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Abstract: In speech separation tasks, many separation methods have the limitation that the
microphones are closely spaced, which means that these methods are unprevailing for phase
wrap-around. In this paper, we present a novel speech separation scheme by using two microphones
that does not have this restriction. The technique utilizes the estimation of interaural time difference
(ITD) statistics and binary time-frequency mask for the separation of mixed speech sources. The
novelties of the paper consist in: (1) the extended application of delay-and-sum beamforming (DSB)
and cosine function for ITD calculation; and (2) the clarification of the connection between ideal
binary mask and DSB amplitude ratio. Our objective quality evaluation experiments demonstrate the
effectiveness of the proposed method.
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1. Introduction

A common example of the well-known ‘cocktail party’ problem is the situation in which the
voices of two speakers overlap. How to solve the ‘cocktail party’ problem and obtain an enhanced
voice of a particular speaker in machines have grabbed serious attention of researchers.

As for single-channel speech separations, independent component analysis (ICA) [1] and
nonnegative-matrix factorization (NMF) [2] are the conventional methods. However, the assumption
that signals are statistically independent in ICA and the model in NMF is linear limit their applications.
Moreover, NMF generally requires a large amount of computation to determine the speaker
independent basis. Recently, in [3], the authors proposed an online adaptive process independent of
parameter initialization, with noise reduction as a pre-processing step. Using adaptive parameters
computed frame-by-frame, this article constructs a Time Frequency (TF) mask for the separation
process. In [4], the authors proposed a pseudo-stereo mixture model by reformulating the binaural
blind speech separation algorithm for the monaural speech separation problem. The algorithm
estimates the source characteristics and constructs the masks with the parameters estimated through a
weighted complex 2D histogram.

Normally, multiple channel sources are separated by measuring the differences of arrival time and
sound intensity between microphones [5,6], which are also referred to as the interaural time differences
(ITD) and the interaural intensity differences (IID). Interaural phase differences (IPD) have been used
in [7,8]. The authors proposed a speech enhancement algorithm that utilizes phase-error based filters
that depend only on the phase of the signals. Performances of the above systems depend on how
the ITD (or IPD) threshold is selected. Instead of a fixed threshold, in [9], the authors employed a
statistical modeling of angle distributions together with a channel weighting to determine which
signal components belong to the target signal and which components are part of the background.
In [10], the authors proposed a method based on a prediction of the coherence function and then
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estimated the signal to noise ratio (SNR) to generate Wiener filter. In [11], the author presented
a method based on independent component analysis (ICA) and binary time-frequency masking.
In [12], the authors proposed that a rough estimate of channel level difference (CLD) threshold
yielding the best Signal-to-Distortion Ratio (SDR) could be obtained by cross-correlating the separated
sounds. In addition, a combination of negative matrix factorization (NMF) with spatial localization
via the generalized cross correlation (GCC) is applied for two-channel speech separation in [13].
For two-channel convolutive source separation, as the number of parameters in the NMF2D grows
exponentially and the number of frequency basis increases linearly, the issues of model-order fitness,
initialization and parameters estimation become even more critical. In [14], the authors proposed a
Gaussian Expectation Maximization and Multiplicative Update (GEM-MU) algorithm to calculate
the NMF2D with adaptive sparsity model and to utilize a Gamma-Exponential process in order to
estimate the number of components and number of convolutive parameters in NMF2D.

The goal of this paper is to cope with competing-talker scenarios by dual-channel mixtures.
In this study, we use DSB to generate the cosine function that evaluates ITD by using several frames
of the short-time Fourier transform (STFT) and makes target and competing signals have the same
characteristics. Then, we utilize the binary time-frequency mask to obtain the target source. There are
two contributions in this paper:

(1) we novelly upgrade delay-and-sum beamforming (DSB) [15] for estimating the ITD; and
(2) for the first time, we clarify the connections between ideal binary mask and DSB amplitude ratio.

The framework of our approach is illustrated in Figure 1. Moreover, our proposed algorithm can
handle the problem of phase wrap-around.

Figure 1. Block diagram of the proposed approach. STFT: Short Time Fourier Transform, DSB:
Delay-and-Sum Beamforming, ITD: Interaural Time Difference, IFFT: Inverse Fast Fourier Transform,
OLA: OverLapping and Adding.

