estimate the radius of CEP. The first and
second simulation settings are the same as those in Figures 2 and 8, respectively. In the following two
figures, the radius of CEP of the DPD method in the two experiments is plotted as a function of the
SNR of the emitter signal.

Figures 19 and 20 show that the simulation results agree well with the analytical results calculated
with (73) and therefore the validity of (73) is corroborated. Moreover, we observe that the increase in
the radius of CEP due to the array model errors is significant, especially when the SNR of the emitter
signal is sufficiently high. Furthermore, when array model errors exist, the radius of CEP remains
approximately constant no matter how much the SNR increases. Therefore, a robust DPD method that
restrains the uncertainties in an array manifold is required.

Sensors 2017, 17, 1550 33 of 45 

 

Figure 18. SP of localization as a function of number of snapshots. (a) The first SP of localization as a 
function of number of snapshots. (b) The second SP of localization as a function of number of 
snapshots. 

For Figures 16–18 we make similar observations as for Figures 13–15. We simply emphasize 
that the good agreement between empirical and analytical SP once again validates the probability 
formulas obtained in Section 7. 

9.3. Discussion on Radius of CEP 

This subsection discusses the radius of CEP of the DPD method. Two simulation experiments 
are conducted to illustrate the validity of (73), which is used to estimate the radius of CEP. The first 
and second simulation settings are the same as those in Figures 2 and 8, respectively. In the 
following two figures, the radius of CEP of the DPD method in the two experiments is plotted as a 
function of the SNR of the emitter signal. 

 
Figure 19. Radius of CEP versus SNR of the emitter signal in the first experiment. 

 
Figure 20. Radius of circular error probable (CEP) versus SNR of the emitter signal in the second 
experiment. 

Figures 19 and 20 show that the simulation results agree well with the analytical results 
calculated with (73) and therefore the validity of (73) is corroborated. Moreover, we observe that the 

Figure 19. Radius of CEP versus SNR of the emitter signal in the first experiment.

Sensors 2017, 17, 1550 33 of 45 

 

Figure 18. SP of localization as a function of number of snapshots. (a) The first SP of localization as a 
function of number of snapshots. (b) The second SP of localization as a function of number of 
snapshots. 

For Figures 16–18 we make similar observations as for Figures 13–15. We simply emphasize 
that the good agreement between empirical and analytical SP once again validates the probability 
formulas obtained in Section 7. 

9.3. Discussion on Radius of CEP 

This subsection discusses the radius of CEP of the DPD method. Two simulation experiments 
are conducted to illustrate the validity of (73), which is used to estimate the radius of CEP. The first 
and second simulation settings are the same as those in Figures 2 and 8, respectively. In the 
following two figures, the radius of CEP of the DPD method in the two experiments is plotted as a 
function of the SNR of the emitter signal. 

 
Figure 19. Radius of CEP versus SNR of the emitter signal in the first experiment. 

 
Figure 20. Radius of circular error probable (CEP) versus SNR of the emitter signal in the second 
experiment. 

Figures 19 and 20 show that the simulation results agree well with the analytical results 
calculated with (73) and therefore the validity of (73) is corroborated. Moreover, we observe that the 

Figure 20. Radius of circular error probable (CEP) versus SNR of the emitter signal in the
second experiment.



Sensors 2017, 17, 1550 31 of 41

10. Conclusions

In this paper, the statistical performance of the DPD estimator presented in [29] is analytically
studied when array model errors are present as well as signal waveforms are not available.
The theoretical analysis begins with a matrix eigen-perturbation result, which can express the
perturbation of eigenvalues as a function of the disturbance added to the Hermitian matrix. Then,
the first-order asymptotic expression of the localization errors is given, from which the analytical
expression for the MSE of the DPD estimator is obtained. Besides, the closed-form expressions for the
calculation of the probabilities of a successful localization are also deduced, which can offer another
theoretical perspective on the study of the localization accuracy. Additionally, the obtained probability
formula can be used to provide a new criterion to estimate the radius of CEP. Finally, the CRB
expressions for the position estimation are derived for two cases: (a) array model errors do not exist,
and (b) array model errors are present and are drawn from Gaussian distribution. Several simulation
experiments are performed to confirm the usefulness of the obtained results. The experimental results
show that the uncertainties in the model of the array manifold can seriously deteriorate the source
location accuracy of the DPD method. Therefore, our future work is to present a new DPD method
that is expected to be more robust against the array model errors.
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Appendix A. —Detailed Derivation of Matrices in (30)

It follows from the first equality in (9) and the first equality in (12) that

.
Al(p) =

∂A(p)
∂ < p >l

=


∂A1(p)
∂<p>l
∂A2(p)
∂<p>l

...
∂AN(p)
∂<p>l

 =



blkdiag
[

∂a′1,1(p)
∂<p>l

∂a′1,2(p)
∂<p>l

· · · ∂a′1,K(p)
∂<p>l

]
blkdiag

[
∂a′2,1(p)
∂<p>l

∂a′2,2(p)
∂<p>l

· · · ∂a′2,K(p)
∂<p>l

]
...

blkdiag
[

∂a′N,1(p)
∂<p>l

∂a′N,2(p)
∂<p>l

· · · ∂a′N,K(p)
∂<p>l

]


, (A1)

..
Al1l2(p) = ∂2a(p)

∂<p>l1
∂<p>l2

=



∂2a1(p)
∂<p>l1

∂<p>l2
∂2a2(p)

∂<p>l1
∂<p>l2
...

