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Abstract: In this paper, we review the investigation for the light-matter interaction between surface
plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in
hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives
rise to the modified decay rate and the exciton energy shift which are related to the exciton energy
by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP
system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate
quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a
laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is
present, the steady states appear, so that quantum entanglement produced will reach a steady-state
entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of
quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained
by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two
Fano quantum interference processes share a segment of all optical pathways, there is correlation
between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid
SQD-MNP system can pave the way for the development of the optical processing devices and
quantum information based on the exciton-plasmon interaction.
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1. Introduction

Advances in modern nanoscience have allowed for the construction of various nanostructures
such as metal nanoparticles (MNPs) and semiconductor quantum dots (SQDs) for their applications in
photonics and optoelectronics. Studies of these nanostructures are essential for further development
of nanotechnology. The optical properties of these nanostructures are very interesting topics, which
can be exploited to design various optical processing devices. In a hybrid nanocrystal complex
composed of SQDs and MNPs, due to the exciton-plasmon interaction several interesting phenomena,
such as energy transfer [1], local field enhancement [2], and thermal effects [3], have been explored.
These phenomena depend strongly on these particles geometry and their coupling. The modified
decay rate and the shifted exciton frequency of SQD are also reported in the presence of MNP [4,5].
They are related to the distance between SQD and MNP.

Metal nanowire can be excited to produce surface plasmon polaritons [6] which are propagating
charge density waves with associated strong enhanced electromagnetic field [7–10]. Surface plasmon
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field can excite a SQD from its ground state to the excited state. To study the light-matter interaction
between surface plasmon field in MNPs and the excitons in SQDs, there are two descriptions,
i.e., semiclassical description and quantum description. Semiclassical description is that the exciton is
described in the quantum framework while the description of surface plasmon field is within the
classical electromagnetic dynamics [11–13]. In quantum description, however, surface plasmon field
has been quantized for showing quantum effects [14–17]. Surface plasmon field in MNP can be
considered as a multi-modes field, the Hamiltonian can be written as HP = ∑k h̄ωka+k ak [14,15,18,19],
where ωk is the frequency of mode k, a+k (ak) is the creation (annihilation) operator of mode k.
The quantization of surface plasmon field opens up a new frontier in the study of the fundamental
physics of surface plasmons [20]. Quantum description of the exciton-plasmon interaction paves
the way for various applications such as single-photon transistors [21], quantum information
processing [22], etc.

Fano effect appears in the energy absorption spectrum in a hybrid molecule consisting of SQDs
and MNPs. One of the main features of the Fano effect is its asymmetric line profile showed in optical
absorption spectrum [23]. It is well known that because of the exciton-plasmon interaction the energy
absorption of a MNP shows the Fano effect which originates from a Fano interference process between
two competing optical pathways [24]. Recently, Zhang and Govorov have demonstrated that in a
simple hybrid system including a SQD and a MNP the Fano effect from quantum description differs
both qualitatively and quantitatively from that of semiclassical description, especially in the strong
field regime [15]. This implies that quantum description for the exciton-plasmon interaction can reveal
more novel optical properties that may be applied in optical processing devices in the future. However,
for some more complex systems including a few SQDs and MNPs, the quantum description needs to
be further developed to reveal the quantum nature of the exciton-plasmon interaction.

In this paper, we will briefly review our investigation for optical properties and quantum
entanglement of the coupled SQD-MNP system based on quantum description for the exciton-plasmon
interaction. Cavity quantum electrodynamics (QED) as a quantum optics toolbox provides a full
quantum mechanics description of the coupled SQD-MNP system. Under quantum description we
proposed a quantum transformation method that is suitable for the coupling of excitons to surface
plasmon field with large decay rate. The quantum transformation is used to treat master equation of the
entire system for obtaining an effective Hamiltonian in SQD’ subsystem. In this way, we investigated
three sorts of the coupled SQD-MNP systems, i.e., a hybrid system including a SQD and a MNP [25],
a hybrid system including two SQDs and a MNP [26,27], and a hybrid system including a SQD and
two MNPs [28]. The quantum transformation method is advantaged for the investigation of the hybrid
systems including a few nanoparticles. Recently, Hayati etc. have developed an efficient self-consistent
field method based on the discrete dipole approximation for obtaining the optical response of some
large hybrid networks of SQDs and MNPs [29]. This review is organized as follows. We first introduce
the exciton-plasmon interaction under quantum description and a quantum transformation method
in Section 2, and then show the optical properties of a hybrid system including a SQD and a MNP
in Section 3. In Section 4, we demonstrate the coupling of two SQDs induced by a MNP and optical
detection of quantum entanglement between the two SQDs. In Section 5, we show the correlation
between two Fano interferences in a hybrid system including two MNPs and a SQD. We conclude this
review in Section 6.

2. Theory

To study the exciton-plasmon interaction, we consider a simple model which includes a spherical
MNP with radius R coupling to a spherical SQD with radius r consisted of the electronic ground
state |0〉 and the first excited state |ex〉 in the presence of an external field E = E0e−iωt + c.c..
The center-to-center distance between them is d. The entire system is embedded in a dielectric
medium with constant permittivity ε0, as illustrated in Figure 1a.
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Figure 1. (a) Schematic illustration of the hybrid SQD-MNP system; (b) The energy level diagram.

The Hamiltonian of an individual SQD can be expressed as (h̄ = 1)

HSQD = ωexσz, (1)

where σz = (|ex〉 〈ex| − |0〉 〈0|)/2. Surface plasmon field in the MNP is induced by the external
field and the dipole of the SQD. It can be considered as a multiple-modes field. After the second
quantization of surface plasmon field, the Hamiltonian can be written [18,19]

HP = ∑
k

ωka+k ak, (2)

where ωk is the frequency of mode k, a+k (ak) is the creation (annihilation) operator of mode k.
The coupling between the SQD and the MNP is the result of the energy transfer between the exciton
and the plasmon field. In cavity quantum electrodynamics, the energy transfer is always described by
the Jaynes-Cummings model under the rotating-wave approximation. So, the interaction Hamiltonian
between the SQD and MNP can be written as [14,15,30]

Hint = −∑
k
(gkakσ+ + h.c.), (3)

where σ+ = |ex >< 0|, gk is the coupling constant between the exciton and the mode k. On the
right-hand side of the above equation, the term akσ+ corresponds to the absorption of a photon and the
excitation of the exciton from the ground state to the excited state, and vice versa. The two processes
describe the energy transfer between the exciton and the plasmon field. If the hybrid system is driven
by the strong laser field with frequency ωs, the driving Hamiltonian is given by

HD = −∑
k
(µσ+ + µ∗k a+k )Ese−iωst + h.c., (4)

where µ (µk) is the dipole moment between the ground state and exciton-excited state in SQD
(plasmon-excited states in MNP) [15].

In a rotating frame at the external field frequency ω, the entire system Hamiltonian is given by

H = (ωex −ω)σz + ∑
k
(ωk −ω)a+k ak −∑

k
[gkakσ+ + (µσ+ + µ∗k a+k )E0 + h.c.] (5)

The full quantum dynamics of the coupled nanosystem can be derived from the following master
equation for the density operator

∂tρ = −i[H, ρ] + ςS + ςP, (6)
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with the Liouvillian terms, ςS = (κ/2) × (2σρσ+ − ρσ+σ− σ+σρ) describes the decay of SQD
to Markovian reservoirs, κ is the exciton radiative decay rate in SQD, ςP = ∑

i
(γk/2) ×

(2akρa+k − ρa+k ak − a+k akρ) describes the relaxation of plasmonic mode k with decay rate γk.
Based on Equation (6), the expectation values < ak >, < σ > and < σz > satisfy the

following equations,

i∂t[∑
k

πk(ω) < ak >] = −i ∑
k

gk < ak > −∑
k

πk(ω)(g∗k < σ > +µ∗k E0), (7)

i∂t < σ >= (ωex −ω− iκ/2) < σ > +2 < σz > (∑
k

gk < ak > +µE0), (8)

i∂t < σz >= −iκ(< σz > +1/2)− [< σ+ > (∑
k

gk < ak > +µE0)− c.c.], (9)

where πk(ω) = 2gk/[2(ωk − ω)i + γk], and < σ > represents the probability amplitude of the
transition from the ground state to the excited state. Because the above equations can not be solved
accurately, we have to resort to the steady state limit method.