The remainder of this paper is organized as follows: Section 2 provides an overview of time
difference model. Our proposed approach including system overview and algorithm will be discussed
in Section 3. In Section 4, we will introduce source separation. Then, Section 5 shows our evaluations
of the system. Finally, Section 6 puts forward the main conclusions of the work.

2. Time Difference Model

We suppose that there are I (I = 2) sources (subscript 1 to represent the target and subscript 2 to
represent the noise) in a sonic environment. The signals from two different microphones are defined,
respectively, as:

xL(t) =
I

∑
i=1

aL
i si(t),

xR(t) =
I

∑
i=1

aR
i si(t− τi),

(1)
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where aL
i and aR

i denote the weighted coefficients of the recordings of the left and right microphone
from the i-th source separately. τi is the time delay of arrival (TDOA) of the i-th source between two
microphones. Equation (1) can be simplified as:

xL(t) =
I

∑
i=1

si(t),

xR(t) =
I

∑
i=1

bisi(t− τi),

(2)

where bi is the ratio of aL
i and aR

i . By the short-time Fourier transform (STFT), the signals can be
expressed as:

XL[m, k] =
I

∑
i=1

Si[m, k],

XR[m, k] =
I

∑
i=1

biSi[m, k]× e−jωkτi ,

(3)

where m is the frame index and ωk = 2πk/K. k and K are the frequency index and total window length,
respectively. Under the assumption of Wdisjoint orthogonal [16], Equation (3) can be rewritten as:

XL[m, k] ≈ Si[m, k],

XR[m, k] ≈ biSi[m, k]× e−jωkτi .
(4)

Thus, once the TDOA is obtained, we can make a simple binary decision concerning whether the
time-frequency bin [m, k] is likely to belong to the target speaker or not.

3. Proposed Approach

Delay-and-sum (DSB) is an effective means for speech enhancement. Our method is based on
DSB under the anechoic condition in the time-frequency domain. In DSB, the enhanced speeches in
the time-frequency domain are modeled as:

Y1[m, k] =
XL[m, k] + XR[m, k]× ejωk τ̂1

2
,

Y2[m, k] =
XL[m, k] + XR[m, k]× ejωk τ̂2

2
,

(5)

where Y1[m, k] and Y2[m, k] are the enhanced speech of target and interferer, respectively.
Theoretically, once the correct estimations of τ1 and τ2 are obtained, Equation (5) is written as:

Y1[m, k]
Y2[m, k]

=


1+b1

1+b1×ejωk(τ2−τ1)
, if [m, k] ∈ s1,

1+b2×ejωk(τ1−τ2)

1+b2
, if [m, k] ∈ s2.

(6)

We define g[k] as:

g[k] =
1
M

M

∑
m=1

∣∣∣∣Y1[m, k]
Y2[m, k]

∣∣∣∣sgn(
∣∣∣1− Y1 [m,k]

Y2 [m,k]

∣∣∣)
, (7)

where

sgn(x) =

{
1, x ≥ 0,

−1, x < 0.
(8)



Sensors 2017, 17, 1447 4 of 13

According to Equations (6) and (7), we treat gThe[k] as the theoretical result of g[k]. Under the
assumption of far-field (b1 ≈ b2), gThe[k] is simplified to

gThe[k] ≈
∣∣∣∣∣1 + b1 × ejωk(τ2−τ1)

1 + b1

∣∣∣∣∣ . (9)

We may obtain

gThe[k] ≈

√
1− 2b1(1− cos(ωk × (τ2 − τ1)))

(1 + b1)2 , (10)

where gThe[k] is the cosine function. Specially, if b1 equals 1, we have

gThe[k] ≈
∣∣∣∣cos

(
ωk × (τ2 − τ1)

2

)∣∣∣∣ . (11)

Obviously, the maximum of gThe[k] is 1. Furthermore, we let greal [k] be the real data of g[k]
according to Equation (6). To ensure that the maximum of greal [k] is 1, we rectify greal [k] as:

greal_r[k] = greal [k] + 1−max greal [k]. (12)

We define the minimum of greal [k] as gmin[k]. Under the correct estimations of τ1 and τ2, greal [k]
approximately equals gThe[k]. According to Equation (10), b1 can be estimated as:

b̂1 =
1− gmin[k]
1 + gmin[k]

. (13)

Figure 2 demonstrates the process of ITD estimation. Figure 3 gives an example about the cosine
functions with different estimations of ITD.