∂2aN(p)
∂<p>l1

∂<p>l2


=



blkdiag
[

∂2a′1,1(p)
∂<p>l1

∂<p>l2

∂2a′1,2(p)
∂<p>l1

∂<p>l2
· · · ∂2a′1,K(p)

∂<p>l1
∂<p>l2

]
blkdiag

[
∂2a′2,1(p)

∂<p>l1
∂<p>l2

∂2a′2,2(p)
∂<p>l1

∂<p>l2
· · · ∂2a′2,K(p)

∂<p>l1
∂<p>l2

]
...

blkdiag
[

∂2a′N,1(p)
∂<p>l1

∂<p>l2

∂2a′N,2(p)
∂<p>l1

∂<p>l2
· · · ∂2a′N,K(p)

∂<p>l1
∂<p>l2

]


, (A2)

where
∂a′n,k(p)
∂ < p >l

= exp{−jωkτn(p)} ·
(

∂an(p)
∂ < p >l

− jωkan(p) · ∂τn(p)
∂ < p >l

)
, (A3)

∂2a′n,k(p)
∂<p>l1

∂<p>l2
= exp{−jωkτn(p)} ·

(
∂2an(p)

∂<p>l1
∂<p>l2

− jωk

(
∂an(p)

∂<p>l2
· ∂τn(p)

∂<p>l1
+ an(p) · ∂2τn(p)

∂<p>l1
∂<p>l2

))
−jωk · exp{−jωkτn(p)} · ∂τn(p)

∂<p>l2
·
(

∂an(p)
∂<p>l1

− jωkan(p) · ∂τn(p)
∂<p>l1

)
.

(A4)
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Appendix B. —Proof of (34) and (35)

Applying Proposition 1 and (31) leads to

Ĵ(p̂) = λmax{B̂H(p̂)B̂(p̂)} = λmax{C0}+ uH
N(C0 + C(1) + C(2) + o(||ξ̃||22))uN

+uH
N(C0 + C(1) + C(2) + o(||ξ̃||22))UN(C0 + C(1) + C(2) + o(||ξ̃||22))uN + o(||C(1) + C(2) + o(||ξ̃||22)||

2
2)

= λmax{C0}+ uH
N(C

(1) + C(2))uN + uH
NC(1)UNC(1)uN + o(||ξ̃||22)

= λN + λ̃
(1)
N + λ̃

(2)
N + o(||ξ̃||22) ,

(A5)

where λ̃
(1)
N and λ̃

(2)
N consist of all first- and second-order error terms, respectively. It then follows that{

λ̃
(1)
N = uH

NC(1)uN = O(||ξ̃||2) ,

λ̃
(2)
N = uH

NC(2)uN + uH
NC(1)UNC(1)uN = O(||ξ̃||22) .

(A6)

Inserting the second equality in (32) into the first equality in (A6) leads to

λ̃
(1)
N = uH

N(BH
0 B̃(1) + B̃(1)HB0)uN = uH

N BH
0 B̃(1)uN + (uH

N BH
0 B̃(1)uN)

H
= O(||ξ̃||2) . (A7)

Substituting the second and third equalities in (32) into the second equality in (A6) leads to

λ̃
(2)
N = uH

N(B̃(1)HB̃(1) + BH
0 B̃(2) + B̃(2)HB0)uN + uH

N(BH
0 B̃(1) + B̃(1)HB0)UN(BH

0 B̃(1) + B̃(1)HB0)uN

= uH
N BH

0 B̃(1)UN BH
0 B̃(1)uN + (uH

N BH
0 B̃(1)UN BH

0 B̃(1)uN)
H
+ uH

N B̃(1)H(IK + B0UN BH
0 )B̃(1)uN

+ uH
N BH

0 B̃(1)UN B̃(1)HB0uN + uH
N BH

0 B̃(2)uN + (uH
N BH

0 B̃(2)uN)
H
= O(||ξ̃||22) .

(A8)

Combining (A7) and (A8) completes the proof.

Appendix C. —Proof of (36) to (38)

From the second equality in (29), it follows for any vectors z1 ∈ CK×1 and z2 ∈ CN×1 that

zH
1 B̃(1)z2 = zH

1 aH(p)Ez2 + zH
1 aH(p)Ψ̃z2 +

L

∑
l=1

< p̃ >l ·zH
1

.
A

H
l (p)x0z2 . (A9)

According to the last equality in (17), it can be readily checked that

zH
1 aH(p)Ez2 = zH

1 aH(p) · diag[z2 ⊗ 1MK×1] · ε = ( f1[z1, z2])
Hεc , (A10)

where f1[z1, z2] is given in the first equality in (38). With (21), we have

zH
1 aH(p)Ψ̃z2 = zH

1 aH(p) · blkdiag[< z2 >1 ·(r1 ⊗ IM) < z2 >2 ·(r2 ⊗ IM) · · · < z2 >N ·(rN ⊗ IM)] · ϕ̃
= ( f2[z1, z2])

Hϕ̃c ,
(A11)

where f2[z1, z2] is given in the second equality in (38). In addition, it can be easily verified that

