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Abstract: As the largest ellipsoid (LE) data fusion algorithm can only be applied to two-sensor
system, in this contribution, parallel fusion structure is proposed to introduce the LE algorithm
into a multisensor system with unknown cross-covariances, and three parallel fusion structures
based on different estimate pairing methods are presented and analyzed. In order to assess the
influence of fusion structure on fusion performance, two fusion performance assessment parameters
are defined as Fusion Distance and Fusion Index. Moreover, the formula for calculating the upper
bounds of actual fused error covariances of the presented multisensor LE fusers is also provided.
Demonstrated with simulation examples, the Fusion Index indicates fuser’s actual fused accuracy and
its sensitivity to the sensor orders, as well as its robustness to the accuracy of newly added sensors.
Compared to the LE fuser with sequential structure, the LE fusers with proposed parallel structures
not only significantly improve their properties in these aspects, but also embrace better performances
in consistency and computation efficiency. The presented multisensor LE fusers generally have
better accuracies than covariance intersection (CI) fusion algorithm and are consistent when the local
estimates are weakly correlated.

Keywords: largest ellipsoid; distributed data fusion; parallel structure; unknown cross-covariances;
multisensor

1. Introduction

Multiple sensors have been widely employed in various systems, such as the integrated navigation
system of driverless cars. Multisensor data fusion aims to achieve an accurate, robust and reliable
representative of the target of interest by combining the information from different used sensors.
The data (estimate) fusion algorithms of multisensor system can be generally classified to centralized
fusion algorithms and distributed fusion algorithms. The centralized fusion algorithms can obtain
the globally optimal estimate by directly combining sensor outputs to an augmented measurement.
However, such fusion architecture leads to a heavy computational burden; furthermore, the fused
estimate will be easily corrupted if any sensor degenerates. The distributed fusion algorithms can
reduce the computational burden and facilitate fault detection or isolation more conveniently through
combining the local estimates from sensors by weighting matrices. In the distributed data fusion of
multisensor system, once the cross-covariances among local estimates are known exactly, globally
optimal or suboptimal estimates can be obtained by using optimal fusion algorithms, such as the
two-sensor Bar-Shalom and Campo (BC) algorithm [1] or its version for multisensor systems [2]
in the sense of maximum likelihood (ML), or the optimal distributed Kalman fuser weighted by
matrices [3] in the sense of linear unbiased minimum variance (LUMV). However, in many applications,
these cross-covariances are difficult to be computed accurately; one critical issue of multisensor data
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fusion in the case is how to merge the local estimates efficiently to achieve a fused estimate that has high
accuracy and simultaneously is consistent. With this aim, various distributed data fusion algorithms for
multisensor systems with unknown cross-covariances are proposed, such as the convex combination
(CC) algorithm [4], ellipsoidal intersection (EI) algorithm [5], largest ellipsoid (LE) algorithm [6],
covariance intersection (CI) algorithm [7] and their variants the internal ellipsoidal approximation
(IEA) algorithm [8], fast covariance intersection (FCI) algorithm [9], etc. The CI algorithm is of special
concern and has been widely applied to many fields, for it yields a common upper bound of actual
fused error covariance regardless of unknown cross-covariances. When all the local estimates are
consistent, the CI algorithm gives a consistent fused estimate with higher accuracy than each local
estimate. However, the CI algorithm is based on the optimization of a multi-dimensional nonlinear
cost function, which results in a large computational burden; in addition, it overestimates the actual
fused error covariance and purses consistency at the expense of accuracy, which leads to a significant
decrease in performance [8,10,11]. Although several improvements [12–17] have been developed
for the CI algorithm since it was proposed, these drawbacks have not yet been essentially resolved.
Compared to the CI algorithm, the CC algorithm and the EI algorithm, the LE algorithm does not need
any optimizations of cost functions, but they may become inconsistent in some cases owing to the
unknown cross-covariances.

The LE algorithm is a two-sensor fusion algorithm that obtains a new estimate from two local
estimates based on a series of matrix transformations. Instead of computing a tightest fused error
covariance ellipsoid which encloses the intersection region of the covariance ellipsoids of local estimates
in the CI algorithm, the LE algorithm computes the largest ellipsoid contained within that intersection
region, which leads to a tighter fused error covariance ellipsoid. Besides not requiring optimization of
a cost function, the LE algorithm has many other advantages. It comparatively has better consistency
performance than the CC algorithm and has better actual fused accuracy than the EI algorithm
and CI algorithm in general. The two shortcomings of the LE algorithm are that the LE algorithm
is limited to two-sensor applications and its consistency can not be unconditionally satisfied for
correlated local estimates. However, although the cross-covariances are hard to be known exactly,
some information about the dependency properties among local estimates might be possible to be
obtained for users, such as the correlation level [11]. When the local estimates are weakly correlated,
the adverse impact of the correlation on fusion consistency performance will be limited. On the other
hand, although the performance of a fuser is basically determined by its fusion algorithm, the fusion
structure also has an important influence on it. A sequential covariance intersection (SCI) Kalman
filter is proposed by applying sequential processing to reduce the complexity and computational
burden of the batch CI algorithm [18]. A two-level fusion structure is presented, which combines the
merits of the measurement fusion algorithm and CI algorithm to reduce calculation burden and get
a more accurate fused estimate [19]. In addition, Kalman-Particle filtering with a cascaded structure is
conducted to reduce the complexity of a high dimensional state space model, which leds to an easier
tuning and more precise debugging, as well as reduced computation time [20]. Therefore, when the
local estimates are not strongly correlated, how to extend the LE algorithm to multisensor cases with
proper fusion structure and simultaneously improve its performances in accuracy and consistency is
worth being addressed.

This paper proposes a largest ellipsoid fusion Kalman filtering with parallel fusion structure
for the data fusion of multisensor system with unknown cross-covariances among local estimates,
which realizes the multisensor fusion as a tree form with each level consisting of one or a series of
parallel LE fusions. With parallel fusion structure, the data processing task of the proposed filtering is
amenable to multiprocessor implementation. Three different estimate pairing methods for constructing
the parallel fusion structure are given, and two fusion performance assessment parameters of Fusion
Distance and Fusion Index for assessing the influence of fusion structure on fusion performance are
defined. The attributes of the presented fusers in Fusion Distance, Fusion Index, and accuracy relation
based on covariance ellipsoid, as well as the formula for calculating the upper bounds of actual fused
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error covariances of the presented fusers regardless of unknown cross-covariances, are provided.
In order to verify the effectiveness of the proposed filtering, simulation examples are carried out to
compare the performances of CI algorithm, optimal distributed Kalman fuser weighted by matrices,
LE fuser with sequential structure and the LE fusers with the proposed parallel structures.