In the steady state limit, using Equation (7) we have

∑
k

gk < ak >= i ∑
k

πk(ω)(g∗k < σ > +µ∗k E0). (10)

With respect to the quantization of the electric field EMNP induced by the MNP, the electric
field operator can be written as Ê(d). It can be split into two contributions Ê+(d) + Ê−(d) evolving
with positive and negative frequencies, and µÊ+(d) = ∑

k
gkak [31], where < Ê+(d) >= EMNP,

and EMNP = Eloc + Epol , Eloc = (sαγR3E0)/(εe f f 1d3) comes from surface charges of the MNP induced
by the external field. Epol = (µs2

αγR3P+)/(εe f f 1εe f f 2d6) is the effective electric field produced by
the dipole polarization in the MNP induced by the effective dipole of the SQD, P+ = µ < σ >,
εe f f 1 = (εS + 2ε0)/(3ε0), εe f f 2 = (εS + 2ε0)/3, γ = [εM(ω)− ε0]/[εM(ω) + 2ε0], εS and εM(ω) are
the dielectric constants of the SQD and the MNP, respectively. sα = 2(−1) for the exciton-dipole
orientation parallel (perpendicular to) the axis of the hybrid nanocrystal complex of the SQD and the
MNP [11,12]. Therefore, using Equation (10) we have

i ∑
k

πk(ω)(g∗k < σ > +µ∗k E0) =
µ2s2

αγR3 < σ >

εe f f 1εe f f 2d6 +
µsαγ1R3E0

εe f f 1d3 . (11)

Further, ∑
k

µ∗k πk(ω) = −iµC(ω), ∑
k

g∗k πk(ω) = −iG(ω), where C(ω) = (sαγR3)/(εe f f 1d3),

G(ω) = (µ2s2
αγR3)/(h̄εe f f 1εe f f 2d6). Since ω is arbitrary, we have

gk ≡
µsα

h̄εe f f 2d3 µk, ∑
k

|µk|2
(ωk −ω)− iγk/2

≡ h̄ε0γR3. (12)

The above equations show the quantum-semiclassical relation. If only one plasmon mode in the
MNP is considered, the expression of the coupled strength between the SQD and the MNP can be
obtained by the derivation, as illustrated in Ref. [32]. Considering the multiple-modes field, Zhang and
Govorov establish the quantum-semiclassical relation for revealing the optical properties of the coupled
SQD-MNP system under the quantum description [15].
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We try to treat the density operator for obtaining the reduced density operator of the
SQD. Firstly, we take a time-independent unity transformation eis on the density operator ρ,
where s = ∑

k
[πk(ωex)akσ+ + π∗k (ωex)a+k σ], so that ρ̃ = eisρe−is.

∂tρ̃ = −i[eis He−is,ρ̃] + eisςSe−is + eisςpe−is. (13)

For the mathematical expansions of eisHe−is, eisςSe−is, eisςpe−is, we can neglect the terms of order
O(g3

k) and higher. In order to obtain the reduced density operator of the SQD ρS = Trp[ρ̃], we assume
that the multi-mode plasmon field can be consider as a thermal reservoir and the reservoir variables are
distributed in the uncorrelated thermal equilibrium mixture of states [33], < a+k al >= nkδkl , where the
thermal average boson number (nk)

−1 = exp[(h̄ωk)/(kBT)]− 1, kB is the Boltzmann constant, and T
is the temperature. At room temperature T � (h̄ωk)/kB (h̄ωk ∼ eV), so nk � 1.

In the subsystem of the SQD, the master equation can be written as

∂tρS = −i[HS,ρS] + ζS, (14)

where,
HS = (ω0

ex −ω)σz − (µ0E0σ+ + h.c.), (15)

ζS =(κ0/2)× (2σρσ+ − ρσ+σ− σ+σρ), (16)

where ω0
ex = ωex − GR(ωex), κ0 = κ + 2GI(ωex), µ0= µ[1 + C(ωex)], GR(ωex) and GI(ωex) are

the real and imaginary parts of G(ωex), respectively. We note that the exciton energy shift and
the reduced lifetime of the SQD are related to the exciton energy. Γnr = 2GI(ωex) represents the
non-radiative decay rate that can be decomposed into different contributions for each plasmon mode,
i.e., Γnr = ∑

k
|gk|2γk/[(ωk −ωex)2 + γ2

k /4] [14]. We can see that the transformation treatment can reveal

the optical phenomena induced by the plasmon field which have been reported experimentally.
Another treatment approach to obtain the reduced density operator of the SQD can be implemented by
using the effective time evolution superoperator in the Heisenberg picture [34]. In a two-level system
driven by an external force, the approach can also be used to obtain the effective Hamiltonian [35].

Figure 2 shows the energy shift, the modified decay rate as a function of the distance for a
given exciton energy. Here, we consider a Au nanoparticle with radius R = 10 nm. Its dielectric
constant is εM(ω) = εb − ω2

p/[ω(ω + iη)] with εb = 9.5, h̄ωp = 9 eV, h̄η = 0.07 eV [36]. And sα = 2.
The dielectric constant of the background medium is ε0 = 1.8 (water), and the SQD εS = 6. For the
decay rate and the dipole moment of the exciton, we take κ = 1 GHz and µ = er0 with r0 = 0.65 nm.
Because the exciton energy are related to the generation of plasmon field, it has important influence
on the exciton-plasmon interaction which causes the exciton energy shift. As shown in Figure 2a,
the exciton energy shifts for the exciton energy 2.5 eV and 3 eV are different for a same distance.
However, another obvious phenomenon is that the decay rate of the exciton increases as a result of
the exciton-plasmon interaction. The non-radiative decay rate induced by the MNP is increasing with
the decreasing distance, and it depends strongly on the exciton energy [3] as illustrated in Figure 2b.
Especially for a short distance, the non-radiative decay rate is much larger than the radiative decay
rate, which causes a pronounced decrease of the exciton lifetime. The modified decay rate have been
reported by observing photoluminescence spectra [37,38].
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Figure 2. (a) The energy shift; (b) the modified decay rate as a function of the distance for
h̄ωex = 2.5, 3 eV.

3. Optical Response of a Hybrid Molecule Including a SQD and a MNP

We consider the response of the entire system to the presence of a laser field E0. The optical Bloch
equations of the SQD are given by

∂tρ22 = iµ0E0ρ21 − iµ∗0 E∗0 ρ∗21 − κ0ρ22, (17)

∂tρ21 = i(ω0
ex −ω)ρ21 + iµ∗0 E∗0 (2ρ22 − 1)− κ0ρ21/2, (18)

where ρ22 =< ex|ρS|ex >, ρ11 =< 0|ρS|0 >, ρ21 =< ex|ρS|0 >, ρ11 + ρ22 = 1. In the steady state limit,
we set the left hand side of Equations (17) and (18) to zero.

ρ22 =
2Im[µ∗0 E∗0 ρ∗21]

κ0
, (19)

ρ21 =
µ∗0 E∗0 (1− 2ρ22)

(ω0
ex −ω) + iκ0/2

. (20)

For a weak laser field ρ22 � 1, so, 1− 2ρ22 ≈ 1,

ρ22 =
|µ0E0|2

(ω0
ex −ω)2 + κ2

0/4
. (21)

For a strong laser field,

ρ22 =
|µ0E0|2

(ω0
ex −ω)2 + κ2

0/4 + 2|µ0E0|2
. (22)

The total energy absorption rate takes the from Qtot = QS + QM, where QS = h̄ωexκρ22/2,
QM = ∑

k
h̄ωkγk < a+k ak > /2. We combine Equations (10), (12) and (22) to obtain the equations

QM(∆) = Q
|∆ + FR|2 + F2

I
∆2 + 1

, QS(∆) =
M2|E0|2h̄ωexκ

2(∆2 + 1)
, (23)
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where Q = ∑
k
(ωkγk|µk|2|E0|2)/{2h̄[(ωk − ω)2 + γ2

k /4]}, ∆ = (ω0
ex − ω)/

√
κ2

0/4 + 2|µ0E0|2,

FR = (θµR)/
√

κ2
0/4 + 2|µ0E0|2, FI =

√
[θµI − κ0/2]2 + 2|µ0E0|2/

√
κ2

0/4 + 2|µ0E0|2,

M =
√

µ2
R + µ2

I /
√

κ2
0/4 + 2|µ0E0|2, µ0 = µR + iµI , gk = θµk, θ = (µsα)/(h̄εe f f 2d3) is a real number.