L
∑

l=1
< p̃ >l ·zH

1

.
A

H
l (p)x0z2 = [zH

1

.
A

H
1 (p)x0z2 zH

1

.
A

H
2 (p)x0z2 · · · zH

1

.
A

H
L (p)x0z2] · p̃ = ( f3[z1, z2])

H p̃ , (A12)

where f3[z1, z2] is given in the third equality in (38). Combining (A9) to (A12) yields

zH
1 B̃(1)z2 = ( f1[z1, z2])

Hεc + ( f2[z1, z2])
Hϕ̃c + ( f3[z1, z2])

H p̃ . (A13)

It follows easily from (A13) that

uH
N BH

0 B̃(1)uN = ( f1[B0uN , uN ])
Hεc + ( f2[B0uN , uN ])

Hϕ̃c + ( f3[B0uN , uN ])
H p̃ , (A14)
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which, combined with (23) and (25), gives

(uH
N BH

0 B̃(1)uN)
H

= ( f1[B0uN , uN ])
Tε∗c + ( f2[B0uN , uN ])

Tϕ̃∗c + ( f3[B0uN , uN ])
T p̃

= ( f1[B0uN , uN ])
TΠεεc + ( f2[B0uN , uN ])

TΠϕ̃ϕ̃c + ( f3[B0uN , uN ])
T p̃

= (Πε( f1[B0uN , uN ])
∗)

H
εc + (Πϕ̃( f2[B0uN , uN ])

∗)
H

ϕ̃c + ( f3[B0uN , uN ])
T p̃ .

(A15)

Combining (A14), (A15), and the first equality in (35) completes the proof.

Appendix D. —Proof of (39) to (44)

For any vectors z1 ∈ CK×1 and z2 ∈ CN×1 and matrix Z ∈ CN×K, it is straightforward to
obtain that

zH
1 B̃(1)ZB̃(1)z2 =

K

∑
k=1

(zH
1 B̃(1)Zi(k)K )(i(k)HK B̃(1)z2) . (A16)

Inserting (A13) into (A16) produces

zH
1 B̃(1)ZB̃(1)z2

=
K
∑

k=1
(( f1[z1, Zi(k)K ])

H
εc + ( f2[z1, Zi(k)K ])

H
ϕ̃c + ( f3[z1, Zi(k)K ])

H
p̃)(( f1[i

(k)
K , z2])

H
εc + ( f2[i

(k)
K , z2])

H
ϕ̃c + ( f3[i

(k)
K , z2])

H
p̃)

= εH
c

(
K
∑

k=1
Πε( f1[z1, Zi(k)K ])

∗
( f1[i

(k)
K , z2])

H
)

εc + ϕ̃H
c

(
K
∑

k=1
Πϕ̃( f2[z1, Zi(k)K ])

∗
( f2[i

(k)
K , z2])

H
)

ϕ̃c + p̃T
(

K
∑

k=1
( f3[z1, Zi(k)K ])

∗
( f3[i

(k)
K , z2])

H
)

p̃

+εH
c

(
K
∑

k=1
Πε(( f1[z1, Zi(k)K ])

∗
( f2[i

(k)
K , z2])

H
+ ( f1[i

(k)
K , z2])

∗
( f2[z1, Zi(k)K ])

H
)

)
ϕ̃c

+εH
c

(
K
∑

k=1
Πε(( f1[z1, Zi(k)K ])

∗
( f3[i

(k)
K , z2])

H
+ ( f1[i

(k)
K , z2])

∗
( f3[z1, Zi(k)K ])

H
)

)
p̃

+ϕ̃H
c

(
K
∑

k=1
Πϕ̃(( f2[z1, Zi(k)K ])

∗
( f3[i

(k)
K , z2])

H
+ ( f2[i

(k)
K , z2])

∗
( f3[z1, Zi(k)K ])

H
)

)
p̃

= εH
c · Fa1[z1, Z, z2] · εc + ϕ̃H

c · Fa2[z1, Z, z2] · ϕ̃c + p̃T · Fa3[z1, Z, z2] · p̃ + εH
c · Fa4[z1, Z, z2] · ϕ̃c

+εH
c · Fa5[z1, Z, z2] · p̃ + ϕ̃H

c · Fa6[z1, Z, z2] · p̃ ,

(A17)

where {Fak[· , ·, ·]}1≤k≤6 are given in (41).
For any vectors z1 ∈ CN×1 and z2 ∈ CN×1 and matrix Z ∈ CK×K, it can be readily checked that

zH
1 B̃(1)HZB̃(1)z2 =

K

∑
k=1

(zH
1 B̃(1)HZi(k)K )(i(k)HK B̃(1)z2) =

K

∑
k=1

((Zi(k)K )
H

B̃(1)z1)
H
(i(k)HK B̃(1)z2) . (A18)

Putting (A13) into (A18) gives

zH
1 B̃(1)HZB̃(1)z2

=
K
∑

k=1
(( f1[Zi(k)K , z1])

H
εc + ( f2[Zi(k)K , z1])

H
ϕ̃c + ( f3[Zi(k)K , z1])

H
p̃)

H
(( f1[i

(k)
K , z2])

H
εc + ( f2[i

(k)
K , z2])

H
ϕ̃c + ( f3[i

(k)
K , z2])

H
p̃)