2. Preliminaries

An estimate of stochastic state x ∈ Rn×1 usually can be characterized with a Gaussian distribution
x̂e ∼ N

(
x̂e, Pe

)
, where x̂e ∈ Rn×1 and Pe ∈ Rn×n, respectively, represent the mean and fused error

covariance. The estimate is said to be consistent (or conservative) only when its actual fused error
covariance Pe = E

[
(x̂e − x)(x̂e − x)T

]
satisfies Pe ≤ Pe [12,13], the superscript T denotes the transpose,

and the notation E(∗) denotes the expectation. The fused error covariance represents the fused accuracy,
and the actual fused error covariance indicates the actual fused accuracy. Given real symmetric
positive definite matrices Pa ∈ Rn×n and Pb ∈ Rn×n, Pa ≥ Pb denotes Pa − Pb as positive semi-definite.
Then, tr(Pa) ≥ tr(Pb), P−1

a ≤ P−1
b and CPaCT ≥ CPbCT hold for any row full rank matrix C [21],

the superscript −1 denotes the inverse, and the notation tr(∗) denotes the trace. The estimate x̂e

with Gaussian distribution also can be illustrated by multi-dimensional covariance ellipsoid whose
contour of one sigma is defined by <(x̂e ,Pe)

≡
{

x
∣∣∣(x− x̂e

)TP−1
e
(
x− x̂e

)
= 1

}
. The center of <(x̂e ,Pe)

is x̂e, and the lengths of the semi-axes of <(x̂e ,Pe)
are given by

√
σi, where σi are the singular values

of the matrix Pe. Hence, larger covariance ellipsoid means worse accuracy. For two estimates x̂a ∼
N
(

x̂a, Pa
)

and x̂b ∼ N
(
x̂b, Pb

)
, the necessary and sufficient condition for Pa ≥ Pb is <(x̂a ,Pa)

⊃ <(x̂b ,Pb)
,

which means that the ellipsoid <(x̂a ,Pa)
encloses the ellipsoid <(x̂b ,Pb)

.
Consider the discrete time-invariant linear stochastic system with multiple sensors

x(t + 1) = Φx(t) + Γw(t)
yi(t) = Hix(t) + vi(t), i = 1, 2, . . . , L

, (1)

where t is the discrete time, L is the number of sensors, x(t) ∈ Rn×1 is the state, yi(t) ∈ Rm×1 is the
measurement, w(t) and vi(t) ∈ Rm×1 are the uncorrelated white noises with zero mean and covariance
matrices Q and Ri, respectively; Φ, Γ, Hi are constant matrices with compatible dimensions, and (Φ, Γ)
is a completely controllable pair, (Φ, Hi) is a completely observable pair. The subsystem based on the
ith sensor of multisensor system (1) has local steady-state Kalman filter as [22]

x̂i(t|t) = (In − Ki Hi)Φx̂i(t− 1|t− 1) + Kiyi(t), (2)

with Ki = Σi HT
i
(

HiΣi HT
i + Ri

)−1, where In denotes the n × n unit matrix, Σi satisfies the
Riccati equation

Σi = Φ
[

Σi − Σi HT
i

(
HiΣi HT

i + Ri

)−1
HiΣi

]
ΦT + ΓQΓT. (3)

The local filtering error covariance is given by

Pi = Pii = (In − Ki Hi)Σi, (4)

and the local filtering error cross-covariance between the subsystems of the ith and jth sensor satisfies
the Lyapunov equation

Pij = (In − Ki Hi)ΦPij
[(

In − KjHj
)
Φ
]T

+ (In − Ki Hi)ΓQΓT(In − KjHj
)T, (5)

Then, the overall error covariance of the multisensor system is Σ =
(

Pij
)
∈ RLn×Ln, i, j =

1, 2, . . . , L.
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3. Distributed Fusion Algorithms

For unbiased state estimation, both the state and its error covariance should be estimated.

3.1. Optimal Distributed Kalman Fuser Weighted by Matrices

Once all of the local filtering error covariances and cross-covariances are obtained, the optimal
distributed Kalman fuser weighted by matrices under LUMV for multisensor system (1) is given by [3]

x̂O
(L) =

L

∑
i=1

AO
i x̂i(t|t), (6)

where AO
i is the optimal state estimation weighting matrix corresponding to the ith local estimate and

computed by [
AO

1 , AO
2 , . . . , AO

L

]
=
(

eTΣ−1e
)−1

eTΣ−1, (7)

where e = [In, In, . . . , In]
T is a Ln× n matrix. The error covariance of x̂O

(L) is given as

PO
(L) =

[
AO

1 , AO
2 , . . . , AO

L

]
Σ
[

AO
1 , AO

2 , . . . , AO
L

]T
=
(

eTΣ−1e
)−1

, (8)

with the accuracy relation PO
(L) ≤ Pi, i = 1, 2, . . . , L. As shown from (6)–(8), it is necessary that all

the covariances Pij, i, j = 1, 2, . . . , L should be exactly known in the calculation of x̂O
(L) and PO

(L);

however, such a condition can not be satisfied in many applications. Moreover, Σ−1 is also required to
be computed, which will result in heavy computational burden when the number of sensors is large.

3.2. Largest Ellipsoid Fusion Algorithm

The LE algorithm obtains a new estimate from two local estimates based on a series of matrix
transformations. Given two local estimates x̂1 ∼ N

(
x̂1, P1

)
and x̂2 ∼ N

(
x̂2, P2

)
. Firstly, we diagonalize

P1 as
UTP1U = W = diag(λ1, λ2, . . . , λn), (9)

where the notation diag(∗) denotes forming a diagonal matrix sequentially using the elements in
parentheses, and U is an orthogonal matrix. Then, we execute the following transformations:

W−
1
2 UTP1UW−

1
2 = P′1 = In

W−
1
2 UTP2UW−

1
2 = P′2

, (10)

where W−
1
2 =

[
diag

(√
λ1,
√

λ2, . . . ,
√

λn
)]−1. Applying a second diagonalization, we have

VTP′1V = P∗1 = In

VTP′2V = P∗2 = diag
(
λ∗1 , λ∗2 , . . . , λ∗n

) , (11)

where V is an orthogonal matrix. Then, we define

x̂∗1 = VTW−
1
2 UT x̂1

x̂∗2 = VTW−
1
2 UT x̂2

. (12)

After these transformations, we obtain two new estimates in the new Euclidean space R∗ as x̂∗1
and x̂∗2 with error covariances P∗1 and P∗2 , respectively. From (11), we know that both P∗1 and P∗2 are
diagonal matrices. The fused estimate of LE algorithm in Euclidean space R∗ is given by

x̂∗LE =
[
(P∗1 )