We define the criterion function as:

J =
1

ΣK
k=1 |greal_r[k]− gThe[k]|

. (14)

Because of the periodicity of Trigonometric function, we fix |ωk(τ1 − τ2)| < π. We use the
summation on all frequency bands to avoid phase wrap-around problem. Then, we have

τ̂1opt , τ̂2opt = arg maxτ̂1,τ̂2
J. (15)
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Figure 2. Float chart of ITD estimation. τ̂1 and τ̂2 are the estimation values of τ1 and τ2. If correct
estimations of τ1 and τ2 are obtained, the cosine characteristics of gThe[k] is identical to greal [k]. In spite
of the fact that there would be no cosine characteristics in greal [k] based on incorrect estimation results,
we can still follow the cosine characteristics to calculate gThe[k]. Obviously, gThe[k] is different to greal [k]
in this situation. We find the true value of τ̂1 and τ̂2 iteratively. The τ̂1 and τ̂2 will be updated until
gThe[k] is identical to greal [k].
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Figure 3. Cosine function with different ITD estimation. Obviously, gThe[k] is identical to greal_r[k] with
correct ITD estimation, while gThe[k] is different to greal_r[k] with incorrect ITD estimation.
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4. Source Separation

After obtaining the ITD and attenuation coefficients (namely b1 and b2), we adopt the masking
method to separate the target and competing sources. Firstly, we illustrate the effects of attenuation
coefficients. Then, we utilize the time-frequency mask based on the DSB ratio.

4.1. The Effects of Weighted Coefficients

In Equation (10), we assume b1 ≈ b2, but sometimes experiment settings can not meet this
hypothesis strictly. In this section, we set different values of b1 and b2 artificially to demonstrate the
effectiveness of the criterion function in Equation (14). We verify the effects of b1 and b2 with a simple
example. Assume that

xl(t) =s1(t) + s2(t),

x2(t) =b1 × s1(t− 6.1) + b2 × s2(t− 1.9).
(16)

The details are shown in Figure 4. We can observe that even experiment settings do not meet the
assumption that b1 ≈ b2 strictly, and the ITD still can be estimated accurately. Moreover, though the
values of b̂1 and b̂2 are rough, the binary mask is free from attenuation coefficients since the DSB based
mask only relies on ITD information.

Figure 4. Source localization with different b1 and b2. The source localization are conducted in four
different settings: (1) b1 = 1, b2 = 1; (2) b1 = 0.7, b2 = 1; (3) b1 = 1, b2 = 1.5; and (4) b1 = 0.7, b2 = 1.5.
The ITD estimation is valid for all of the settings.

4.2. Mask Based on DSB Ratio

Under the assumption of Wdisjoint orthogonal, the ideal ratio mask is defined using a priori
energy ratio RSNR[m, k] [17]:

RSNR[m, k] =
|Y1[m, k]|2

|Y1[m, k]|2 + |Y2[m, k]|2
. (17)
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In addition, the ideal binary is of the form:

B[m, k] =

{
1, RSNR[m, k] ≥ λ,

0, RSNR[m, k] < λ,
(18)

where λ is set to be a value in 0.2–0.8.

In our theoretical framework,
∣∣∣∣ 1+b1

1+b1×ejωk(τ2−τ1)

∣∣∣∣ is greater than 1 according to Equation (6),

while
∣∣∣ 1+b2×ejωk(τ2−τ1)

1+b2

∣∣∣ is always less than 1. Then, the DSB ratio is of the form:

RDSB[m, k] =


|Y1[m,k]

Y2[m,k] | ≥ 1, if [m, k] ∈ s1,

|Y1[m,k]
Y2[m,k] | < 1, if [m, k] ∈ s2.

(19)

Comparing RDSB[m, k] to 1, the binary time-frequency mask is obtained as:

M[m, k] =

{
1, if RDSB[m, k] ≥ 1,
0, otherwise.