= εH
c

(
K
∑

k=1
f1[Zi(k)K , z1] · ( f1[i

(k)
K , z2])

H
)

εc + ϕ̃H
c

(
K
∑

k=1
f2[Zi(k)K , z1] · ( f2[i

(k)
K , z2])

H
)

ϕ̃c + p̃T
(

K
∑

k=1
f3[Zi(k)K , z1] · ( f3[i

(k)
K , z2])

H
)

p̃

+εH
c

(
K
∑

k=1
( f1[Zi(k)K , z1] · ( f2[i

(k)
K , z2])

H
+ Πεc( f1[i

(k)
K , z2])

∗
( f2[Zi(k)K , z1])

T
Πϕ̃)

)
ϕ̃c

+εH
c

(
K
∑

k=1
( f1[Zi(k)K , z1] · ( f3[i

(k)
K , z2])

H
+ Πεc( f1[i

(k)
K , z2])

∗
( f3[Zi(k)K , z1])

T
)

)
p̃

+ϕ̃H
c

(
K
∑

k=1
( f2[Zi(k)K , z1] · ( f3[i

(k)
K , z2])

H
+ Πϕ̃( f2[i

(k)
K , z2])

∗
( f3[Zi(k)K , z1])

T
)

)
p̃

= εH
c · Fb1[z1, Z, z2] · εc + ϕ̃H

c · Fb2[z1, Z, z2] · ϕ̃c + p̃T · Fb3[z1, Z, z2] · p̃ + εH
c · Fb4[z1, Z, z2] · ϕ̃c

+εH
c · Fb5[z1, Z, z2] · p̃ + ϕ̃H

c · Fb6[z1, Z, z2] · p̃ ,

(A19)

where {Fbk[· , ·, ·]}1≤k≤6 are given in (42).
For any vectors z1 ∈ CK×1 and z2 ∈ CK×1 and matrix Z ∈ CN×N , it is straightforward to

deduce that

zH
1 B̃(1)ZB̃(1)Hz2 =

N

∑
n=1

(zH
1 B̃(1)Zi(n)N )(i(n)HN B̃(1)Hz2) =

N

∑
n=1

(zH
1 B̃(1)Zi(n)N )(zH

2 B̃(1)i(n)N )
H

. (A20)
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The substitution of (A13) into (A20) leads to

zH
1 B̃(1)ZB̃(1)Hz2

=
N
∑

n=1
(( f1[z1, Zi(n)N ])

H
εc + ( f2[z1, Zi(n)N ])

H
ϕ̃c + ( f3[z1, Zi(n)N ])

H
p̃)(( f1[z2, i(n)N ])

H
εc + ( f2[z2, i(n)N ])

H
ϕ̃c + ( f3[z2, i(n)N ])

H
p̃)

H

= εH
c

(
N
∑

n=1
f1[z2, i(n)N ] · ( f1[z1, Zi(n)N ])

H
)

εc + ϕ̃H
c

(
N
∑

n=1
f2[z2, i(n)N ] · ( f2[z1, Zi(n)N ])

H
)

ϕ̃c + p̃T
(

N
∑

n=1
f3[z2, i(n)N ] · ( f3[z1, Zi(n)N ])

H
)

p̃

+εH
c

(
N
∑

n=1
( f1[z2, i(n)N ] · ( f2[z1, Zi(n)N ])

H
+ Πεc( f1[z1, Zi(n)N ])

∗
( f2[z2, i(n)N ])

T
Πϕ̃c

)

)
ϕ̃c

+εH
c

(
N
∑

n=1
( f1[z2, i(n)N ] · ( f3[z1, Zi(n)N ])

H
+ Πεc( f1[z1, Zi(n)N ])

∗
( f3[z2, i(n)N ])

T
)

)
p̃

+ϕ̃H
c

(
N
∑

n=1
( f2[z2, i(n)N ] · ( f3[z1, Zi(n)N ])

H
+ Πϕ̃c

( f2[z1, Zi(n)N ])
∗
( f3[z2, i(n)N ])

T
)

)
p̃

= εH
c · Fc1[z1, Z, z2] · εc + ϕ̃H

c · Fc2[z1, Z, z2] · ϕ̃c + p̃T · Fc3[z1, Z, z2] · p̃ + εH
c · Fc4[z1, Z, z2] · ϕ̃c

+εH
c · Fc5[z1, Z, z2] · p̃ + ϕ̃H

c · Fc6[z1, Z, z2] · p̃ ,

(A21)

where {Fck[· , ·, ·]}1≤k≤6 are given in (43).
For any vectors z1 ∈ CK×1 and z2 ∈ CN×1, it can be easily verified from the third equality in

(29) that

zH
1 B̃(2)z2 =

L
∑

l=1
< p̃ >l ·zH

1

.
A

H
l (p)Ez2 +

L
∑

l=1
< p̃ >l ·zH

1

.
A

H
l (p)Ψ̃z2 +

1
2 ·

L
∑

l1=1

L
∑

l2=1
< p̃ >l1 · < p̃ >l2 ·z

H
1

..
A

H
l1l2(p)x0z2 . (A22)