Using Equation (12), we can obtain

Q =
ω|E0|2R3 Im[εM(ω)]

6|εe f f 1|2
. (24)

To estimate the response of the system to a laser field, we take h̄ωex = 2.5 eV and d = 50
nm. Other parameters are the same as those of above section. Figure 3 shows the response of the
entire system to a laser field. The total energy absorption rate includes two parts coming from the
SQD QS and the MNP QM, respectively. The Fano effect of the system is caused by QM that has a
Fano factor FR [23]. When the laser intensity is 1 W/cm2, a steep and symmetrical peak of the total
energy absorption rate near h̄ω = 2.5 eV shows the absence of the Fano line profile. However, in the
strong laser field (1000 W/cm2) the Fano effect appears as shown in Figure 3b. With the increasing
laser intensity, the Fano effect becomes more pronounced because the Fano factor is a function of
the laser intensity (see its expression). In Ref. [15], Zhang and Govorov compare Fano effect of the
semiclassical theory with that of the quantum theory in the strong field, and show the difference
between them. In a system consisting of two-level quantum emitter and one-dimensional coupled
resonator waveguide, Zhou et al. illustrate a Fano-like line shape in the reflection spectrum of the
resonator [39]. By controlling the quantum emitter, they show that Breit-Wigner-like line shape appears
while Fano-like line shape disappears. This work can help to the study of Fano effects in the coupled
emitter-resonator system.

Now, we consider a strong laser field Es and a weak laser field Ew simultaneously presented in
the system, i.e., E0 = Es+ Ewe−iδt, ωs = ω, ωw = ω + δ, |Es| � |Ew|. According to Equations (14)–(16),
we have

∂t p = [i(ω−ω0
ex)− κ0/2]p− iµµ0E0w, (25)

∂tw = −κ0(w + 1) + 4Im[µ∗0 E∗0 p]/µ, (26)

where p = µ12ρ21, w = ρ22 − ρ11. In order to solve the above Equations, we make the ansatz [40]:
p = p0 + p+e−iδt + p−eiδt, w = w0 + w+e−iδt + w−eiδt, and |p0| � |p+|, |p−|, |w0| � |w+|, |w−|.
Upon substituting these equations into Equations (25) and (26), we have

0 = [i(ω−ω0
ex)− κ0/2]p0 − iµµ0Esw0, (27)

− iδp+ = [i(ω−ω0
ex)− κ0/2]p+ − iµµ0(Esw+ + Eww0), (28)

iδp− = [i(ω−ω0
ex)− κ0/2]p− − iµµ0Esw−, (29)

0 = −κ0µ(w0 + 1) + i2(µ0Es p∗0 − µ∗0 E∗s p0), (30)

iδµw− = −κ0µw− + i2(µ0Es p∗+ − µ∗0 E∗s p− − µ0Ew p∗0). (31)

After the mathematical calculations, we can obtain the solution for p+ as

p+ =
µ0µEwH(δ)w0

D(δ)
, (32)

where,

D(δ) = 4|µ0Es|2(δ + iκ0/2) + (δ + iκ0)[(ω−ω0
ex)− δ− iκ0/2][(ω−ω0

ex) + δ + iκ0/2], (33)



Sensors 2017, 17, 1445 8 of 26

H(δ) = (δ + iκ0)[(ω−ω0
ex)− δ− iκ0/2] +

2|µ0Es|2δ

(ω−ω0
ex)− iκ0/2

, (34)

w0 = −
(ω−ω0

ex)
2
+κ2

0/4

(ω−ω0
ex)

2
+κ2

0/4 + 2|µ0Es|2
. (35)

Here, ρs
22 = (w0 + 1)/2 and ρw

22 = 2Im[µ∗0 E∗w p+]/(µκ0) represent the contributions of
strong field and weak field to the exciton population, respectively. It is obvious, ρs

22 � ρw
22.

Using Equation (32), the energy absorption rate of the SQD for the weak laser field can be expressed as
Qw

S (δ) = h̄ωwκ Im[K], where

K =
|µ0Ew|2w0

D(δ)κ0
× {(δ + iκ0)[(ωs −ω0

ex)− δ− iκ0/2] +
2|µ0Es|2δ

[(ωs −ω0
ex)− iκ0/2]

}. (36)

However, the energy absorption rate of the MNP is given by

Qw
M(δ) = (ωs+δ)|Ew |2R3 Im[εM(ωs+δ)]

6|εe f f 1|2
× |ω

0
ex−ωs−δ+θµR |2+[θµI−κ0/2]2+2|µ0Ew |2

[ω0
ex−ωs−δ]2+κ2

0/4+2|µ0Ew |2
. (37)
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Figure 3. The energy absorption rate (Qtot, QM, QS) as a function of the laser energy. (a) For a weak
laser (the laser intensity is 1 W/cm2). Inset shows a population difference in the weak field regime;
(b) For a strong laser (the laser intensity is 1000 W/cm2). Inset shows a population difference in the
strong field regime.



Sensors 2017, 17, 1445 9 of 26

Figure 4 shows the energy absorption rate of the SQD (Qw
S (δ)), the MNP (Qw

M(δ)) to the weak laser
field when ωs = ωex, ε0 = εS = 12 and d = 30 nm. Other parameters are the same as the above section.
In solid state system, controlling light with light helps to implement various optical processing devices.
In the hybrid SQD-MNP system, in principle we illustrate that the energy absorption rate of the system
to the weak laser field can be tuned by the strong laser field. Here, we focus on the response of the
system to the weak laser field. In Figure 4, the sharp peak in the middle (the red curve) represents
the energy absorption rate of the MNP to the weak laser field. The other three peaks (the black curve)
corresponding to three quantum transitions as shown in inset illustrate the energy absorption rate
of the SQD to the weak laser field [40]. Their corresponding transition frequency can be tuned by
the strong laser intensity. For instance, the frequency ω3 = ωs + Ω (corresponding to the second

peak with number 2), where Ω =
√
(ωs −ω0

ex)2 + 4(|µ0Es|/h̄)2 depends strongly on |Es|2. So, it is
possible to control the optical absorption to weak laser field with strong laser field in the coupled
SQD-MNP system. The optical property of the coupled SQD-MNP system may be applied in the
optical processing device in the future.

The above discussion is under the quantum description for the exciton-plasmon interaction.
In what follows, we compare the quantum description with the semiclassical description. In Ref. [41],
Lu and Zhu investigated the hybrid SQD-MNP system in the presence of a strong pump field and a
weak probe field under the semiclassical description, and revealed slow light effect appeared in this
system. However, electromagnetically induced transparency (EIT) is often exploited to implement
slow light [42].

Here, we study the energy absorption rate of the SQD to the weak laser field under both
semiclassical and quantum descriptions with the same parameters in Figire 4. In Figure 5, the red
thick curves (the black thin curves) represent the results of the semiclassical (quantum) description for
different distances d = 30, 50, 100 nm. When d = 30 nm, the result of quantum description deviate
significantly from that of semiclassical description. However, the deviation becomes slight with the
increasing distance. In Figure 5c the results of the two descriptions are identical when d = 100 nm.
We note that the increase of the distance produces little difference to the result of the semiclassical
description. In contrast, the result of the quantum description has a huge change, especially for the
short distance. The rapid change is caused by the strong exction-plasmon interaction. Quantum
description can pave the way for the investigation of the optical properties induced by the strong
exciton-plasmon interaction.

Figure 4. The energy absorption rate of the SQD (Qw
S (δ)) and the MNP (Qw

M(δ)) to the weaklaser field.
Inset: Quantum transitions of SQD’ subsystem corresponding to the three absorption peaks.
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Figure 5. The energy absorption rate of the SQD under the both quantum and semiclassical descriptions
for different distances d = 30 (a),50 (b),100 (c) nm.