−1 + (P∗2 )
−1
]−1[

(P∗1 )
−1 x̂∗1 + (P∗2 )

−1 x̂∗2
]
, (13)
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with fused error covariance
P∗LE = SP∗1 + (In − S)P∗2 , (14)

where S = diag(s1, s2, . . . , sn) with

si =

{
1, λ∗i ≥ 1
0, else

. (15)

The fused estimate of LE algorithm in the original Euclidean space R is obtained by

x̂E
L = UW

1
2 Vx̂∗LE = ALE

1 x̂1 + ALE
2 x̂2, (16)

with fused error covariance

PLE = UW
1
2 VP∗LEVTW

1
2 UT = BLE

1 P1 + BLE
2 P2, (17)

where the weighting matrices are calculated as follows:

ALE
1 = UW

1
2 V
[(

P∗1
)−1

+ (P∗2 )
−1
]−1(

P∗1
)−1VTW−

1
2 UT

ALE
2 = UW

1
2 V
[(

P∗1
)−1

+ (P∗2 )
−1
]−1

(P∗2 )
−1VTW−

1
2 UT

, (18)

BLE
1 = UW

1
2 VSVTW−

1
2 UT

BLE
2 = UW

1
2 V(In − S)VTW−

1
2 UT

. (19)

From (16)–(19), we know that both the fused state and fused error covariance of LE algorithm are
the linear estimates. The covariance ellipsoid of PLE is the largest one contained within the intersection
region <(x̂1,P1)

∩ <(x̂2,P2)
, and it is obvious that PLE ≤ P1, PLE ≤ P2. For any two unbiased local

estimates of state x with Gaussian distributions, because both the optimal distributed Kalman fuser
estimate x̂O

(2) and the LE algorithm estimate x̂E
L are linear unbiased estimates of x, and x̂O

(2) is the

LUMV estimate, we have PO
(2) ≤ PLE, where PLE

= E
[(

x̂LE − x
)(

x̂LE − x
)T
]

is the actual fused error

covariance of the LE algorithm. Furthermore, it can be easily proven that PLE
< PLE when P1 and P2

are independent.
There are mainly two drawbacks for the LE algorithm. The first one is that the LE algorithm

can only handle two sensors at a time. The second one is that the LE algorithm can’t guarantee its
consistency, which implies that PLE ≤ PLE will be unsatisfied in some cases. In the two-sensor case,
according to [23], for any point x ∈ <(x̂1,P1)

∩ <(x̂2,P2)
, there is a feasible cross-covariance P12 that lets

x ∈ PO
(2). As mentioned above, the covariance ellipsoid of PLE is the largest one contained within

the intersection region <(x̂1,P1)
∩ <(x̂2,P2)

, but it generally doesn’t cover the whole intersection region.
Combining the accuracy relation between the optimal distributed Kalman fuser and LE algorithm,
if the P12 lets PO

(2) � PLE, PLE ≤ PLE will be unsatisfied. A two-dimensional example of a situation
like that is shown in Figure 1. In Figure 1, the x-axis and the y-axis represent the first and second
dimension of the state, respectively; the covariance ellipse of PLE is the largest ellipse contained
within the intersection region <(x̂1,P1)

∩ <(x̂2,P2)
, but PLE � PLE, which implies that the fused result

is inconsistent.
However, the covariance ellipsoid corresponding to the actual fused error covariance accounting

for the dependence of local estimates will become smaller as the dependence becomes weaker [1],
which means that the LE algorithm is likely to be consistent when the local estimates are weakly
correlated. On the other hand, by comparing (16)–(19) to (6) and (8), we find that, unlike the optimal
distributed Kalman fuser, which computes its state and error covariance using the same weighting
matrices, the error covariance estimation of LE algorithm is independent of its state estimation. If the
LE algorithm can be extended to the multisensor system, it is possible to raise its actual fused accuracy
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and subsequently improve its consistency performance by taking full advantage of the information of
each sensor.Sensors 2017, 17, 1526 6 of 20 
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Figure 1. An accuracy relation example of the (largest ellipsoid) LE algorithm.

4. Multisensor Largest Ellipsoid Fusers

4.1. Multisensor Largest Ellipsoid Fuser with Sequential Structure

One way to extend the application of LE algorithm from a two-sensor case to a multisensor case
is applying the sequential processing method as the SCI algorithm proposed in [18]; here, we label
such multisensor LE fuser as a Sequential Largest Ellipsoid (SLE) fuser. By doing so, the multisensor
LE fusion for multisensor system (1) consists of L− 1 sequential LE fusions. The structure of SLE fuser
is shown schematically in Figure 2. In Figure 2, ‘KF’ represents the local steady-state Kalman filter
of each subsystem, ‘LE’ represents a LE algorithm operation, and the green dashed lines or curves
indicate the routes via which the local estimates are fused into the final fused result.
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The SLE fuser has a recursive sequential form as

x̂SLE
i+1 = ALE

1/i x̂
SLE
i + ALE

2/i x̂i+1

PSLE
i+1 = BLE

1/iP
SLE
i + BLE

2/iPi+1
, i = 1, 2, . . . , L− 1. (20)
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with initial values PSLE
1 = P1, xSLE

1 = x̂1; ALE
1/i and ALE

2/i are the weighting matrices for state estimation
corresponding to the LE fusion in the ith fusion level; BLE

1/i and BLE
2/i are the weighting matrices for error

covariance estimation corresponding to the LE fusion in the ith fusion level. In addition, the fused
estimate of SLE fuser is defined as

x̂SLE
(L) = x̂SLE

L

PSLE
(L) = PSLE

L
. (21)

Combining (20) with (21) to expand the recursive sequential form of the SLE fuser yields linear
expressions as follows:

x̂SLE
(L) =

L
∑

i=1
ASLE

i x̂i

PSLE
(L) =

L
∑

i=1
BSLE

i Pi

, (22)

where the weighting matrices are computed by

ASLE
i = ALE

2/i−1

L−1
∏
j=i

ALE
1/j

BSLE
i = BLE

2/i−1

L−1
∏
j=i

BLE
1/j

, (23)

with ALE
2/0 = BLE

2/0 = In. From (23), we know that both ASLE
i and BSLE

i are the multiplication results of
all the LE fusion weighting matrices that the ith local estimate encounters in its fusion route.