According to the last equality in (17), we get

L
∑

l=1
< p̃ >l ·zH

1

.
A

H
l (p)Ez2 = εT · diag[z2 ⊗ 1MK×1] · [

.
A
∗
1(p)z∗1

.
A
∗
2(p)z∗1 · · ·

.
A
∗
L(p)z∗1 ] · p̃

= εH
c ·G1[z1, z2] · p̃ ,

(A23)

where G1[z1, z2] is given in the first equality in (44). It follows from (21) that

L
∑

l=1
< p̃ >l ·zH

1

.
A

H
l (p)Ψ̃z2

= ϕ̃T · blkdiag[< z2 >1 ·(rT
1 ⊗ IM) < z2 >2 ·(rT

2 ⊗ IM) · · · < z2 >N ·(rT
N ⊗ IM)] · [

.
A
∗
1(p)z∗1

.
A
∗
2(p)z∗1 · · ·

.
A
∗
L(p)z∗1 ] · p̃

= ϕ̃H
c ·G2[z1, z2] · p̃ ,

(A24)

where G2[z1, z2] is given in the second equality in (44). In addition, it can be easily verified that

1
2 ·

L
∑

l1=1

L
∑

l2=1
< p̃ >l1 · < p̃ >l2 ·z

H
1

..
A

H
l1l2(p)X0z2

= 1
2 · p̃T ·


zH

1

..
A

H
11(p)X0z2 zH

1

..
A

H
12(p)X0z2 · · · zH

1

..
A

H
1L(p)X0z2

zH
1

..
A

H
21(p)X0z2 zH

1

..
A

H
22(p)X0z2 · · · zH

1

..
A

H
2L(p)X0z2

...
...

. . .
...

zH
1

..
A

H
L1(p)X0z2 zH

1

..
A

H
L2(p)X0z2 · · · zH

1

..
A

H
LL(p)X0z2

 · p̃ = p̃T ·G3[z1, z2] · p̃ ,
(A25)

where G3[z1, z2] is given in the third equality in (44). Combining (A22) to (A25) gives

zH
1 B̃(2)z2 = εH

c ·G1[z1, z2] · p̃ + ϕ̃H
c ·G2[z1, z2] · p̃ + p̃T ·G3[z1, z2] · p̃ . (A26)

With (A17) we have

uH
N BH

0 B̃(1)UN BH
0 B̃(1)uN

= εH
c · Fa1[B0uN , UN BH

0 , uN ] · εc + ϕ̃H
c · Fa2[B0uN , UN BH

0 , uN ] · ϕ̃c + p̃T · Fa3[B0uN , UN BH
0 , uN ] · p̃

+εH
c · Fa4[B0uN , UN BH

0 , uN ] · ϕ̃c + εH
c · Fa5[B0uN , UN BH

0 , uN ] · p̃ + ϕ̃H
c · Fa6[B0uN , UN BH

0 , uN ] · p̃ ,
(A27)
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which, together with (23) and (25), gives

(uH
N BH

0 B̃(1)UN BH
0 B̃(1)uN)

H

= εH
c (Fa1[B0uN , UN BH

0 , uN ])
H

εc + ϕ̃H
c (Fa2[B0uN , UN BH

0 , uN ])
H

ϕ̃c + p̃T(Fa3[B0uN , UN BH
0 , uN ])

H p̃
+εT

c (Fa4[B0uN , UN BH
0 , uN ])

∗
ϕ̃∗c + εT

c (Fa5[B0uN , UN BH
0 , uN ])

∗ p̃ + ϕ̃T
c (Fa6[B0uN , UN BH

0 , uN ])
∗ p̃

= εH
c (Fa1[B0uN , UN BH

0 , uN ])
H

εc + ϕ̃H
c (Fa2[B0uN , UN BH

0 , uN ])
H

ϕ̃c + p̃T(Fa3[B0uN , UN BH
0 , uN ])

H p̃
+εH

c Πε(Fa4[B0uN , UN BH
0 , uN ])

∗
Πϕ̃ϕ̃c + εH

c Πε(Fa5[B0uN , UN BH
0 , uN ])

∗ p̃ + ϕ̃H
c Πϕ̃(Fa6[B0uN , UN BH

0 , uN ])
∗ p̃ .

(A28)

Applying (A19), it can be shown that

uH
N B̃(1)H(IK + B0UN BH

0 )B̃(1)uN
= εH

c · Fb1[uN , IK + B0UN BH
0 , uN ] · εc + ϕ̃H

c · Fb2[uN , IK + B0UN BH
0 , uN ] · ϕ̃c

+p̃T · Fb3[uN , IK + B0UN BH
0 , uN ] · p̃ + εH

c · Fb4[uN , IK + B0UN BH
0 , uN ] · ϕ̃c

+εH
c · Fb5[uN , IK + B0UN BH

0 , uN ] · p̃ + ϕ̃H
c · Fb6[uN , IK + B0UN BH

0 , uN ] · p̃ .

(A29)

According to (A21), we have

uH
N BH

0 B̃(1)UN B̃(1)HB0uN
= εH

c · Fc1[B0uN , UN , B0uN ] · εc + ϕ̃H
c · Fc2[B0uN , UN , B0uN ] · ϕ̃c + p̃T · Fc3[B0uN , UN , B0uN ] · p̃

+εH
c · Fc4[B0uN , UN , B0uN ] · ϕ̃c + εH

c · Fc5[B0uN , UN , B0uN ] · p̃ + ϕ̃H
c · Fc6[B0uN , UN , B0uN ] · p̃ .