(20)

It is easy to find that when λ is set to 0.5, B[m, k] is equivalent to M[m, k]. Equations (6) and (20)
demonstrate the essence that λ = 0.5 provides the best performance under the assumption of Wdisjoint
orthogonal. Then, the speech can be separated as:

Ŝ1[m, k] = M[m, k]X1[m, k],

Ŝ2[m, k] = (1−M[m, k])X2[m, k],
(21)

where X[m, k] is defined as:

Xi[m, k] =
1
2
[DFT(xL(t)) + DFT(xR(t− ti))]. (22)

Finally, we can obtain the separated speech waveforms using the Inverse Fast Fourier Transform (IFFT)
and OverLapping and Adding (OLA).

5. Experimental Evaluations

In this section, we first describe the experimental data and evaluation criteria that we used,
and then present experimental results.

5.1. Experimental Setup

Figure 5 depicts the simulated experimental set-up. The sources are selected from the TIMIT
database [18]. The sample rate of these audio files is 16,000 Hz. For simulated data, we evaluate
the target speech separation performance using Perceptual Evaluation of Speech Quality (PESQ),
Csig, Cbak and Covl [19]. These new composite measures show moderate advantages over the existing
objective measures [19]. To meet the SiSEC 2010 campaign’s evaluation criteria, we adopt the standard
Source-to-Interference Ratio (SIR) [20] for SiSEC 2010 test data. For these objective measures, the higher
values mean better performance.

The window length is 1024 samples with an overlap of 75%. We can calculate the voiced frames
detected by Voice Active Detector (VAD) [21] to avoid the situation that Y2[m, k] = 0. Actually,
Y2[m, k] = 0 hardly occurs and we do not have this operation in our experiment. Once the amplitude
of Y2[m, k] is nonzero, we treat Y2[m, k] as one of the speakers.
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Figure 5. Placement of the microphones and sound sources. S1 is the target source. S1
2 and S2

2 are the
competing sources in two different environments, respectively.

5.2. Simulated Data

We generate data for the setup in Figure 5 with source signals of duration 2 s. Reverberation
simulations are accomplished using the Room Impulse Response (RIR) open source software
package [22] based on the image method. We generate 100 mixed sentences for each experimental
set. Tables 1 and 2 show the ITD estimated results in terms of mean square errors. In our experiment,
the units of ITD are represented by τ × f s. We compare our approach with other existing DUET [23],
Messl [24], and Izumi [25] methods. Unlike the algorithms based on coherence, our method
consolidates the estimation of τ1 and τ2 into one cosine function. Our method acquires better ITD
estimation. Table 3 shows the relations between microphone distances with ITD estimated results.
The real ITD is proportional to the distances. The estimated ITDs calculated by our method meet this
rule. For all of the distances in our experiment, the proposed method provides better ITD estimations
that influence the separation results. Figure 6 shows the details with ITD estimation. Though our
method does not take reverberation into consideration, the results demonstrate that our method is
effective for low reverberation (RT60 = 150 ms) conditions. Figure 7 shows the target source separation
performance and illustrates that our method has comparable performance. Figure 8 shows the target
source separation performance for different microphone distances. For different microphone distances,
the source separation performances are effective. Compared with other methods, the proposed method
yields better results for all of the microphone distances.

Table 1. ITD estimation on S1S1
2.

Anechoic RT60 = 150 ms

Method S1 S1
2 Method S1 S1

2
Real ITD 0.000 2.373 Real ITD 0.000 2.373

DUET 0.058 2.370 DUET 0.520 2.560
Phat 0.017 2.502 Phat 0.217 2.500

Izumi 0.093 2.502 Izumi 0.337 2.946
Proposed 0.024 2.402 Proposed 0.179 2.428
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Table 2. Interaural Time Difference (ITD) estimation on S1S2
2.

Anechoic RT60 = 150 ms

Method S1 S2
2 Method S1 S2

2
Real ITD 0.000 4.060 Real ITD 0.000 4.060

DUET 0.020 3.963 DUET 1.844 3.448
Phat 0.055 4.009 Phat 0.117 4.122

Izumi 0.045 4.018 Izumi 0.043 4.067
Proposed 0.012 4.039 Proposed 0.042 4.045

Table 3. ITD estimation on RT60 = 150 ms with different microphone distances.