4.2. Multisensor Largest Ellipsoid Fusers with Parallel Structures

As we can see from Figure 2, the sensors must be fused sequentially in the SLE fuser, which
makes the SLE fuser inefficient in multiprocessor operations; in addition, the studies in the following
part of this paper will show that the performance of SLE fuser is relatively poor. To handle such
disadvantages, a largest ellipsoid fusion Kalman filtering with parallel structure for the data fusion
of multisensor system, called a Parallel Largest Ellipsoid (PLE) fuser, is also proposed in this work.
It realizes the date fusion of multisensor system (1) with a multilevel fusion and each fusion level
consists of one or a series of parallel LE fusions. The structure of PLE fuser is shown schematically in
Figure 3.

Sensors 2017, 17, 1526 7 of 20 

 

The SLE fuser has a recursive sequential form as 

1 1/ 2 / 1

1 1/ 2 / 1

ˆ ˆ ˆ
, 1, 2, , 1

SLE LE SLE LE
i i i i i
SLE LE SLE LE
i i i i i

x A x A x
i L

P B P B P
 

 

 
 

 
 . (20) 

with initial values 1 1
SLEP P , 1 1ˆ

SLEx x ; 1/
LE
iA  and 2/

LE
iA  are the weighting matrices for state estimation 

corresponding to the LE fusion in the i th fusion level; 1/
LE
iB  and 2/

LE
iB  are the weighting matrices for 

error covariance estimation corresponding to the LE fusion in the i th fusion level. In addition, the 
fused estimate of SLE fuser is defined as 

( )

( )

ˆ ˆSLE SLE
L L

SLE SLE
L L

x x

P P




. (21) 

Combining (20) with (21) to expand the recursive sequential form of the SLE fuser yields linear 
expressions as follows: 

( )
1

( )
1

ˆ ˆ
L

SLE SLE
L i i

i
L

SLE SLE
L i i

i

x A x

P B P












, (22) 

where the weighting matrices are computed by 
1

2/ 1 1/

1

2/ 1 1/

L
SLE LE LE
i i j

j i

L
SLE LE LE
i i j

j i

A A A

B B B


















, (23) 

with 2/0 2/0
LE LE

nA B I  . From (23), we know that both SLE
iA  and SLE

iB  are the multiplication results of 
all the LE fusion weighting matrices that the i th local estimate encounters in its fusion route.  

4.2. Multisensor Largest Ellipsoid Fusers with Parallel Structures 

As we can see from Figure 2, the sensors must be fused sequentially in the SLE fuser, which 
makes the SLE fuser inefficient in multiprocessor operations; in addition, the studies in the 
following part of this paper will show that the performance of SLE fuser is relatively poor. To handle 
such disadvantages, a largest ellipsoid fusion Kalman filtering with parallel structure for the data 
fusion of multisensor system, called a Parallel Largest Ellipsoid (PLE) fuser, is also proposed in this 
work. It realizes the date fusion of multisensor system (1) with a multilevel fusion and each fusion 
level consists of one or a series of parallel LE fusions. The structure of PLE fuser is shown 
schematically in Figure 3. 

 
Figure 3. The structure of the PLE fuser. 

Level 1 

Level N 

  

  





( ) ( )ˆ ,PLE PLE
L Lx P

1
1E 1

2E
1

1ME

2
1E

2
2E

2
2ME

1
NE 2

NE

1
3E

1
4E

LE

KF

LE

KF KF

LE

KFKF

  

LE

LE

3
3ME

3
1E

 





Level 2 








LE

Figure 3. The structure of the PLE fuser.



Sensors 2017, 17, 1526 8 of 20

The PLE fuser contains N fusion levels with N satisfying the inequation 2N−1 < L ≤ 2N .
In addition, the ith fusion level includes

⌊
L/2i⌋ LE fusions and generates

⌈
L/2i⌉ new fused estimates,

where notations b∗c and d∗e denote rounding down and rounding up, respectively. The PLE fuser is
realized by the following steps:

• Step 1: In the first fusion level, all of the local estimates received from local steady-state Kalman
filters are fused in pairs using the LE algorithm. When the number of local estimates is even,
we can get L

2 new fused estimates; and we can obtain L−1
2 + 1 new fused estimates including

an unsettled local estimate when the number of local estimates is odd. Then, the new fused
estimates are passed to the next fusion level.

• Step 2: As Step 1, all the estimates received from the upper fusion level are fused in pairs using
the LE algorithm, and the obtained new fused estimates are passed to the next fusion level.

...

• Step N: There are only two estimates received from the upper fusion level in the fusion level
N and the fusion result of them through the LE algorithm is defined as the PLE fuser estimate
N
(

x̂PLE
(L) , PPLE

(L)

)
.

As shown in Figure 3, we denote the received estimates in the ith fusion level of PLE fuser,
respectively, as Ei

1, Ei
2, . . . , Ei

Mi from the left side to the right side, where Mi represents the number
of the received estimates in the ith fusion level. Notice that the received estimates in the fusion
levels of PLE fuser can be paired by different methods that will lead to different types of PLE fusers
with heterogeneous parallel fusion structures. In this paper, we give three estimate pairing methods
as follows.

Method 1: In the ith fusion level, the received estimates are paired from Ei
1 to Ei

Mi. If there is
an unsettled received estimate in the ith fusion level, it must be Ei

Mi.
Method 2: The fusion levels of this type of PLE fuser alternately pair their received estimates from

Ei
1 to Ei

Mi or from Ei
Mi to Ei

1. For instance, the local estimates are paired from E1
1 to E1

M1 in
the fusion level 1, the received estimates in the fusion level 2 are paired from E2

M2 to E2
1,

and the received estimates in the fusion level 3 are paired from E3
1 to E3

M3, etc. If there is
an unsettled received estimate in the ith fusion level, it must be Ei

1 or Ei
Mi.

Method 3: In the ith fusion level, the received estimates Ei
Mi and Ei

1 are grouped into a pair with
their fused estimate treated as Ei+1

1 in the next fusion level, and the remaining received
estimates are paired from Ei

2 to Ei
Mi−1. If there is an unsettled received estimate in the ith

fusion level, it must be Ei
Mi−1.

In the following part of this paper, the notations PLE1, PLE2 and PLE3 denote the PLE fusers,
respectively, with estimate pairing Method 1, Method 2 and Method 3. For the multisensor system (1)
consisting of five sensors, the fusion schemes of PLE1, PLE2 and PLE3 fusers are shown schematically
in Figure 4. In Figure 4, the empty circle at a certain fusion level represents an estimate received from
its upper fusion level, and it is the unsettled received estimate, which is directly passed to its next
fusion level without fusing with other received estimates.
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Similarly to the SLE fuser, the PLE fuser can also be formulated in linear expressions as follows:

x̂PLE
(L) =

L
∑

i=1
APLE

i x̂i

PPLE
(L) =

L
∑

i=1
BPLE

i Pi

, (24)

with weighting matrices computed by

APLE
i = ALE

i(N) . . . ALE
i(2)ALE

i(1)
BPLE

i = BLE
i(N) . . . BLE

i(2)B
LE
i(1)

, (25)

where ALE
i(j), BLE

i(j) indicate the LE fusion weighting matrices corresponding to the LE fusion that the ith

local estimate encounters in the jth fusion level in its fusion route; both ALE
i(j) and BLE

i(j) will be equal to
In if the estimate in the jth fusion level is unsettled in the fusion route.