(A30)

Additionally, it follows from (A26) that

uH
N BH

0 B̃(2)uN = εH
c ·G1[B0uN , uN ] · p̃ + ϕ̃H

c ·G2[B0uN , uN ] · p̃ + p̃T ·G3[B0uN , uN ] · p̃ , (A31)

which, together with (23) and (25), gives

(uH
N BH

0 B̃(2)uN)
H

= εT
c (G1[B0uN , uN ])

∗ p̃ + ϕ̃T
c (G2[B0uN , uN ])

∗ p̃ + p̃T(G3[B0uN , uN ])
∗ p̃

= εH
c Πε(G1[B0uN , uN ])

∗ p̃ + ϕ̃H
c Πϕ̃(G2[B0uN , uN ])

∗ p̃ + p̃T(G3[B0uN , uN ])
∗ p̃ .

(A32)

Combining (A27) to (A32) and the second equality in (35) completes the proof.

Appendix E. —Proof of Proposition 2

First introduce the event z′2 ∈ {z2|z1 ≤ α1}. The joint probability can then be expressed as

Pr{z1 ≤ α1 , z2 ≤ α2} = Pr{z1 ≤ α1} · Pr{z′2 ≤ α2} . (A33)

It is obvious that

Pr{z1 ≤ α1} =
∫ α1
−∞

1√
2πv11

· exp{−(t−m1)
2/(2v11)} · dt

=
∫ (α1−m1)/

√
v11

−∞
1√
2π
· exp{−t2/2} · dt = Γ0[α10/

√
v11] .

(A34)

Additionally, random variable z2 can be decomposed with classical minimum-MSE theory into

z2 = − 1
v11
· z0 +

v12

v11
· (z1 −m1) + m2 , (A35)

where z0 is drawn from a zero-mean Gaussian distribution, independent of z1, with variance

var[z0] = E[z2
0] = v11(v11v22 − v2

12) . (A36)
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According to (A35), it can be verified that

E[z2|z1 ≤ α1] = − 1
v11
· E[z0|z1 ≤ α1] +

v12
v11
· E[(z1 −m1)|z1 ≤ α1] + m2

= v12
v11
· E[z10|z10 ≤ α10] + m2 ,

(A37)

E[z2
2|z1 ≤ α1] =

1
v2

11
· E[z2

0|z1 ≤ α1] +
v2

12
v2

11
· E[(z1 −m1)

2|z1 ≤ α1]− 2m2
v11
· E[z0|z1 ≤ α1]

− 2v12
v2

11
· E[z0(z1 −m1)|z1 ≤ α1] +

2m2v12
v11
· E[(z1 −m1)|z1 ≤ α1] + m2

2

=
v11v22−v2

12
v11

+
v2

12
v2

11
· E[z2

10|z10 ≤ α10] +
2m2v12

v11
· E[z10|z10 ≤ α10] + m2

2 ,

(A38)

where z10 = z1 −m1 and α10 = α1 −m1. Applying the incomplete moment theory presented in [28],
we get

E[z10|z10 ≤ α10] =

∫ α10
−∞

t√
2πv11

· exp{−t2/(2v11)} · dt

Pr{z10 < α10}
= −
√

v11 · exp{−α2
10/(2v11)}√

2π · Γ0[α10/
√

v11]
, (A39)

E[z2
10|z10 ≤ α10] =

∫ α10
−∞

t2√
2πv11

·exp{−t2/(2v11)}·dt

Pr{z10<α10}
= v11 −

√
v11
2π ·

α10·exp{−α2
10/(2v11)}

Γ0[α10/
√

v11]
. (A40)

Inserting (A39) back into (A37) yields

E[z2] = E[z2|z1 ≤ α1] = m2 −
v12 · exp{−α2

10/(2v11)}√
2πv11 · Γ0[α10/

√
v11]

. (A41)

Furthermore, substituting (A39) and (A40) into (A38) leads to

E[z2
2] = E[z2

2|z1 ≤ α1] =
v11v22−v2

12
v11

+
v2

12
v2

11
· E[z2

10|z10 ≤ α10] +
2m2v12

v11
· E[z10|z10 ≤ α10] + m2

2

= v22 −
v2

12√
2πv11

· α10·exp{−α2
10/(2v11)}

v11·Γ0[α10/
√

v11]
− 2m2v12√

2πv11
· exp{−α2

10/(2v11)}
Γ0[α10/

√
v11]

+ m2
2 ,

(A42)

which together with (A41) gives

var[z2] = E[z2
2]− (E[z2])

2

= v22 −
v2

12√
2πv11·Γ0[α10/

√
v11]
·
(

α10·exp{−α2
10/(2v11)}√

v11
+

exp{−α2
10/v11}√

2π·Γ0[α10/
√

v11]

)
.

(A43)

Applying (A41) and (A43) produces

Pr{z′2 ≤ α2} =
∫ α2
−∞

1√
2π·var[z2]

· exp{−(t− E[z2])
2/(2 · var[z2])} · dt

=
∫ (α2−E[z2])/

√
var[z2]

−∞
1√
2π
· exp{−t2/2} · dt = Γ0[(α2 − E[z2])/

√
var[z2]] .

(A44)

Combining (A33), (A34), and (A44) completes the proof.

