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Abstract: A novel classification model, named the quantum-behaved particle swarm optimization
(QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed
in this paper. Experimental validation is carried out with two different electronic nose (e-nose)
datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM)
algorithms, the combination coefficients of base kernels are regarded as external parameters of
single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base
kernels, the model parameters of each base kernel, and the regularization parameter are optimized
by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with
the composite kernel function. Four types of common single kernel functions (Gaussian kernel,
polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite
kernel functions. Moreover, the method is also compared with other existing classification methods:
extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors
(KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural
network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the
proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in
efficiency for gas classification.

Keywords: electronic nose; gas classification; extreme learning machine; multiple kernel learning;
weighted kernels; parameter optimization

1. Introduction

An electronic nose (e-nose) is a machine devoted to reproducing the smell processing procedure
of the mammalian olfactory system, which has played an immensely crucial role in a wide range of
realms, such as disease diagnosis [1], food industry [2], agriculture [3], environmental monitoring and
protection [4], etc. It incorporates chemical sensing systems (e.g., sensor arrays) and pattern recognition
systems (e.g., artificial neural networks). The chemical sensing systems convert information from gases
into electrical signals like olfactory receptors would. The pattern recognition systems discriminate
the different gases like a central processor would [5]. A general pattern discrimination system may
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be described as four different phases with specific platforms, namely, the data acquisition phase,
the feature extraction phase, the classification phase, and the decision-making strategy phase. The
aim of the classifiers is to assign the data to different categories by utilizing the corresponding feature
vectors derived from the feature extraction system [6]. Typically, according to specific mathematical
rules, the classifiers are first trained using the data of known volatiles that are related to a set of classes
held in a knowledge base. Then, the data of an unknown volatile are tested in the knowledge base and
the predicted class is provided. The issues of how to effectively capture the “fingerprint” of the smell
and how to classify the chemical volatile are possibly the most attractive research on e-noses among the
scientific community and have generated enormous interest worldwide [7–9]. Generally, this has been
implemented by analyzing the response of the gas sensor array (providing multivariate signals) when
exposed to chemical stimuli under well-controlled conditions (i.e., temperature, humidity, exposure
time, etc.) [10]. Not surprisingly, many papers achieved more than 90% classification accuracy on
various e-nose applications [11,12].

The concentration dependences of the most popular gas sensors (metal oxide semi-conductor,
MOS) to be utilized in practical e-noses can be shown as a nonlinear power function form [13].
This means that the MOS sensors provide the intrinsic power law response of sensor electrical resistance
to the concentrations of chemical stimuli. Moreover, when exposed to the mixture of several gases,
the responses of the sensors become much more complicated. Therefore, designing and realizing
a well-performed classification algorithm, which can simulate the relationship between the inputs (gas
information) and outputs (electronic signals) of gas sensors well, is an effective approach to enhance
the performance and enlarge the application field of the e-nose.

In this paper, we advocate the use of the well-known nonlinear approach, multiple kernel learning
(MKL), to improve the performance of the extreme learning machine (ELM). Additionally, we introduce
a simple but effective quantum-behaved particle swarm optimization (QPSO)-based weighed multiple
kernel extreme learning machine (QWMK-ELM) model and apply it to e-nose data classification for
the first time. This technique is attractive because it is simple and effective, furthermore, it is promising
for future use in online applications. We investigate the influence of its main parameters due to the
sensitivity of the algorithm to the parameter selection, i.e., the types and model parameters of the
base kernels, the regularization parameter of the algorithm and the weighting coefficients used to
construct the composite kernel. Furthermore, the performances of QWMK-ELM and other classification
methods, namely, kernel ELM (KELM), ELM, support vector machine (SVM), k-nearest neighbors
(KNN), probabilistic neural network (PNN), multi-layer perceptron with error back propagation
algorithm (MLP-BP), and radial basis function neural network (RBFNN), are compared for both
classification accuracy and execution time. Finally, we use one-way analysis of variance (ANOVA) to
test whether the classification methods have a significant influence on classification accuracy rate.