4.3. Properties of Multisensor Largest Ellipsoid Fusers

Comparing (18) to (7), we can find that the state estimation weighting matrices of the LE algorithm
will deviate from the optimal weighting matrices, which are the weighting matrices of the optimal
distributed Kalman fuser having the same sensors as the LE algorithm, on account of the inaccurate
error covariances of local estimates and the presence of unknown cross-covariances. Taking this point
into account, the state estimation weighting matrices of SLE fuser and PLE fuser, respectively expressed
in (23) and (25) can be rewritten into

ASLE
i =

(
AO

2/i−1 + ∆A2/i−1

)L−1
∏
j=i

(
AO

1/j + ∆A1/j

)
APLE

i =
(

AO
i(N)

+ ∆Ai(N)

)
. . .
(

AO
i(2) + ∆Ai(2)

)(
AO

i(1) + ∆Ai(1)

) , i = 1, 2, . . . , L, (26)

with AO
2/0 + ∆A2/0 = In. AO

1/i, AO
2/i, i = 1, 2, . . . , L − 1 being the optimal weighting matrices

corresponding to the LE fusion in the ith fusion level in the SLE fuser, and AO
i(j) being the optimal

weighting matrix corresponding to the LE fusion that the ith local estimate encounters in the jth
fusion level in its fusion route in the PLE fuser; ∆A1/i, ∆A2/i, i = 1, 2, . . . , L− 1 and ∆Ai(j) are the
weighting matrix errors that the state estimation weighting matrices of these LE fusions deviate from
their corresponding optimal weighting matrices. Hence, given a multisensor system, the number of
the LE fusions that each local estimate encounters in its fusion route and how these numbers differ
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from each other will affect the weight assignments for the local estimates in the fuser, which implies
that the fuser structure has a significant influence on the characteristic and performance of the fuser.
From Figures 2 and 3, we see that the number of the LE fusions that each local estimate encounters in
its fusion route can be different in the SLE fuser and the PLE fusers based on different estimate pairing
methods. In order to give a further analysis of the features of SLE fuser and PLE fuser for multisensor
system (1), here we define two fusion performance assessment parameters as Fusion Distance and
Fusion Index.

Definition 1. The Fusion Distance D(j)
(i) indicates the number of the LE fusions that the ith local estimate

encounters in its fusion route in fuser j (SLE, PLE1, PLE2 or PLE3).

Remark 1. When L ≥ 2, we have max(D(SLE)
(i) ) = L− 1 and minx(D(SLE)

(i) ) = 1. For any certain N ≥ 1,

we have max(D(PLE1)
(i) ) = max(D(PLE2)

(i) ) = max(D(PLE3)
(i) ) = N, min(D(PLE1)

(i) ) = 1, min(D(PLE2)
(i) ) =

N −
⌈

N−1
2

⌉
, and min(D(PLE3)

(i) ) = max(N − 1, 1).

Definition 2. The Fusion Index F(j) shows to what extent the Fusion Distances of all the local estimates differ
from each other in fuser j (SLE, PLE1, PLE2 or PLE3). It is defined as

F(j) = max

 D(j)
(i)

i=1,2,...,L

−min

 D(j)
(i)

i=1,2,...,L

. (27)

Remark 2. When L ≥ 2, we have F(SLE) = L− 2. For any certain N ≥ 1, we have max
(

F(PLE1)
)
= N − 1,

max
(

F(PLE2)
)
=
⌈

N−1
2

⌉
, max

(
F(PLE3)

)
= min(N − 1, 1).

Because the fused error covariance ellipsoid of LE algorithm is contained within the intersection
region of the covariance ellipsoids of local estimates, we can easily come to the conclusion that
PSLE
(L) ≤ Pi, PPLE

(L) ≤ Pi, i = 1, 2, . . . , L. However, as we can see from (23) and (25), the error covariance
estimation weighting matrices of SLE fuser and different PLE fusers are varied with the structure,
hence the fused error covariances of these fusers are generally different from each other. For multisensor
system (1), when adding a new sensor to the system, we apparently have PSLE

(L+1) ≤ PSLE
(L) . However,

the situation of the PLE fuser is more complicated, but it is obvious that if the existing fusion structure
of a PLE fuser is not affected by the new sensor, then the one PLE fuser will embrace PPLE

(L+1) ≤ PPLE
(L) ,

such as the PLE1 fuser. The fused accuracies of SLE fuser and PLE fuser with such property will become
higher and higher as the number of fused sensors increases. In the sense that both x̂O

(L), x̂SLE
(L) and x̂PLE

(L)

are the linear unbiased estimates of state x and x̂O
(L) is the LUMV estimate, we have PO

(L) ≤ PSLE
(L) and

PO
(L) ≤ PPLE

(L) , where PSLE
(L) = E

[(
x̂SLE
(L) − x

)(
x̂SLE
(L) − x

)T
]

and PPLE
(L) = E

[(
x̂PLE
(L) − x

)(
x̂PLE
(L) − x

)T
]

are

the actual fused error covariances of the SLE fuser and PLE fuser, respectively. In addition, we can
achieve the upper bounds for the actual fused error covariances of the SLE fuser and PLE fuser
irrespective of the cross-covariances. For multisensor system (1), according to [24], for any factors
∞ ≥ ρi ≥ 1, i = 1, 2, . . . , L, when

L

∑
i=1

1
ρi

= 1, (28)

we have

Σ ≤

 ρ1P1 0 0

0
. . . 0

0 0 ρLPL

, (29)
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For the SLE fuser and PLE fuser, we obtain

Pk
(L) =

[
Ak

1, . . . , Ak
L

]
Σ
[

Ak
1, . . . , Ak

L

]T

≤
[

Ak
1, . . . , Ak

L

] ρ1P1 0 0

0
. . . 0

0 0 ρLPL

[Ak
1, . . . , Ak

L

]T

=
L
∑

i=1
ρi Ak

i Pi

(
Ak

i

)T
, k ∈ (SLE, PLE)

, (30)