Appendix F. —Proof of (62)

Making use of simple properties of probability, it can be readily verified that

Pr{| < p̃ >1 | ≤ ∆1 , | < p̃ >2 | ≤ ∆2} = Pr{−∆1 ≤< p̃ >1≤ ∆1 , −∆2 ≤< p̃ >2≤ ∆2}
= Pr{−∆1 ≤< p̃ >1≤ ∆1} − Pr{−∆1 ≤< p̃ >1≤ ∆1 , < p̃ >2≥ ∆2} − Pr{−∆1 ≤< p̃ >1≤ ∆1 , < p̃ >2≤ −∆2} .

(A45)

Likewise, we have

Pr{−∆1 ≤< p̃ >1≤ ∆1 , < p̃ >2≥ ∆2}
= Pr{< p̃ >2≥ ∆2} − Pr{< p̃ >1≥ ∆1 , < p̃ >2≥ ∆2} − Pr{< p̃ >1≤ −∆1 , < p̃ >2≥ ∆2}
= Pr{< p̃ >2≥ ∆2} − Pr{− < p̃ >1≤ −∆1 , − < p̃ >2≤ −∆2} − Pr{< p̃ >1≤ −∆1 , − < p̃ >2≤ −∆2} ,

(A46)
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Pr{−ε1 ≤< p̃ >1≤ ∆1 , < p̃ >2≤ −∆2}
= Pr{< p̃ >2≤ −∆2} − Pr{< p̃ >1≥ ∆1 , < p̃ >2≤ −∆2} − Pr{< p̃ >1≤ −∆1 , < p̃ >2≤ −∆2}
= Pr{< p̃ >2≤ −∆2} − Pr{− < p̃ >1≤ −∆1 , < p̃ >2≤ −∆2} − Pr{< p̃ >1≤ −∆1 , < p̃ >2≤ −∆2} .

(A47)

Inserting (A46) and (A47) back into (A45) yields (62).

Appendix G. —Detailed Derivation of Matrices in (92)

Performing algebraic manipulation, and using (80), we have

ΩH
p Ωp =

N

∑
n=1

K

∑
k=1
|βn|2 · |sk|2 ·

(
∂a′n,k(p)

∂pT

)H

·
∂a′n,k(p)

∂pT , (A48)

ΩH
Re{s}ΩRe{s} =

N
∑

n=1
|βn|2 · aH

n (p)an(p) =
N
∑

n=1
|βn|2 · diag[||a′n,1(p)||22 ||a′n,2(p)||22 · · · ||a′n,K(p)||22] , (A49)

ΩH
Re{β}ΩRe{β} = diag

[
K
∑

k=1
|sk|2 · ||a′1,k(p)||22

K
∑

k=1
|sk|2 · ||a′2,k(p)||22 · · ·

K
∑

k=1
|sk|2 · ||a′N,k(p)||22

]
, (A50)

ΩH
p ΩRe{s} =

[
N
∑

n=1
|βn|2 ·

(
∂a′n,1(p)

∂pT

)H
a′n,1(p)

N
∑

n=1
|βn|2 ·

(
∂a′n,2(p)

∂pT

)H
a′n,2(p) · · ·

N
∑

n=1
|βn|2 ·

(
∂a′n,K(p)

∂pT

)H
a′n,K(p)

]
· diag[s∗] , (A51)

ΩH
p ΩRe{β} =

[
K
∑

k=1
|sk|2 ·

(
∂a′1,k(p)

∂pT

)H
a′1,k(p)

K
∑

k=1
|sk|2 ·

(
∂a′2,k(p)

∂pT

)H
a′2,k(p) · · ·

K
∑

k=1
|sk|2 ·

(
∂a′N,k(p)

∂pT

)H
a′N,k(p)

]
· diag[β∗] , (A52)

ΩH
Re{β}ΩRe{s} = diag[β] · [ aH

1 (p)a1(p)s aH
2 (p)a2(p)s · · · aH

N(p)aN(p)s ]
H

. (A53)

Firstly, inserting (A48), (A49), and (A51) into the first equality in (92) yields

V1,1 = ΩH
p Ωp −ΩH

p ΩRe{s}(Ω
H
Re{s}ΩRe{s})

−1
ΩH

Re{s}Ωp

=
N
∑

n=1

K
∑

k=1
|βn|2 · |sk|2 ·

(
∂a′n,k(p)

∂pT

)H
· ∂a′n,k(p)

∂pT

−
K
∑

k=1

 |sk |2
N
∑

n=1
|βn |2·||a′n,k(p)||22

( N
∑

n1=1

N
∑

n2=1
|βn1 βn2 |2 ·

(
∂a′n1,k(p)

∂pT

)H
a′n1,k(p)a′Hn2,k(p) ·

∂a′n2,k(p)

∂pT

)
.