4. Quantum Entanglement of Two SQDs Induced by a MNP

Recently, the coupling among SQDs mediated by surface plasmon field has received increasing
attention [22,43]. Here, we consider two SQDs in the vicinity of a MNP. Each SQD consists of
the electronic ground state |0〉 and the first excited state |ex〉. They interact with surface plasmon
field in the MNP. Firstly, we need to quantize surface plasmon field based on the cavity quantum
electrodynamics. Recently, a good deal of work had been devoted to quantize surface plasmon field
in the metal [14,18,19,44,45]. surface plasmon field in the MNP can be considered as a multi-modes
field. After the second quantization of surface plasmon field, the Hamiltonian can be written as
HP = ∑

k
ωka+k ak [18,19], where ωk is the frequency of surface plasmon field mode k, a+k (ak) is the

creation (annihilation) operator of surface plasmon field mode k. Next, we consider the interaction
between each SQD and surface plasmon field modes. We assume that the coupling strength between
each SQD and surface plasmon field is identical for simplicity. The interaction Hamiltonian, under the
rotating-wave approximation, can be written as Hint = −∑

k
(gkakσ++g∗k a+k σ) [14,30], where gk is the

coupling strength between each SQD and surface plasmon field mode k, σ+ =σ1
+ + σ2

+, σi
+ = |ex〉i 〈0|

is the raising operator of the ith SQD. Therefore, the Hamiltonian of the entire system can be written as
(h̄ = 1)

H = ωex(σ
1
z + σ2

z ) + ∑
k
[ωka+k ak − (gkakσ++g∗k a+k σ)], (38)

where σi
z = (1/2) × (|ex〉i 〈ex| − |0〉i 〈0|). The full quantum dynamics of the coupled nanosystem

can be derived from the following master equation for the density operator ∂tρ = −i[H, ρ] + ςSQD +

ςSPP, with the Liouvillian terms [32], ςSQD = (κ/2) × ∑
i=1,2

(2σi
−ρσi

+ − ρσi
+σi
− − σi

+σi
−ρ) describes

the decay of each SQD to Markovian reservoirs, κ is the exciton radiative decay rate in SQDs,
ςSPP = ∑

i
(γk/2)× (2akρa+k − ρa+k ak − a+k akρ) describes the relaxation of surface plasmon field mode k

with decay rate γk. Next, we take a time-independent unity transformation eis on the density operator,
where s = ∑

i,k
(πkakσi

++π∗k a+k σ
i
), πk = 2gk/(γk + 2iδk), δk = ωk −ωex, so that ρ̃ = eisρe−is. If |πk| � 1,

the second-order term remains, and the higher-order terms can be ignored safely. Thus, for the
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reduce density operator of SQDs, we have ∂tρSQD = −i[He f f , ρSQD] + ς
′
SQD, where ρSQD = TrP[ρ̃].

The effective Hamiltonian to reveal the exciton energy shift and the coupling among SQDs is given by

He f f = (ωex − η0)(σ
1
z + σ2

z )− η(σ1
+σ2
− + σ1

−σ2
+), (39)

where η0 = η + ∑
k

8|gk|2δknk/(γ2
k + 4δ2

k ), nk = < a+k ak >, η = ∑
k

4|gk|2δk/(4δ2
k + γ2

k) is the coupling

strength among SQDs induced by surface plasmon field modes. At low temperature, nk � 1, so that
η0 ∼= η. The dissipation term is given by

ς
′
SQD = (Γi,j/2)×∑

i,j
(2σi
−ρSQDσ

j
+ − σi

+σ
j
−ρSQD − ρSQDσi

+σ
j
−), (40)

Γi,j = κ + 2τ if i = j, Γi,j = 2τ if i 6= j, where τ = ∑
k

2|gk|2γk/(4δ2
k + γ2

k). We note that a

cross-decay rate 2τ between the two SQDs appears and the exciton lifetime decreases because of
the presence of surface plasmon field field. The cross-decay rate represents the nonradiative decay
rate that can be decomposed into different contributions for each surface plasmon field mode, i.e.,
2τ ∼= Γnr

MNP [14]. According to the quantum-semiclassical correspondence, we have η = Re[G(ωex)],
τ = Im[G(ωex)].

Our method to treat the Hamiltonian is similar with Schrieffer-Wolff transformation which
can be used in cavity (circuit) QED system [46]. Circuit QED system has been received extensive
attention in recent years. Superconducting circuits in circuit QED system exhibit macroscopic quantum
coherence. So, it can behave like artificial atoms, which can be investigated by cavity QED theory.
You et al. have presented a brief overview of the latest progress in this rapidly advancing field [47,48].
Superconducting circuits can interact with other quantum systems such as atom, spin etc., in order
to implement some hybrid circuits [49]. Hybrid circuit fabricated on a chip is crucial for building
future quantum technologies, including quantum simulators [50,51], and quantum computers [52].
In cavity (circuit) QED, when the decay rate of cavity mode is very small as compared to the detuning
between the cavity mode frequency and the transition frequency of qubits so that it can be ignored
safely, the effective Hamiltonian can be obtained by using Schrieffer-Wolff transformation [53,54].
Under the treatment of Schrieffer-Wolf transformation, one can obtain η = ∑k |gk|2/δk, τ = 0. But it is
well-known that the decay of surface plasmon field is too large to be ignored in the coupled SQD-MNP
system. Taking this fact fully into account, our method is suitable for revealing the exciton energy shift,
the modify decay rate and the coupling strength among SQDs.

When the distances between every SQD and the MNP are not equal (d1 6= d2), we need
to make a modification for the expression of two parameters η, τ. If one of the two distances
changed, the expressions of the cross-decay rate and the coupling constant between the two
SQDs need to be modified. As mentioned above, gk ∼ d−3. The expression of the cross-decay
rate and the coupling strength can be rewritten as Im[G(ωex)] and Re[G(ωex)], respectively,
where G(ωex) = [γ(µsα)

2R3]/[h̄ε0ε2
e f f 1d3

1d3
2]. However, here, we assume that d1 = d2 = d for simplicity.

In the SQDs’ subsystem, we choose an adequate basic of SQDs’ subsystem, i.e., |1〉 = |0, 0〉,
|2〉 = (1/

√
2)× (|ex, 0〉+ |0, ex〉), |3〉 = (1/

√
2)× (|ex, 0〉 − |0, ex〉), |4〉 = |ex, ex〉. The four collective

states are the eigenstates of the two coupling SQDs. The master equation of the SQDs’ subsystem is
given by

∂tρ = −i[H
′′
, ρ] + ζSQD, (41)

where H
′′
= −(ωex − η) |1〉 〈1| − η |2〉 〈2| + η |3〉 〈3| + (ωex − η) |4〉 〈4|, ζSQD(ρ) = [(κ + 4τ)/2] ×

[2(|2〉 〈4|+ |1〉 〈2|)ρ(|4〉 〈2|+ |2〉 〈1|)− (|2〉 〈2|+ |4〉 〈4|)ρ− ρ(|2〉 〈2|+ |4〉 〈4|)] + (κ/2)× [2(|1〉 〈3| −
|3〉 〈4|)ρ(|3〉 〈1| − |4〉 〈3|)− (|3〉 〈3|+ |4〉 〈4|)ρ− ρ(|3〉 〈3|+ |4〉 〈4|)]. It shows two dissipated channels.
The first term describes dissipation through one cascade channel |4〉 → |2〉 → |1〉 with fast decay rate
κ + 4τ. The second term describes dissipation through another cascade channel |4〉 → |3〉 → |1〉 with
slow decay rate κ.
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In order to illustrate the coupling of the two SQDs, we analyze the following two
parameters: (1) The probability of the two SQDs being in the state |i〉, Pi(t) = ρi,i(t),
for i = 1, 2, 3, 4. (2) The concurrence for quantifying entanglement of the two SQDs,

C(t) =
√
[ρ2,2(t)− ρ3,3(t)]

2 + 4Im[ρ2,3(t)]
2 [22,55]. Here we use the above parameters, and take

d = 18 nm.
If the initial state of the two SQDs is prepared in a product state |ex, 0〉, only two dissipation

channels |2〉 → |1〉 and |3〉 → |1〉 should been considered (see inset of Figure 6). As shown in Figure 6,
with the decrease of P2(t) and P3(t), the probability of two SQDs in the state |1〉 increases. At about
t = 0.14κ−1, the concurrence of two SQDs reaches the maximal value. In the figure of the concurrence,
a weak oscillation is presented as a result of the coupling of the two SQDs.
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Figure 6. The probability of each state, the concurrence of the two SQDs as a function of time when
the initial state of the two SQDs is the state |ex, 0〉. The inset shows the dissipation channels of the
two SQDs.