By taking the minimization of error covariance trace as the optimization target, we get the
optimization model as

min
{

L
∑

i=1
ρitr
[

Ak
i Pi

(
Ak

i

)T
]}

s.t.
L
∑

i=1

1
ρi
= 1

. (31)

Applying the Lagrange multiplier method, we introduce the Lagrange function defined by

f (ρ1, . . . , ρL, λ) =
L

∑
i=1

ρitr
[

Ak
i Pi

(
Ak

i

)T
]
+ λ

(
L

∑
i=1

1
ρi
− 1

)
, (32)

where λ is the Lagrange multiplier. Then, we can achieve

ρi =

L
∑

j=1

√
tr
[

Ak
j Pj

(
Ak

j

)T
]

√
tr
[

Ak
i Pi
(

Ak
i
)T
] . (33)

Replacing (33) into (30), we obtain

Pk
(L) ≤

L

∑
i=1

L
∑

j=1

√
tr
[

Ak
j Pj

(
Ak

j

)T
]

√
tr
[

Ak
i Pi
(

Ak
i
)T
] Ak

i Pi

(
Ak

i

)T
, k ∈ (SLE, PLE). (34)

5. Simulations and Analysis

5.1. Simulations

Consider a dynamic example of the multisensor system (1) with five sensors as

x(t + 1) =

[
1 T
0 1

]
x(t) +

[
0.5T2

T

]
w(t)

yi(t) = Hix(t) + vi(t), i = 1, 2, . . . , 5
, (35)

where T = 0.5 is the sample period, t = 1, 2, . . . , 300 is the discrete time (step), x0 = [10, 2]T is the
initial state, Q = 2, and

H1 = I2, R1 = diag(7.0, 0.22)
H2 = I2, R2 = diag(2.85, 0.3)
H3 = I2, R3 = diag(1.3, 1.5)
H4 = I2, R4 = diag(0.55, 3.1)

H5 = [1, 0], R5 = 0.6

. (36)
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The local steady-state Kalman estimates, local filtering error covariances and cross-covariances can
be obtained according to (2)–(5), and then the fused estimates of the optimal distributed Kalman fuser
weighted by matrices, the CI algorithm, the SLE fuser and PLE fusers can be computed. The fusion
schemes of PLE1, PLE2 and PLE3 fusers are shown in Figure 4. The traces of the theoretical error
covariance matrices of local and fused estimates are listed in Table 1, and their corresponding
covariance ellipses are illustrated in Figure 5. In Figure 5, the center of each covariance ellipse
is x(t), and the x-axis and the y-axis indicate how far the covariance ellipses extend in the directions of
the first and second dimension of the state from the center, respectively.

Table 1. The traces of theoretical error covariance matrices.

tr(P1) tr(P2) tr(P3) tr(P4) tr(P5) tr
(

PO
(5)

)
tr
(

PCI
(5)

)
tr
(

PCI
(5)

)
0.7433 0.6155 1.0032 0.8962 1.1932 0.1812 0.3233 0.5863

tr
(

PSLE
(5)

)
tr
(

PSLE
(5)

)
tr
(

PPLE1
(5)

)
tr
(

PPLE1
(5)

)
tr
(

PPLE2
(5)

)
tr
(

PPLE2
(5)

)
tr
(

PPLE3
(5)

)
tr
(

PPLE3
(5)

)
0.2976 0.3861 0.2550 0.3860 0.2244 0.3861 0.2217 0.3876
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From Table 1, we see that both tr
(

PSLE
(5)

)
and tr

(
PPLEi
(5)

)
, i = 1, 2, 3 are greater than but close to

tr
(

PO
(5)

)
, which imply that the actual fused accuracies of SLE fuser and PLE fusers are close to that

of the optimal fuser. The tr
(

PSLE
(5)

)
and tr

(
PPLEi
(5)

)
, i = 1, 2, 3 are almost the same and obviously less

than tr
(

PCI
(5)

)
and tr(Pi), i = 1, 2, . . . , 5, which mean that the fused accuracies of SLE fuser and PLE

fusers are approximately equal and higher than those of the CI algorithm and each local estimate.
Note that, although the tr

(
PSLE
(5)

)
and tr

(
PPLEi
(5)

)
, i = 1, 2, 3 are, respectively, less than tr

(
PSLE
(5)

)
and tr

(
PPLEi
(5)

)
, i = 1, 2, 3, it can not be concluded that the SLE fuser and PLE fusers are consistent

due to fact that the LE algorithm can not guarantee its consistency. Correspondingly, in Figure 5,
the covariance ellipse of PO

(5) is enclosed in the covariance ellipses of PSLE
(5) and PPLEi

(5) , i = 1, 2, 3,

which indicates PO
(5) ≤ PSLE

(5) and PO
(5) ≤ PPLEi

(5) , i = 1, 2, 3. The covariance ellipses of PSLE
(5) and

PPLEi
(5) , i = 1, 2, 3 are enclosed in the covariance ellipses of PCI

(5) and Pi, i = 1, 2, . . . , 5, which indicate

PSLE
(5) ≤ Pi, i = 1, 2, . . . , 5, PSLE

(5) ≤ PCI
(5), PPLEj

(5) ≤ Pi, i = 1, 2, . . . , 5; j = 1, 2, 3 and PPLEj
(5) ≤ PCI

(5), j = 1, 2, 3.
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The covariance ellipses of PSLE
(5) and PPLEi

(5) , i = 1, 2, 3 are almost overlapping, which implies that the
SLE fuser and PLE fusers each obtain a similar fused error covariance. However, the covariance ellipse
of PSLE

(5) is not enclosed in the covariance ellipses of PSLE
(5) and P1, which means that PSLE

(5) � PSLE
(5) and

PSLE
(5) � P1; and the covariance ellipse of PPLE1

(5) is not enclosed in the covariance ellipses of PPLE1
(5) and

P1, which means PPLE1
(5) � PPLE1

(5) and PPLE1
(5) � P1; thus, the SLE fuser and PLE1 fuser are inconsistent

in this example. While the covariance ellipses of PPLE2
(5) and PPLE3

(5) are, respectively, enclosed in the

covariance ellipses of PPLE2
(5) and PPLE3

(5) , which mean PPLE2
(5) ≤ PPLE2

(5) and PPLE3
(5) ≤ PPLE3

(5) , the PLE2 and
PLE3 fusers are consistent here.