Mic-Distance 5 cm 10 cm 15 cm

Method S1 S1
2 S1 S1

2 S1 S1
2

Real ITD 0.000 1.187 0.000 2.373 0.000 3.560
DUET 0.271 1.069 0.520 2.560 1.678 3.135
PHAT 0.163 1.296 0.217 2.500 0.126 3.652
Izumi 0.234 1.334 0.337 2.946 0.031 3.891

Proposed 0.112 1.125 0.179 2.428 0.041 3.527

Figure 6. ITD estimation results in different environments. The horizontal coordinate corresponds
to τ̂1, and the vertical coordinate corresponds to τ̂2. In fact, we can only process the lower triangular
matrix because the estimations have symmetric properties.
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Figure 7. The target speech performance of different methods in terms of Perceptual Evaluation of
Speech Quality (PESQ), Csig, Cbak and Covl .

Figure 8. The target speech performance of different microphone distances in terms of Perceptual
Evaluation of Speech Quality (PESQ), Csig, Cbak and Covl .

5.3. SiSEC 2010 Test Data

The data of D2-2 sets of the Signal Separation Evaluation Campaign (SiSEC) [26] consists of
two-microphone real world recordings. We applied the proposed method to set1 for both room1 and
room2. We only compare our method with the classical Fast-ICA [27], since the results with other
methods can be found online. Figure 9 shows ITD estimation details. Tables 1 and 2 illustrate that our
method can achieve competitive results.
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Figure 9. ITD estimation results and experimental set-up in room1 and room2. The horizontal
coordinate corresponds to τ̂1, and the vertical coordinate corresponds to τ̂2. The distance between two
microphones is 8 cm.

In Figure 10, we demonstrate the trends between λ and mean SIR for room1 and room2. Mean SIR
is symmetrical to λ = 0.5, where mean SIR achieves the best performance. These characteristics are
consistent with our method.

Figure 10. Average Signal-to-Interference Ratio (SIR) with different λ. We calculate the mean of SIR
for each λ. The result demonstrates that λ = 0.5 provides the best performance, which is identical
to our theoretical analysis. Furthermore, separation results are symmetrical to λ when we adopt the
signal-to-noise ratio based on Y1[m, k] and Y2[m, k] to generate the ideal binary mask.

Table 4 shows the separation performance for both room1 and room2.
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Table 4. Signal-to-Interference Ratio (SIR) evaluations based on room1 and room2.

Room1 x1 x2 x3 x4 x5 x6

Proposed S1 11.8 7.8 14.7 26.4 4.9 −0.9
S2 10.5 12.2 −9.2 2.7 14.0 21.2

ICA S1 0.3 −1.3 10.2 18.6 −2.6 −7.8
S2 3.3 4.8 −8.34 −7.6 10.0 18.3

Room2 x1 x2 x3 x4 x5 x6

Proposed S1 3.3 6.2 12.3 27.5 3.2 1.0
S2 12.8 11.1 −10.0 −1.3 15.8 22.5

ICA S1 −3.2 −1.3 6.6 19.6 −4.3 −9.1
S2 6.2 4.8 −7.3 −8.5 12.0 19.4

1 The definition of ICA is “Independent Component Analysis”.

6. Conclusions

In this paper, we have proposed a novel method based on DSB for dual-channel sources separation.
Our method, for the first time, employs the extension of DSB for estimating interaural time difference
(ITD) and illustrates the connection between ideal binary mask and DSB amplitude ratio. Our method
is valid for phase wrap-around. Although our method is based on the assumption of an anechoic
environment, the results illustrate the effectiveness for low reverberation environment (RT60 = 150 ms).
Objective evaluations demonstrate the effectiveness of our proposed methods.

In this paper, we focus on the estimation of the interaural time differences (ITD). In fact, the
construction of an effective masking model is also very critical. We could attempt to replace our
Time-Frequency Masking with an NMF2D model as proposed in [14], and adopt the GEM-MU and
Gamma-Exponential process to separate sound sources. Moreover, in the presence of background
noise, the idea of noise reduction in [3] is also valuable for our dual-channel speech separation.
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