The rest of the paper is organized as follows. Different classifiers of e-noses, especially the
MKL-combined methods, are reviewed in Section 2. Section 3 introduces the methodology of the novel
weighed multiple kernel extreme learning machine classification model based on QPSO. The two
datasets used in our experimental validation are introduced in Section 4. Then, in Section 5, we present
extensive experimentation results and necessary discussions. In Section 6, we draw the conclusion
from the results and discussion in Section 5.

2. Related work

2.1. Classifiers

Scores of feasible and high-efficiency classification models have sprung up and been proven
to be promising in e-nose applications over the past few decades [14–18]. They can be concisely
categorized as two types [19,20]. One is the linear classifier. Early research by Martín et al. [21] utilized
linear discriminant analysis (LDA) in an e-nose system to accomplish certain classification tasks
about vegetable oils, which offers excellent classification and prediction competence. Song et al. [22]
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employed the partial least squares regression (PLSR) analysis to decide the predictive correlations
between e-nose responses, the chemical parameters of the controlled oxidation of chicken fat, free fatty
acid profiles, and gas chromatography-mass spectrometer (GC-MS) data and proved the promising
application of e-nose systems in chicken fat oxidation control. Thaler et al. [23] used an e-nose with
the logistic regression method to manage binary classification of bacteria data. Hassan et al. [24]
combined a probabilistic framework with spike latency patterns in an e-nose for the quantification or
classification of carcinogenic formaldehyde and used a naive Bayes classifier to evaluate the stochastic
variability in the spike latency patterns. The linear classifier is relatively easy to establish and basically
efficient, but functions in a limited manner when handling nonlinear problems.

As previous research work has demonstrated, the innate nonlinear attribute characterizes some
e-nose data [6]. More specifically, when analyzing volatile organic compounds (VOCs), the data
structure of the feature matrix derived from the e-nose response curves is nonlinear. Also, some
exceptions will render the data structure nonlinear and complex [25]. To better cope with the nonlinear
characteristic of the e-nose data, nonlinear classifiers are introduced into the e-nose applications.
Artificial neural networks (ANNs), which typically possess nonlinear attributes, have been used
in an e-nose system by Gardner et al. [26]. This work illustrated the superiority of the ANN over
conventional methodologies. Pardo et al. [27] applied SVM to e-nose data classification and found this
technique efficient, but strongly sensitive to the regularization parameter. Tang et al. [28] constructed
an e-nose system with a KNN-embedded microprocessor for smell discrimination and demonstrated
its excellent performance in distinguishing the chemical volatile of three kinds of fruits. In addition,
the decision tree, which is a tree structure comprising internal and terminal nodes, was used in both the
discrimination and dimensionality reduction of e-nose data by Cho et al. [29]. The nonlinear classifier
can model the complicated nonlinear relationship between inputs and desired outputs and exhibits
distinguished robustness and fault tolerance. Nevertheless, it shows delaying convergence and easily
falls into local optima.

2.2. ELM

ELM, first put forward by Huang et al. [30] in 2004, is a single-hidden layer feedforward neural
network (SLFN)-based learning algorithm, which selects hidden nodes randomly and computes the
output weights of SLFNs analytically rather than tuning parameters iteratively. In this way, it exhibits
excellent generalization performance at an exceedingly fast learning speed. Afterwards, Qiu et al. [31]
applied ELM to e-nose data processing for both qualitative classification and quantitative regression
of strawberry juice data and further concluded that ELM performed best in comparison to other
pattern recognition approaches such as the learning vector quantization (LVQ) neural networks and
SVMs. Over the last few decades, aware of the remarkable nature of ELM, a wide range of variants of
ELM have been proposed to tackle the unconsidered or open questions remaining in this promising
research field. As an example, fully-complex ELM (C-ELM) was designed to extend ELM from
the real domain to the complex domain by Li et al. [32]. Similarly, Huang et al. [33,34] suggested
incremental extreme learning machine (I-ELM), which incrementally increases randomly generated
hidden nodes and the improved form of I-ELM with fully-complex hidden nodes to extend it from the
real domain to the complex domain. They stated that I-ELM and C-ELM with fully-complex activation
functions and with randomly-generated hidden nodes not relying on the training data can serve as
universal approximators.