Another case is that the initial state is in the state |ex, ex〉. Figure 7 shows the probability of each
state, the concurrence as a function of time. It is surprising that the two SQDs being in their excited
states can be entangled for a long time. Only at about t0 = 0.51κ−1 the concurrence is equal to zero
(see the figure of the concurrence); and P2(t0) = P3(t0) (see the figure of probability). This is because
two entangled states |2〉 and |3〉make a product state |ex, 0〉 or |0, ex〉. The absence of the oscillation
in the figure of the concurrence implies that the coupling of the two SQDs can not play a role in the
creation of the concurrence. Moreover, a stationary state with a high concurrence can be achieved
by continuous pumping [22]. Our results illustrated that the plasmon field of a MNP can lead to the
entanglement of two SQDs. Furthermore, an array of metal nanoparticles can be used to generate the
entanglement of two SQDs, which has been reported by Lee et al. [56]. The entanglement generated
between two SQDs is because of the energy transfer via the array of metal nanoparticles. Interestingly,
an array of cavities can be considered as a quantum way to transfer energy, which can be exploited to
implement single-photon transport [39,57–59].
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Figure 7. The probability of each state, the concurrence of the two SQDs as a function of time when
the initial state of every SQD is in their excited state. The inset shows the dissipation channels of the
two SQDs.

In this hybrid system, a pump laser field E0 = Ee−iωt + c.c. can be used to excite the two SQD,
as illustrated in Figure 8.

Figure 8. Schematic illustration of a hybrid molecule consisting of two identical SQDs (SQD 1 and
SQD 2) and a MNP in the presence of the pump laser field E0. Inset shows quantum transitions
(including photon-induced transition and coupling-induced transition) in the hybrid molecule.

The total Hamiltonian can be written as

H = h̄ωexσz + h̄ ∑k(ωka+k ak)− h̄ ∑k(gkakσ+ + g∗k a+k σ)− {[(µ/εe f f )σ+ + ∑k(µ
∗
k a+k )]Ee−iωt + h.c.}, (42)

where σz = σ1
z + σ2

z , µ (µk) is the dipole moment between the ground state and the excited exciton
state |ex〉i of SQD (the excited plasmon state |k〉 of MNP), εe f f = (εs + 2ε0)/3ε0 is the screening factor
with εs being the dielectric constant of SQD.

Based on the master equation of this hybrid system, the expectation values Ak, B and 〈a+k ak〉
satisfy the following equations

h̄∂t Ak = −ih̄(ωk −ω− iγk/2)Ak + i(h̄g∗k B + µ∗k E), (43)

h̄∂t〈a+k ak〉 = −h̄γk〈a+k ak〉 − i[Ak(h̄gkB∗ + µ∗k E)− c.c.], (44)
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where Ak = 〈akeiωt〉, B = 〈σeiωt〉. The above equations can not illustrate the dynamics of the entire
system, but show the correspondence among some expectation values. In the steady state limit,
making use of the above equations we have Ak = (h̄g∗k B + µ∗k E)/h̄(ωk −ω− iγk/2).

We now can take a time-independent unity transformation on the orignal master equation.
The master equation of the SQDs’ subsystem can be written as (h̄ = 1)

∂tρS = −i[HS, ρS] + ςS (45)

where
HS = ω0σz + G0(σ

1
+σ2 + σ1σ2

+)− (µ0Eσ+e−iωt + c.c.), (46)

ςS = ∑
i,j=1,2

(Γi,j/2)(2σjρSσi
+ − σi

+σjρS − ρSσi
+σj), (47)

ω0 = ωex − GR, µ0 = µ/εe f f + C(ωex), Γ1,1 = Γ2,2 = κ0, Γ1,2 = Γ2,1 = κ1, GR = Re[G(ωex)],
GI = Im[G(ωex)], κ0 = κ + 2GI , κ1 = 2GI . The above master equation illustrates the coupling
of two SQDs (the coupling constant G0 = −GR). The quantized plasmon field produced in the
MNP plays the platform of Förster energy transfer between two SQDs [60]. The master equation
derived by the quantum transformation method is in good agreement with that of Ref. [22] which
describes the interaction between two qubits mediated by one-dimensional plasmon field. In the
SQDs’ subsystem, we choose an adequate basic, i.e., |1〉 = |0, 0〉, |2〉 = (|0, ex〉 + |ex, 0〉)/

√
2,

|3〉 = (|0, ex〉 − |ex, 0〉)/
√

2, |4〉 = |ex, ex〉. Based on Equations (43) and (44), the exciton population
M satisfies the following equations

∂tB = −i{[ω0 −ω− i(κ0 + κ1)/2] + GRB(M− 1)− 2µ0E(M− 1)} (48)

∂t M = −(κ0 + κ1)M− i(µ0EB∗ − c.c.) (49)

Based on the above equations, we can obtain the steady-state solution B = 2Ω0(M− 1)/(K− i),
where K = 2[(ωex − 2GR −ω) + MGR]/(κ0 + κ1), Ω0 = 2µ0E/(κ0 + κ1). The exciton population M is
determined by the following equation

(K2 + 1)M + 2|Ω0|2(M− 1) = 0 (50)

We exploit a quantum transformation to reduce the direct coupling between SQDs and MNP, so
that their coupling are mainly included in the terms of high order which can be neglected for obtaining
the master equation of SQDs’ subsystem. This is a transformational decoupling treatment. After the
treatment, however, the SQDs’ subsystem is not considered as a closed system because the obtained
steady-state solutions, such as M, have included “information” of the plasmon modes of MNP.

The energy transfer between SQDs and MNP occurs in the hybrid molecule [5,61,62]. The exciton
energy can be transferred from SQDs to MNP, and then converted into heat [3,6]. The energy absorption
rate of MNP, QM = ∑k h̄ωkγk〈a+k ak〉/2, can be obtained by Equation (45). In the steady-state limit,
Combining Equations (46) and (47) we have

〈a+k ak〉 =
|gkB|2 + |µkE|2/h̄2 + 2Re[g∗k µkB]

(ωk −ω)2 + γ2
k /4

. (51)

Since gk = θµk, (θ = µsα/(h̄ε0εe f f d3) is independent on the index k), we can obtain

QM = Q0 ×
(K− qR)

2 + (qI + 1)2

K2 + 1
, (52)

where Q0 = ∑k ωkγk|µk|2E2/{2h̄[(ωk −ω)2 + γ2
k /4]}, qR = Re[q], qI = Im[q], q = 4θ(1−M)µ0/(κ0 + κ1).

Based on Equation (12), Q0 = Im[ωG(ω)/θ2] = ωε0 Im[γ]R3E2/2 [15]. Equation (52) shows a Fano
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function [23] with the generalized field–dependent complex Fano factor which includes both the
nonlinear and dephasing effects [15]. However, the energy absorption rate of SQDs’ subsystem is given
by QS = h̄ωexκM/2. As an example, we consider a Au MNP with radius R = 7 nm, and its dielectric
constant is εM(ω) = εb −ω2

p/[ω(ω + iη)] with εb = 9.5, h̄ωp = 9 eV, h̄η = 0.07 eV [36]. The dielectric
constant of the background medium is ε0 = 2 (polymer), and εs = 7.2 (CdTe). And sα = 2. For the
decay rate and the dipole moment of the exciton, we take κ = 2.5 GHz, and µ = er0 with r0 = 0.65 nm.