(A54)

Secondly, substituting (A49), (A51), (A52), and (A53) into the second equality in (92) gives

V1,2 = [1 j]⊗ (ΩH
p ΩRe{β} −ΩH

p ΩRe{s}(Ω
H
Re{s}ΩRe{s})

−1
ΩH

Re{s}ΩRe{β})

= [1 j]⊗ [V (1)
1,2 V (2)

1,2 · · · V (N)
1,2 ] ,

(A55)

where
V (n)

1,2 =
K
∑

k=1
|sk|2 ·

(
∂a′n,k(p)

∂pT

)H
a′n,k(p)−

K
∑

k=1

β∗n ·|sk |2·||a′n,k(p)||22
N
∑

n1=1
|βn1 |

2·||a′n1,k(p)||22
·

N
∑

n2=1
|βn2 |2 ·

(
∂a′n2,k(p)

∂pT

)H
a′n2,k(p) (1 ≤ n ≤ N) . (A56)

Finally, putting (A49), (A50), and (A53) into the third equality in (92) leads to

V1,3 =

[
1 j
−j 1

]
⊗ (ΩH

Re{β}ΩRe{β} −ΩH
Re{β}ΩRe{s}(Ω

H
Re{s}ΩRe{s})

−1
ΩH

Re{s}ΩRe{β})

=

[
1 j
−j 1

]
⊗



diag
[

K
∑

k=1
|sk|2 · ||a′1,k(p)||22

K
∑

k=1
|sk|2 · ||a′2,k(p)||22 · · ·

K
∑

k=1
|sk|2 · ||a′N,k(p)||22

]
−diag[β] · [ aH

1 (p)a1(p)s aH
2 (p)a2(p)s · · · aH

N(p)aN(p)s ]
H

×diag

[ (
N
∑

n=1
|βn|2 · ||a′n,1(p)||22

)−1 (
N
∑

n=1
|βn|2 · ||a′n,2(p)||22

)−1

· · ·
(

N
∑

n=1
|βn|2 · ||a′n,K(p)||22

)−1
]

×[ aH
1 (p)a1(p)s aH

2 (p)a2(p)s · · · aH
N(p)aN(p)s ] · diag[β∗]


.

(A57)
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Appendix H. —Proof of (96)

We start by introducing a real array model error vector ϕ̃r = [ReT{ϕ̃} ImT{ϕ̃}]T with probability
density function given by

fϕ̃r
(z) = (2π)−MN · |det[Φ]|−1/2 · exp{−zTΦ−1z/2} . (A58)

When the deterministic and stochastic parameters coexist, the Fisher information matrix (FIM) for
vector ηb is given by [68,69],

< FISH(ηb) >ij= E

[
∂2 fml(ηb|x)

∂ < ηb >i ∂ < ηb >j

]
+ E

[
1
2
· ∂2ϕ̃TΦ−1ϕ̃

∂ < ηb >i ∂ < ηb >j

]
, (A59)

where fml(ηb|x) is the ML function of the compound data vector x. Combining (A59) and the results
in [66,67], the FIM for vector µb can be expressed as

< FISH(µb) >ij=
2
σ2

ε
· < Re{ΩH

µb
Ωµb} >ij + < Φ−1 >ij ·δ(i, j) , (A60)

where δ(i, j) is an indicator function such that δ(i, j) = 1 if both i and j correspond to the element in ϕ̃r,
and δ(i, j) = 0 otherwise. It follows from (A60) that

CRB(µb) = (FISH(µb))
−1 =

(
2
σ2

ε
· Re{ΩH

µb
Ωµb}+

[
O O
O Φ−1

])−1

, (A61)

which completes the proof.

Appendix I. —Detailed Derivation of Matrices in (101)

Note that matrices ΩH
p Ωp, ΩH

Re{β}ΩRe{β}, ΩH
Re{s}ΩRe{s}, ΩH

p ΩRe{β}, ΩH
p ΩRe{s}, and

ΩH
Re{β}ΩRe{s} are given in (A48) to (A53). Therefore, to calculate the matrices in (101), we only need

to derive the expressions for matrices ΩH
Re{ϕ̃}ΩRe{ϕ̃}, ΩH

p ΩRe{ϕ̃}, ΩH
Re{β}ΩRe{ϕ̃}, and ΩH

Re{s}ΩRe{ϕ̃}.
It follows from (99) that

ΩH
Re{ϕ̃}ΩRe{ϕ̃} = blkdiag[ |β1|2 · ||s||22 · IM |β2|2 · ||s||22 · IM · · · |βN |2 · ||s||22 · IM ] , (A62)

ΩH
p ΩRe{ϕ̃} =

[
K
∑

k=1
|β1|2 · |sk|2 · exp{−jωkτ1(p)} ·

(
∂a′1,k(p)

∂pT

)H K
∑

k=1
|β2|2 · |sk|2 · exp{−jωkτ2(p)} ·

(
∂a′2,k(p)

∂pT

)H
· · ·

· · ·
K
∑

k=1
|βN |2 · |sk|2 · exp{−jωkτN(p)} ·

(
∂a′N,k(p)

∂pT

)H
]

,
(A63)

ΩH
Re{β}ΩRe{ϕ̃} = blkdiag[ ||s||22 · β1aH

1 (p) ||s||22 · β2aH
2 (p) · · · ||s||22 · βN aH

N(p) ] , (A64)

ΩH
Re{s}ΩRe{ϕ̃} = [ |β1|2 · aH

1 (p)(s′1 ⊗ IM) |β2|2 · aH
2 (p)(s′2 ⊗ IM) · · · |βN |2 · aH

N(p)(s′N ⊗ IM) ]

= [ |β1|2 · saH
1 (p) |β2|2 · saH

2 (p) · · · |βN |2 · saH
N(p) ] .

(A65)
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