The kernel method, one of the various improvement methods for ELM, has aroused much interest
and been utilized to promote a variety of systems ever since. Pioneering work by Huang et al. [35]
succeeded in extending ELM to kernel learning, that is, ELM can use various feature mappings
(hidden-layer output functions) involving not only random hidden nodes, but also kernels. In other
words, in kernel ELM (KELM), which has been proven more efficient and stable than the original
ELM, the hidden layer feature mapping is determined by virtue of a kernel matrix. Furthermore,
KELM retains the characteristic of ELM, whose quantity of hidden nodes is randomly assigned. Then,
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Fernández-Delgado et al. [36] proposed a so-called direct kernel perceptron (DKP) on the basis of
KELM. Fu et al. [37] achieved the fast determination of impact location using KELM. More recently,
Peng et al. [38] perfectly applied KELM to the e-nose signals classification, which dramatically obtained
high efficiency.

Despite the great applicability, however, a multitude of research works have demonstrated that
the generalization ability of KELM is closely related to the kernel functions, and how to select or
construct an effective kernel function that adapts to the practical problems is invariably a hot issue in
the study of ELM. A simple KELM is generally implemented using a single kernel function, which
can only reflect the characteristics of one class or one facet of data, and therefore is bound to trigger
defects. The performances of KELMs with different kernels and model parameters are enormously
different. The model parameters after training are still intensely sensitive to the samples. Consequently,
the KELM has poor generalization ability and robustness due to the fixed form and a relatively narrow
range of variation for a single kernel.

Recently, to better and more suitably address a specific problem, a more popular idea on kernel
function establishment, called the multiple kernel learning (MKL) has been created and utilized.
The MKL creates a feasible composite kernel by properly combining a series of kernels [39,40]. One
of these kernels, the weighted kernel technique, has been further explored and has proved to be
strikingly efficient in various studies. To name just a few, Sonnenburg et al. [41] offered an approach
of convexly combining several kernels with a sparse weighting to overcome the problems within
traditional kernel methods. Additionally, in 2014, Jia et al. [25] proposed a novel weighted approach to
build the kernel function of kernel principal component analysis (KPCA) and utilized it in an e-nose
to predict the wound infection ratings by extracting the data structure in the original feature matrix
of wound infection data. They promoted the weighted KPCA (WKPCA) method and accomplished
higher classification accuracy than that of many other classical feature extraction methods under the
same conditions.