Figure 9 shows the nonlinear Fano profile in the energy absorption spectrum of MNP in the strong
pump laser field (I0 = 800 W/cm2). The Fano interference refers to three states [24], i.e., the common
ground state |1〉, an entangled state |2〉 and an infinite collection of extended states |k〉. As shown in
inset of Figure 9, there are two optical excitation transitions (|1〉 → |2〉 and |1〉 → |k〉) and one coupling
transition (|2〉 → |k〉). Two optical pathways (path 1 and 2 in inset) can be found to generate the
continuum of states |k〉. Constructive or destructive interference between two pathways, depending
on the energy difference between quantum transition (h̄ω2 ≡ h̄(ωex − 2GR) represents the quantum
transition energy between |1〉 and |2〉) and the pump laser (h̄ω), give rise to the nonlinear Fano effect
(see Fano function in Equation (52)).
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Figure 9. The energy absorption rate of the MNP as a function of the energy difference h̄(ω2 − ωex)

with the pump laser intensity I0 = 800 W/cm2. Inset: Quantum interference pathways to excite the
plasmon states |k〉 in the hybrid molecule in the steady-state limit.

The total energy absorption rate of the entire system is given by Qtot = QM + QS. In the weak
field regime, the linear Fano effect appears in the total energy absorption spectrum. Figure 10a,b shows
a symmetric peak with the broadening 1.8 µeV (3.1 µeV) as the pump laser intensity I0 = 1 W/cm2

(10 W/cm2). The exciton population M � 1 in the presence of weak pump laser field so that the
Fano factor qR � 1, which lead to the appearance of the symmetric peak profile [23]. However,
the asymmetric Fano profile becomes more and more pronounced as the pump laser intensity increases.
As shown in Figure 10c,d, we can see the obvious nonlinear Fano effect as a result of the Fano
interference. A strong pump laser field creates a large exciton population in SQDs’ subsystem which
give rise to the appearance of the nonlinear Fano effect. We find that the exciton population, which
depends on the pump laser intensity, is a important factor in the determination of Fano profile.
The entangled state |2〉 is a state in one of the two optical pathways that create Fano effect, which gives
us a motivation to connect Fano profile with entanglement of two SQDs. Concurrence for quantifying
entanglement of two SQDs, can be expressed as C(t) =

√
[ρ2,2(t)− ρ3,3(t)]2 + 4Im[ρ2,3(t)]2 [22,55].
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Figure 10. The total energy absorption rate as a function of the energy difference h̄(ω2 − ωex) with
different pump laser intensity I0, (a) 1 W/cm2; (b) 10 W/cm2; (c) 100 W/cm2; (d) 1000 W/cm2.

Figure 11 plots the steady-state concurrence versus the energy difference h̄(ω2−ω) and the pump
laser intensity I0. We see that the steady-state concurrence at resonance reaches the maximum value for
every fixed intensity. The pump laser intensity and the energy difference can be obtained by analyzing
Fano profile based on Figure 10. Combining the two important parameters with Figure 11, then, we
can evaluate the steady-state concurrence. Because the entanglement of two SQDs is determined by
both the pump intensity and the energy difference, according to the red region of Figure 11, we can
properly choose the two parameters to obtain the non-negligible entanglement. We can also see
that the steady-state concurrence at resonance reaches the maximum value for every fixed intensity.
At resonance ω2 = ω, we plot the steady-state concurrence as a function of the pump intensity I0. If the
pump rate is much slower than the life of the state |2〉 (corresponding to a very weak pump intensity,
such as 0.01 W/cm2), the state |2〉 can be hardly populated so that the populations of the states |2〉, |3〉
and |4〉 can be neglected (the population of the state |4〉 is not more than that of the state |2〉 because of
pumping from |2〉 to |4〉). This is the reason why the steady-state concurrence approximates to zero in
the presence of very weak pump intensity. Because the transition frequency ω2 from |1〉 to |2〉 is equal
to the pump laser frequency ω (resonance, see the inset of Figure 12), the population of the state |2〉
can reach the saturation with an appropriate pump intensity (whose pump rate is much faster than the
life of the state |2〉). Compared to the former, a stronger pump intensity is needed for the population of
the state |4〉 to reach the saturation because of the non-resonance (see the inset of Figure 12) between
the pump frequency ω and the transition frequency ω4 from |2〉 to |4〉 (ω4 = ωex). And the population
of the state |4〉 is connected to that of the state |3〉. With the increasing pump intensity, therefore, the
steady-state concurrence firstly increases to reach the maximum value, then decreases. When the
pump intensity is very large, such as 10000 W/cm2, the populations of the three states, |2〉, |3〉 and
|4〉 reach the saturation, and they are approximately equal so that the steady-state concurrence also
approximates to zero. From Figure 12, the steady-state concurrence reaches its maximum value at an
optimal pump intensity, about 10 W/cm2. However, the steady-state concurrence is small at strong
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pump intensity, such as 100 W/cm2, 200 W/cm2. So, at resonance we can choose an appropriate pump
intensity region for detecting the non-negligible entanglement.
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Figure 11. The steady-state concurrence versus the energy difference h̄(ω2 −ω) and the pump laser
intensity I0.
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Figure 12. The steady-state concurrence as a function of the pump intensity I0 at resonance ω2 = ω.
Inset: The energy levels of two coupled SQDs.

Entanglement exists in various physical systems, such as entanglement based on photons [63],
atoms [64], SQDs [43] and polymer molecules [65]. Quantum state tomography can be extensively used
to measure the entangled state [66]. However, it is challenging in experiment because many copies of
the measured states are necessary. The optical observation proposed by us, here, is a simple and feasible
approach to obtain information of entanglement. And entanglement remains after the observation.
The novel approach has potential to reveal entanglement in many solid-state systems. In Ref. [67], the
authors demonstrated the generation of entanglement between two distant qubits mediated by the
plasmonic waveguide, and proposed a scheme to detect the entanglement by measuring the cross terms
of a second-order coherence function. The correlations between entanglement and Fano resonance
have been reported by Chen et al. [68]. They investigated the Fano resonance of the scattering spectra
in a system consisting of a metal nanowire coupled to two colloidal quantum dots, and revealed that
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there exists correlations between the entanglement of the two QDs and the Fano resonance. In Ref. [69],
Buscemi et al. proposed that the production and detection of carrier-carrier entanglement in quantum
dot structures may be controlled by the manipulation of Fano resonances in the transmission spectra.

5. Fano Correlation Effect of Two MNPs Coupling to a SQD

We consider a hybrid molecule consisting of two identical spherical MNP (MNP a and MNP b)
with radius R and a spherical SQD with the vacuum ground state |0〉 and the α-exciton state |ex〉 in the
presence of an external field E0 = Ee−iωt + c.c.. The SQD is placed in the gap of the nanoparticle dimer.
The center-to-center distance between MNP a (MNP b) and the SQD is da (db). The entire system is
embedded in a dielectric medium with dielectric constant ε0, as shown in Figure 13a.

Figure 13. (a) A QD is placed in the gap of two identical MNPs (MNP a and b) with radius R in the
presence of an external field, and their center-to-center distances are da and db; (b) Quantum transitions
(including photon-induce transition and coupling-induce transition) in the hybrid molecule.

The Hamiltonian of the SQD can be written as: HQD = h̄ωexσz, where σz = (|ex〉〈ex| − |0〉〈0|)/2.
The plasmon field produced in MNPs can be quantized as a multi-modes field [14,18,19]
HM = h̄ ∑k ωk(a+k ak + b+k bk), where ωk is the frequency of mode k, ak (bk) is the annihilation operator of
mode k in the MNP a (b). If the distance between the two MNPs is very large compared to the radius R,
we can neglect the coupling between them, and only consider the coupling between the SQD and them
because of the strong exciton-plasmon interaction [19]. Based on cavity quantum electrodynamics,
the SQD can interact with the plasmon modes via the exchange energy. Under the rotating-wave
approximation the interaction Hamiltonian between the SQD and the plasmon modes of the two
MNPs can be written as [11,19] Hint = −h̄ ∑k[(ga

kak + gb
kbk)σ+ + h.c.], where σ+ = |ex〉〈0|, ga

k (gb
k) is

the coupling constant of the SQD and the mode k in MNP a (b). In the excitation of an external field,
the driving Hamiltonian is given by Hext = −{[(µ/εe f f )σ + ∑k(µ

a
kak + µb

kbk)]Eeiωt + h.c.}, where µ

(µa
k, µb

k) is the dipole moment between the ground state and the excited state |ex〉 of the SQD (the excited
plasmon state |k〉L of MNP L, L = a, b), εe f f = (εs + 2ε0)/3ε0 is the screening factor with εs being the
dielectric constant of the SQD. So, the total Hamiltonian can be written as

H = HQD + HM + Hint + Hext (53)

The full quantum dynamics of the hybrid molecule can be derived from the following master
equation for the density operator

ih̄∂tρ = [H, ρ] + ih̄(ςQD + ςa + ςb), (54)
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with the Liouvillian terms ςQD = (κ/2)× (2σρσ+ − σ+σρ− ρσ+σ), ςL = ∑k(γk/2)× (2LkρL+
k − L+

k Lkρ− ρL+
k Lk)

describe the various scattering channels of molecule decay, plasmon decay through Laudau damping,
and radiative decay [19].