In order to verify the above theoretical results on the accuracy relation, the Monte Carlo method
is applied to compute mean square error (MSE). The MSE value at time t for local or fused estimate x̂i

with error covariance Pi is defined as

MSEi
Nrun

(t) =
1

Nrun

Nrun

∑
j=1

[
x̂i

j(t|t)− xj(t)
]T[

x̂i
j(t|t)− xj(t)

]
, (37)

where Nrun is the number of Monte Carlo runs, x̂i
j(t|t) and xj(t) denote the jth realization of x̂i(t|t)

and x(t), respectively. Because

tr
(

Pi
)
= tr

{
E
[(

x̂i − x
)(

x̂i − x
)T
]}

= E
[(

x̂i − x
)T(

x̂i − x
)]

, (38)

according to the ergodicity [25], we have

MSEi
Nrun

(t) = tr
(

Pi
)

, t→ ∞, Nrun → ∞. (39)

For the dynamic example (35)–(36), 1000 Monte Carlo runs are performed, and the statistical
results of local estimates and the fused estimates of optimal fuser, SLE fuser and PLE fusers in the
Monte Carlo simulation are shown in Figure 6.
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MSEi
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; Pi represents Pi, i = 1, 2, . . . , 5, PO
(5), PSLE

(5) and PSLE
(5) , i = 1, 2, 3 , while MSEi

Nrun
, denotes
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their corresponding MSE values. From Figure 6, we know that the MSEi
Nrun

fluctuates around tr
(

Pi),
which is consistent with (39); and the statistical accuracy relations of local and fused estimates indicated
by MSEi

Nrun
are coincident with the theoretical results shown in Table 1.

As shown in Figures 2 and 3, both the SLE fuser and PLE fuser schemes will vary as long as the
sensor order varies. To explore how the accuracies of SLE fuser and the PLE fusers based on different
estimate pairing methods are related to the sensor orders, all the sensor permutations are considered
and simulated. The accuracies of SLE fuser and PLE fusers with respect to different sensor orders are
given in Figure 7. In Figure 7, the x-axis represents all of the permutations of five used sensors, 120 in
total; the y-axis represents the traces of PO

(5), PSLE
(5) , PPLEi

(5) , i = 1, 2, 3 and PSLE
(5) , PPLEi

(5) , i = 1, 2, 3.
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Figure 7. The fuser accuracies with respect to different orders of five sensors.

Figure 7 shows that, for all possible sensor orders, the fused accuracies of SLE fuser and PLE
fusers are almost the same, while their actual fused accuracies are more different, which mean that the
fused accuracies of SLE fuser and PLE fusers are less affected by the sensor orders, but their actual
fused accuracies are greatly influenced. In order to strengthen the information shown in Figure 7,
another four sensors are added to systems (35) and (36), and they are given as

H6 = I2, R6 = diag(2.1, 2.06)
H7 = I2, R7 = diag(1.1, 7.56)

H8 = I2, R8 = diag(16.6, 0.15)
H9 = I2, R9 = diag(0.9, 23.0)

. (40)

In addition, the traces of the theoretical error covariance matrices of their local steady-state Kalman
estimates are shown in Table 2.

Table 2. The traces of the theoretical error covariance matrices of added local estimates.

tr(P6) tr(P7) tr(P8) tr(P9)

1.3512 1.3910 0.8807 1.3865

The accuracies of SLE fuser and PLE fusers with respect to different sensor orders for the expanded
multisensor system with nine sensors are shown in Figure 8. In Figure 8, the x-axis represents all of the



Sensors 2017, 17, 1526 15 of 20

permutations of nine used sensors, 362,880 in total; and the legends of this figure are the same as those
in Figure 7.Sensors 2017, 17, 1526 15 of 20 
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From Figures 7 and 8, it can be seen that with a certain number of sensors, no matter how the
sensors are ordered, the tr

(
PSLE) and tr

(
PPLEi), i = 1, 2, 3 are almost equal, which mean that the fused

accuracies of SLE fuser and PLE fusers are almost equivalent and are insensitive to the sensor orders.
When the multisensor system only has a few sensors, the actual fused accuracies of SLE fuser and PLE
fusers perform approximately and have similar sensitivity to sensor orders. However, as the number
of sensors increases, the differences among them are becoming increasingly significant. From Figure 8,
we see that the tr

(
PSLE

)
fluctuates most drastically and is generally greater than tr

(
PPLEi

)
, i = 1, 2, 3,

which means that the actual fused accuracy of SLE fuser is poorer and more sensitive to the sensor
orders than these of PLE fusers. Whether in actual fused accuracy or in sensitivity to the sensor orders,
the PLE2 and PLE3 fusers perform better than the PLE1 fuser, and the PLE3 fuser generally has the
best performance.

In practice, the number of used sensors may vary in different periods. For the subsystems
individually with sensors 1 ∼ i, i = 1, 2, . . . , 9, the accuracies of the SLE fuser and PLE fusers with
sensors fused in normal order are presented in Figure 9. In Figure 9, the number i on the x-axis
not only represents the ith subsystem using the sensors 1 ∼ i, but also represents the ith sensor.
From Figure 9, we know that the actual fused accuracy of SLE fuser is less robust to the accuracy of
the newly added sensor than these of PLE fusers; and, compared to the PLE1 fuser, the actual fused
accuracies of PLE2 and PLE3 fusers perform more robustly and they tend to become higher as the
number of sensors increases. Furthermore, the accuracies of PLE fusers are significantly better than
that of the CI algorithm.

In the simulation cases above, we have specified the characteristics of the sensors. Without such
specifications, we give a further study on the performances of the SLE fuser and PLE fusers in the
multisensor systems with arbitrary overall error covariances. Because the overall error covariance Σ of
the multisensor system (1) is a real symmetric positive definite matrix, it has diagonal decomposition
as Σ = ΘΞΘT, where Θ is an orthogonal matrix, Ξ is a diagonal matrix. Θ and Ξ can be randomly
created using Matlab (R2015b, MathWorks, Natick, MA, US) functions, such as ‘orth’, ‘diag’ and
‘randn’, etc. For the multisensor system consisting of nine two-dimensional sensors, 30 random overall
error covariance matrices are simulated with each element of their Ξ selected from the positive samples
of a random variable, which is of standard normal distribution, and the fused results of SLE fuser
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and PLE fusers are shown in Figure 10. In Figure 10, the x-axis represents the 30 simulated random
overall error covariances, and the legends of this figure are the same as these in Figure 9. As shown in
Figure 10, for most of the simulated overall error covariance matrices, the multisensor LE fusers sorted
in descending order of actual fused accuracy are PLE3, PLE2, PLE1 and the SLE fuser, and they all
have higher accuracies than the CI algorithm.
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For any two local estimates x̂i and x̂j in the multisensor system, the correlation property of them
can be measured by the following correlation model [11]:

Pij = γJi JT
j , (41)

where γ ∈ [0, 1) is the correlation coefficient between x̂i and x̂j; Jk, k = i, j is the Cholesky
decomposition of Pk satisfying Jk JT

k = Pk. As described above, the inconsistency of the LE algorithm is
resulted from the unknown cross-covariances among local estimates. In order to investigate how the
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consistencies of SLE fuser and PLE fusers are related to the unknown cross-covariances, the multisensor
systems consisting of nine two-dimensional sensors under different correlation coefficients are studied.
Meanwhile, in order to cover the main range of the correlation coefficient, in this case, each studied
correlation coefficient is given by γi = 0.01ni, where the integer ni ∈ [0, 99] is the serial number
of the correlation coefficients. For each performed correlation coefficient γi, 200 random overall
error covariance matrices of the multisensor system are firstly created, and then in each overall error
covariance matrix, the cross-covariance between any two local estimates is replaced by the new
cross-covariance obtained using (41). The consistency ratios of the number of consistent fused results
to the total number of fused results for SLE fuser and PLE fusers with respect to different correlation
coefficients are shown in Figure 11.
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From Figure 11, we know that the presented multisensor LE fusers are inconsistent when the local
estimates are strongly correlated but are consistent when the local estimates are weakly correlated.
Under a moderate correlation level, the multisensor LE fusers sorted in a descending order of the
consistency ratio are PLE3, PLE2, PLE1 and SLE fusers. For certain moderate γi, compared to the SLE
fuser, the PLE fusers significantly improve the consistency performance.

In summary, according to above simulation results, whether in the actual fused accuracy as well
as its sensitivity to the sensor orders and its robustness to the accuracy of a newly added sensor, or in
consistency and in computation efficiency, the PLE fusers have better performances than SLE fuser,
and PLE3 fuser outperforms PLE2 fuser, which performs better than the PLE1 fuser.

5.2. Analysis

In order to obtain a fused estimate with high actual fused accuracy in a multisensor LE fuser,
the weights of the state estimation weighting matrices should be assigned in accordance with the
accuracies of sensors. As shown in (23) and (25), both ASLE

i in SLE fuser and APLE
i in PLE fuser are

the multiplication results of all of the LE fusion state estimation weighting matrices that the ith local
estimate encounters in its fusion route. From (18), we have ALE

1 < In and ALE
2 < In, the multiplication

effect of multiple ALE
1 and (or) ALE

2 implies that the more LE fusions one local estimate encounters in
its fusion route in the SLE fuser or PLE fuser, the less weight its weighting matrix ASLE

i or APLE
i will

tend to be. Since the number of the LE fusions that each local estimate encounters in its fusion route is
affected by the fuser structure, the weights of the weighting matrices not only depend on the accuracies
of sensors, but also are influenced by fuser structure. In addition, according to (26), the number of
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LE fusions that each local estimate encounters in its fusion route also affects the weighting matrix
deviations from the optimal weighting matrices.

Therefore, longer Fusion Distance means less weight and greater deviation; the Fusion Distance
differences in the fuser affect the balances of weight assignment and deviation among local estimates
and thus have a significant influence on the fuser’s actual fused accuracy performance. Owing to
the sequential structure, the Fusion Distances of each local estimate in the SLE fuser are remarkably
different from each other, which leads to the fuser structure severely degrading the dependency of the
actual fused accuracy on the accuracies of sensors. Comparatively, the differences of the local estimate
Fusion Distances in PLE fuser are significantly reduced, which means that the actual fused accuracy of
PLE fuser is more dependent on the accuracies of sensors and hence is better than that of the SLE fuser.
The Fusion Index of the multisensor LE fuser not only represents the fuser’s actual fused accuracy,
but also indicates the sensitivity of the actual fused accuracy to the sensor orders and the robustness of
the actual fused accuracy to the accuracy of the newly added sensor. A smaller Fusion Index means that
the fuser has better performances in these aspects. In the simulation examples, when the multisensor
system has five sensors, we have F(SLE) = 3, F(PLE1) = 2, F(PLE2) = F(PLE3) = 1, the PLE3, PLE2 fusers
have the same level of performance in actual fused accuracy, sensitivity and robustness, and perform
better than the SLE fuser and PLE1 fuser. When the multisensor system has nine sensors, we have
F(SLE) = 7, F(PLE1) = 3, F(PLE2) = 2, F(PLE3) = 1, and the performance differences among SLE, PLE1,
PLE2, PLE3 fusers become more significant. As the fused error covariances of the SLE fuser and PLE
fuser are almost the same, then, for the same multisensor system, the fuser that has higher actual fused
accuracy will have less possibility to become inconsistent. Accordingly, compared to the SLE fuser,
the PLE fuser has better consistency performance, and the PLE2 fuser has worse performance than the
PLE3 fuser but has better performance than the PLE2 fuser.

Apparently, compared to the SLE fuser, another one of the advantages of the PLE fuser is that
the PLE fuser can make full use of the multiprocessor to fuse multiple sensors in parallel and more
efficiently. Because each LE fusion can reduce the estimates to be fused by one in the SLE fuser
and PLE fuser, it can be concluded that both the SLE fuser and the PLE fuser for the multisensor
system (1) contain L− 1 LE fusions, and thus they have the same computation complexity. However,
if multiprocessor parallel operation is used in data processing, their time complexity is proportional
to their number of fusion levels. Therefore, the PLE fuser mostly outperforms the SLE fuser in
computation efficiency. When the sensors are in a clustering distribution, parallel structure can also
cut down the communication requirements of sensor networks.

6. Conclusions

For the multisensor system with unknown cross-covariances, this paper proposes a largest
ellipsoid fusion Kalman filtering with parallel structure and gives three different estimate pairing
methods to construct the parallel fusion structure. Two fusion performance assessment parameters
of Fusion Distance and Fusion Index are defined, and the attributes of the SLE fuser and PLE fusers
in Fusion Distance, Fusion Index and accuracy relation are given. Verified with examples, if a local
estimate has a longer Fusion Distance, its weighting matrix will tend to be lighter in weight and of
greater deviation. The Fusion Index reflects the influence of fusion structure on fusion performance
and indicates a fuser’s actual fused accuracy performance. A smaller Fusion Index implies that the
actual fused accuracy of the fuser is generally higher, and is less sensitive to the sensor orders and
more robust to the accuracy of newly added sensors. The presented multisensor LE fusers can achieve
consistent fused results when the local estimates are weakly correlated but become inconsistent when
the local estimates are strongly correlated; under such strong correlations, the upper bounds of actual
fused error covariances of the presented multisensor LE fusers can be obtained by the provided
formula to limit the uncertainties of the fused results. Compared to SLE fusers, the proposed PLE
fusers not only can operate in parallel and more efficiently, but also get better performances in regards
to accuracy and consistency.
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