Moreover, research works have revealed the tremendous applicability of the weighted multiple
kernel methodology in the field of ELM. Liu et al. [42] accomplished pioneering work and employed
the weighted multiple kernel idea to solve two unconsidered issues in KELM and ELM: the ways of
selecting an optimal kernel in a specific application context of KELM and coping with information
fusion in ELM when there are various heterogeneous sources of data, and proposed sparse, non-sparse
and radius-incorporated multiple kernel ELM (MK-ELM) methods. Furthermore, Zhu et al. [43] put
forward the distance-based multiple kernel ELM (DBMK-ELM), which is a linear combination of base
kernels and the combination coefficients are learned by virtue of solving a regression problem. It can
attain an extremely fast learning speed and be adopted in both classification and regression, which
was not accomplished by previous MK-ELM methods. Li et al. [44] proposed two formulations
of multiple kernel learning for ELM by virtue of formulating it as convex programs, and thus,
globally optimal solutions are guaranteed, which also proved to be competitive in contrast to
the conventional ELM algorithm. In the learning of these different MK-ELMs, they are solved
by constrained-optimization problems with different constraints. Usually, only the combination
coefficients of base kernels and the structural parameters of classifiers (the output weights of
SLFNs) are learned and analytically obtained by a matrix inverse operation and the regularization
parameter C is specified arbitrarily [42,43]. In a different study, the regularization parameter C is
jointly optimized with the combination coefficients of base kernels and the structural parameters
of classifiers, which works better in most cases in comparison with the approach of pre-specifying
C [44]. This means that all the algorithms regard the combination coefficients of base kernels (weights)
as an inner parameter of SLFNs and obtain the optimal weights by serving them as constraints
of the joint optimization objective function. In addition, all the algorithms do not optimize the
kernel parameters of the base kernels, which are just specified as several special values. However,
the kernel parameters of the base kernels have strong effects on the spatial distribution of the data
in the high-dimensional feature space, which is defined by the kernel implicitly. On the other hand,
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the regularization parameter C is of great importance for the generalization performance of MK-ELMs.
Consequently, the kernel parameters of the base kernels and the regularization parameter C need to
be properly selected. All the MK-ELM algorithms emphasize the constrained-optimization problems
for learning and lose sight of the effectiveness of intelligence optimization algorithms for parameter
optimization. Furthermore, from a practical point of view, the application of MK-ELM in e-noses has
not been explored.

3. Methodology

3.1. KELM

ELM [30,33–35,45] provided a generalized solution for SLFNs, whose hidden layer need not be
tuned, and its learning speed is very fast. Compared with ELM, the KELM is able to ensure an implicit
mapping using a kernel function exclusively instead of considering the mapping relationship definitely.

In general, suppose there are N arbitrary distinct samples (xi, ti), where xi = [xi1, xi2, · · ·, xin]
T ∈ Rn

is the i-th e-nose sample and ti = [ti1, ti2, · · ·, tim]
T ∈ Rm is its corresponding sample class label.

ti = [0, . . . , 0, 1, 0, · · ·, 0]
k

T ∈ {0, 1}m if xi belongs to the k-th (1 ≤ k ≤ m) class. The number n denotes

the dimensionality of the data xi and m denotes the dimensionality of its corresponding sample class
label ti, which is equal to the number of classes. Then, SLFNs and the activation function g(·)are
modeled as:

D
∑

i=1
βig
(
wi · xj + bi

)
= oj, j = 1, · · ·, N

wi = [wi1, wi2, · · ·, win]
T , βi = [βi1, βi2, · · ·, βim]

T
(1)

where wi is the weight vector connecting the i-th hidden neuron and the input neurons, βi is the
weight vector connecting the i-th hidden neuron and the output neurons, D is the number of hidden
neurons, wi · xj and bi denote the inner product of wi and xj and the threshold of the i-th hidden
neuron, respectively. Finally, oj is the output vector of the i-th input sample.

Consequently, if an SLFN with D hidden nodes can approximate these N samples with zero error,

which means that
L
∑

j=1
‖oj − tj‖ = 0, there must exist βi, wi and bi such that:

D

∑
i=1

βig(wi · xj + bi) = tj, j = 1, · · ·, N (2)

which can be rewritten into a concise matrix form as:

HB = T, (3)

where:

H(w1 . . . wD, b1 . . . bD, x1 . . . xN) =

 g(w1 · x1 + b1) . . . g(wD · x1 + bD)
... . . .

...
g(w1 · xN + b1) . . . g(wD · xN + bD)

 (4)

B =

 βT
1
...