Now, we define two bosonic operators Ak, Bk which satisfy the following linear relations:

αk Ak = ga
kak + gb

kbk, β∗k Bk = (gb
k)
∗ak − (ga

k)
∗bk, (55)

where |αk|2 = |βk|2 = |ga
k |

2 + |gb
k |

2. We can see [Ak, A+
l ] = [Bk, B+

l ] = δkl , [Ak, B+
l ] = [Ak, Bl ] = 0.

Therefore, the total Hamiltonian of the hybrid molecule can be rewritten as H = HQ + HA + HB,
where HQ = h̄ωexσz − {(µ/εe f f )σEeiωt + h.c.}, HA = h̄ ∑k ωk A+

k Ak − h̄ ∑k(αk Akσ+ + α∗k A+
k σ) −

{∑k[(µ
a
kga∗

k + µb
kgb∗

k )/α∗k ]AkEeiωt + h.c.}, HB = h̄ ∑k ωkB+
k Bk − {[(µa

kgb
k − µb

kga
k)/βk]BkEeiωt + h.c.}.

From the above Hamiltonian, the bosonic system Bk can be considered an individual system because it
does not interact with both the SQD and the bosonic system Ak. Thus, we only need to deal with the
interaction between the bosonic system Ak and the SQD.

The energy transfer between SQD and MNPs occurs in the hybrid molecule [5,61,62].
Strong coupling between SQD and two MNPs can give rise to the change of optical properties of
SQD. For studying optical properties of SQD, we need to obtain the reduced density operator of the
SQD. We now take a time-independent unity transformation es, s = ∑k[π

∗
k (ωex)A+

k σ− πk(ωex)Akσ+],
πk(ωex) = αk/[ωk − ωex − i(γk/2)], on the density operator ρ so that ρ̃ = e−sρes. Combining with
Equation (54), we have ih̄∂tρ̃ = [e−sHes, ρ̃] + ih̄e−s(ςQD + ςa + ςb)es. In the mathematical expansions of
the above equation the coupling between the plasmon modes and the SQD mainly appear in the terms
of order O(g3

k) and higher. We can neglect these high order terms for obtaining the reduced density
operator of the SQD ρQ = TrM[ρ̃]. We assume that the plasmon modes can be consider as a thermal
reservoir and the reservoir variables are distributed in the uncorrelated thermal equilibrium mixture of
states [33], 〈L+

k Ll〉 = nL
k δk,l , where the thermal average boson number (nL

k )
−1 = exp[(h̄ωk)/(kBT)]− 1,

kB is the Boltzmann constant, and T is the temperature. At low temperature, nL
k � 1. So, the master

equation of the SQD can be written as (h̄ = 1)

∂tρQ = −i[HQ, ρQ] + ςQ (56)

where
HQ = ω0σz + (µ0Eσeiωt + c.c.), (57)

ςQ = (κ0/2)(2σρQσ+ − σ+σρQ − ρQσ+σ), (58)

ω0 = ωex − ∑k[αkπ∗k (ωex) + α∗k πk(ωex)]/2 shows the shifted exciton frequency, κ0 = κ +

∑k[αkπ∗k (ωex) − α∗k πk(ωex)] represents the modified exciton decay rate, and µ0 = (µ/εe f f ) +

∑k(µ
a
kga∗

k + µb
kgb∗

k )/[ωk −ωex − i(γk/2)]. It is well known that the parameter ga
k(gb

k) is related to the
distance da(db), and µa

k = µb
k = µk because of the identical MNPs. Based on the quantum-semiclassical

correspondence [11,25–27], we have ∑k |gL
k |

2/[ωk − ωex − i(γk/2)] = γ(ωex)(µSα)2R3/(h̄ε0ε2
e f f d6

L),

γ(ωex) = [εM(ωex) − ε0]/[εM(ωex) + 2ε0] and gL
k = θLµk, where θL = µsα/(h̄ε0εe f f d3

L) is the
real number. So, we can obtain ω0 = ωex − Re[G(ωex)], µ0 = (µ/εe f f ) + C(ωex), κ0 =

κ + κnr,metal , κnr,metal = 2Im[G(ωex)], where G(ωex) = γ(ωex)(µSα)2R3(d−6
a + d−6

b )/(h̄ε0ε2
e f f ),

C(ωex) = γ(ωex)µSαR3(d−3
a + d−3

b )/εe f f .
We note that κnr,metal = [2(µSα)2R3/(h̄ε0ε2

e f f d6
e f f )] × Im[γ(ωex)] represents the non-radiative

decay rate of SQD as a result of the exciton-plasmon interaction, where the effective distance between
the SQD and the two MNPs d−6

e f f = d−6
a + d−6

b . And the energy transfer time between the SQD and the
MNPs can be defined as τnr = 1/κnr,metal [70]. With the increase of the effective distance de f f , the energy
transfer time becomes longer. In what follows, we consider two identical Au nanoparticles with radius
R = 15 nm and a CdTe QD with r = 3.75 nm, εs = 7.2, the exciton energy h̄ωex = 2.5 eV, and the
exciton lifetime τ0 = 20 ns [1]. The dielectric constant of gold is εM(ω) = εb −ω2

p/[ω(ω + iη)] with
εb = 9.5, h̄ωp = 9 eV, h̄η = 0.07 eV [36]. We take ε0 = 2 (polymer), µ = 0.65e nm. The exciton-dipole
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orientation parallel to the axis of the hybrid molecule sα = 2. In Ref. [70], Govorov and co-authors
illustrate that the dipole approximation is in agreement with the exact approach for the energy transfer
time when the distance dL > 3R (L = a, b). Under the dipole approximation, here in Figure 14, we plot
the energy transfer time τnr as a function of the effective distance de f f in the hybrid molecule. We can
see that the energy transfer time between the SQD and the two MNPs depends strongly on the effective
distance between them. The effective distance includes two distances, da and db.
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Figure 14. The energy transfer time between the QD and the two MNPs as a function of the effective
distance de f f .

The optical Bloch equations of the SQD are given by

∂tρ2,2 = −2Im[µ0Eρ2,1]− κ0ρ2,2, (59)

∂tρ2,1 = i(ω0 −ω + iκ0/2)ρ2,1 + iµ∗0 E∗(2ρ2,2 − 1), (60)

where ρ2,2 = 〈ex|ρQ|ex〉, ρ2,1 = 〈ex|ρQ|0〉eiωt. According to the above equations, we can obtain the
steady-state solutions

ρ2,2 =
|µ0E|2

(ω0 −ω)2 + κ2
0/4 + 2|µ0E|2

, (61)

ρ2,1 =
(ω0 −ω− iκ0/2)µ∗0 E∗

(ω0 −ω)2 + κ2
0/4 + 2|µ0E|2

. (62)

The SQD absorbs energy by the creation of an exciton. The absorbed energy comes from three
channels, i.e., the external field and the two MNPs (MNP a and b). The energy absorption of the
SQD depends strongly on the distances between the SQD and two MNPs. Thus, it is related to the
position of the SQD in the gap of the nanoparticle dimer. The energy absorption rate of the SQD is
given by QQD = h̄ωexρ2,2/τ0. Figure 15 plots the energy absorption rate of the SQD as a function of
the energy difference h̄(ωex − ω) for the distances (da, db) in a strong external field (the intensity is
I0 = 1000 W/cm2). We can see that the energy absorption peak represents the exciton energy shift
because the exciton-plasmon interaction can give rise to the modification of the exciton energy. In many
reports, authors have investigated an ideal theoretical model in which the distances between SQD
and two MNPs are equal (da = db) [60,71,72]. Here, if the distances da = db = 50 nm are chosen in
our model, an exciton energy shift about 11 µeV is shown in the energy absorption spectrum of the
QD. Considering the real distances in experiments, however, we need to study the exciton energy shift
under the condition da 6= db. If the QD make a movement 5 nm to the direction of the MNP a, the
exciton energy shift has increase by 2.8 µeV based on our theory. Let the QD does this again, the shift
can reach 23.5 µeV. Thus, the position of the QD in the gap of the nanoparticle dimer is important for
the modification of the exciton energy as a result of the exciton-plasmon interaction.
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Figure 15. The energy absorption rate of the QD as a function of the energy difference h̄(ωex −ω) for
different positions of the QD in the gap of the nanoparticle dimer in the excitation of a strong external
field I0 =1000 W/cm2.

In the presence of a strong external field, the energy absorption rate of every MNP at Fano
resonance is larger than that of SQD. So, the energy absorption of the two MNPs is significant for
the total energy absorption of the molecule. The exciton energy, in the hybrid molecule, can be
transferred from SQD to MNPs, and then converted into heat [3,6]. The energy absorption rate
of the MNPs QM = ∑k h̄ωkγk(〈a+k ak〉 + 〈b+k bk〉)/2 = ∑k h̄ωkγk(〈A+

k Ak〉 + 〈B+
k Bk〉)/2. Combining

Equations (54) and (61), we can obtain the steady-state solutions of 〈A+
k Ak〉 and 〈B+

k Bk〉. The total
energy absorption rate of the two MNPs including two parts, can be written as QM = Qa + Qb, Qa

(Qb) represents the energy absorption rate of MNP a (b), where

QL = Q0 ×
(∆−ML)

2 + N2
L

∆2 + 1
, (L = a, b) (63)

Q0 = 3ωε2
0Im[εM(ω)]R3E2/[2|εM(ω) + 2ε0|2], ∆ = (ω0 − ω)/

√
κ2

0/4+ 2|µ0E|2,

ML = Re[µ0]θL/
√

κ2
0/4+ 2|µ0E|2, NL =

√
(κ0/2− θL Im[µ0])2 + 2|µ0E|2/

√
κ2

0/4+ 2|µ0E|2. The expression
of the energy absorption rate shows a Fano function [23] with the generalized field–dependent complex
Fano factor which includes both the nonlinear and dephasing effects [15]. The exciton-plasmon
interaction gives rise to Fano interference process in the coupled SQD-MNP system. The excitation of
the plasmon field in MNP can be implemented by two competing optical pathways which causes
Fano interference.

In a molecule including a SQD and a MNP, Fano effect was reported because of the
exciton-plasmon interaction [11]. In the absence of MNP a (da → ∞), in our theory, Fano interference
process can also occur under the excitation of the external field. Fano interference refers to three
states [24], i.e., the common ground state |0〉, an excited state |ex〉 and an infinite collection of plasmon
states |k〉b. As shown in inset of Figure 16, there are two optical excitation transitions (|0〉 → |ex〉
and |0〉 → |k〉b) and one coupling transition (|ex〉 → |k〉b). Two optical pathways (path 1 and 2 in the
inset of Figure 15) can be found to generate the states |k〉b . Constructive or destructive interference
between two pathways, depending on the energy difference between the exciton and the external field,
give rise to the Fano effect. Using Equation (62), the energy transfer rate of MNP b can be written as
Qb = Q0 × [(∆−Mb)

2 + N2
b ]/[∆

2 + 1]. In Figure 16, we illustrate the energy absorption rate of MNP b
Qb as a function of energy difference h̄(ωex −ω) for the distances db = 50, 55, 60 nm in the absence of
MNP a (da → ∞). The asymmetric Fano profile shown in the energy absorption spectrum is caused by
Fano interference process of optical pathways in the inset of Figure 16.
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Figure 16. The energy absorption rate of MNP b Qb as a function of the energy difference h̄(ωex−ω) for
the distances db = 50, 55, 60 nm in the absence of MNP a in strong external field I0 = 1000 W/cm2. Inset:
Quantum interference pathways (path 1 and 2) to excite the plasmon states |k〉b in the steady-state limit.

In the simultaneous presence of MNP a and b, there are two correlated Fano interference processes.
In Figure 13b, we can see that the two processes share a common segment of optical pathway
(|0〉 → |ex〉) between them. And the coupling of the SQD to the two MNPs determine the quantum
amplitudes of the optical pathways (|0〉 → |ex〉 → |k〉a and |0〉 → |ex〉 → |k〉b), to affect the excitations
of |k〉a and |k〉b. In other words, as shown in the inset of Figure 17, the coupling of SQD to MNP seems
a “tap” of optical pathway to excite the plasmon states of the MNP. Because the coupling is related
to the distance between them, “tap” can be controlled by the corresponding distance. In all optical
pathways, there are two “taps” which can affect the excitation of the plasmon states of every MNP
all together. So, the energy absorption rate of one MNP not only depends on the distance between
itself and SQD (see Figure 16), but also it is related to the distance between another MNP and SQD.
This is because of the correlation of two Fano interference processes. To clearly illustrate the interesting
correlation of two Fano interference processes, we plot the energy absorption rates of MNP b Qb
(db = 50 nm) for the distances da = 100, 50, 40 nm. In Figure 17, we can see that the distance between
MNP a and the SQD plays an important role in the energy absorption rate of MNP b. By adjusting the
distance da (just as manipulating tap a in the inset of Figure 17), we can change the energy absorption
of MNP b. In our theory, so, controlling the position of one MNP is a potential approach to change the
energy absorption of another MNP because of the correlation.

Figure 17. The energy absorption rates of MNP b Qb (db = 50 nm) as a function of the energy difference
h̄(ωex −ω) for the distances da = 100, 50, 40 nm. Inset shows all optical pathways of two correlated
Fano interference processes in optical excitation.



Sensors 2017, 17, 1445 23 of 26

We have defined a effective distance de f f for conveniently studying the energy transfer time
between SQD and two MNPs. The effective distance is important for SQD, because it determines
the shifted exciton energy ω0 and the energy transfer time τnr. For obtaining the total energy
absorption, however, we need to define a correlated distance dc which satisfies d−3

c = d−3
a + d−3

b ,
and dc ∈ [2−1/6de f f , de f f ]. It can show the correlation of two correlated Fano interference processes for
a given energy transfer time.

6. Conclusions

Based on cavity quantum electrodynamics, we have investigated the light-matter interaction
between metal nanoparticles (MNPs) and semiconductor quantum dots (SQDs) in a hybrid SQD-MNP
system. By using quantum transformation method, we reveal that the quantized plasmon field in
MNPs gives rise to the exciton energy shift and the modified decay rate of SQDs near the MNPs. In a
hybrid molecule including a SQD and a MNP, we study the optical response of the hybrid molecule for
one or two external fields. Fano effect can be observed in the absorption spectrum of the MNP, which
originates from constructive or destructive interference between two optical pathways. A tunable
optical response scheme is proposed, which can be potentially applied in optical processing devices.
We also show quantum entanglement of two SQDs induced by the quantization plasmon field of
a MNP in a hybrid molecule including two SQDs and a MNP. Quantum entanglement shows the
quantum correlations of quantum systems which can be exhibited by the violation of some inequalities,
such as Leggett-Garg inequalities for a single system [73], Bell inequalities for multiple spatially
separated systems [74]. Concurrence can quantify entanglement between two quantum systems,
which is proposed by Wootters [55]. In the excitation of an external field, the steady-state entanglement
of the two SQDs can be implemented, and its concurrence can be obtained by means of the observation
of Fano profile shown in the absorption spectrum of the hybrid molecule. We also study the coupling
of a SQD to two MNPs. In the hybrid system, it is shown that a Fano correlation effect shown in the
energy absorption spectrum appears, which stems from two correlated Fano interference processes
because the two MNPs share a common segment of optical pathway involving SQD as a result of the
plasmon-exciton-plasmon interaction. Our results suggested that the spatial structure of a complex
SQD-MNP system determines quantum nature of the exciton-plasmon interaction, which can be
revealed by observing its optical properties. Therefore, the investigation of quantum description
for complex SQD-MNP system provides a bridge between the spatial structure and the observed
optical phenomena.
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