βT
D

 and T =

 tT
1
...

tT
N

 (5)

Here, H is the hidden layer output matrix of the neural network. Then, we can use the
Moore-Penrose generalized inverse of the hidden layer output matrix H labeled as H+ to obtain
a least-square solution as follows:

B = H+T (6)
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It is supposed to utilize a regularization coefficient C to calculate the output weights in terms of
ridge regression theory:

B = HT
(

I
C
+ HHT

)−1
T (7)

where I represents an identity matrix. Based on Equation (7), the output function can be written as:

f (xj) = h(xj)B =


h(xj)h(x1)

T

...
h(xj)h(xN)

T

( I
C
+ HHT

)−1
T =

 k(xj, x1)
...

k(xj, xN)


T(

I
C
+ K

)−1
T (8)

where h(xj) is the output of the hidden nodes by which the data from the input space is mapped
into the hidden layer feature space. For arbitrary α-th and ρ-th input samples xα(α = 1, 2, . . . , N)

and xρ(ρ = 1, 2, . . . , N), a kernel function k(xα, xρ) = h(xα)h(xρ)
T can be used to define the mapping

implicitly. Therefore, the index of the component of f (xj) with the highest output value can be regarded
as the predicted label of the sample xj [35].

3.2. Multiple Kernel Extreme Learning Machine

In the KELM, linearly inseparable patterns in the input space can be mapped into a high
dimensional feature space and become linearly separable patterns using the nonlinear mapping
of a kernel function, which can effectively achieve nonlinear classification. When applying the KELM,
it is extremely crucial to choose the kernel k(xα, xρ), which determines the model characteristics of the
KELM in Equation (8) and the performance for classification tasks. The generalization ability of the
KELM is closely related to kernel functions.

The KELM is implemented using a single kernel function, which can generally reflect the
characteristics of partial data in the feature space. However, the performances of KELMs with different
kernels and model parameters are of enormous difference, which determines the spatial distribution of
the data in the high-dimensional feature space. The model parameters after training are still exceedingly
sensitive to the samples. Consequently, the KELM has poor generalization ability and robustness
due to the fixed form and a relatively narrow range of variation for a single kernel. For a non-flat
distribution, finding suitable model parameters for KELM to fit both the rapid fluctuations and smooth
changes well is an arduous task, since it is virtually impossible to describe a non-flat distribution
well in any single feature space. However, taking multiple feature spaces into consideration may be
a feasible solution, which is implicitly defined by virtue of a series of kernels with different parameters.

After the MKL was first proposed and of use in solving semi-definite programming (SDP)
problems [39], researchers have more recently leveraged it to improve the performance of KELM
to overcome the apparent deficiencies of KELM [35]. The MKL considers a group of mappings:

φ : x ∈ Rn → φp(x) ∈ Fp L → Fp (9)

In general, an optimal kernel is supposed to be any convex combination of a group of semi-definite
functions, called base kernels. A weighted multiple kernels model can be defined as Equation (10),
mapping the feature space into Hilbert spaces, leveraging the kernel trick [46]:

k
(
xi, xj; λ, Θ

)
=

Q
∑

q=1
λq
〈
φq(xi), φq(xj),

〉
=

Q
∑

q=1
λqkq(xi, xj; θq)

Q
∑

q=1
λq = 1 and λq ≥ 0 ∀q

(10)
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where Q is a positive integer that is indicative of the number of base kernels, k =
{

kq
}Q

q=1 are previously

defined base kernels, Φ =
{

φq
}Q

q=1 are the feature functions of the base kernels, Θ =
{

θq
}Q

q=1 are the

set of kernel parameters, and λ =
{

λq
}Q

q=1 are the weighted coefficients of the base kernel combination.
Equation (10) is equivalent to mapping the feature space into several subspaces, which are weighed
consequently by the weights. Many characteristics of the optimal kernel are determined by the type
of base kernel function. Mercer’s theorem [47] has already provided the characterization of a kernel
function. Kernels can be divided into two categories: local kernels and global kernels [48]. For instance,
the Gaussian kernel is a quintessential local kernel, in which only the data that are close to each
other can influence the values of the kernel. Additionally, the polynomial kernel is a typical global
kernel, which possesses an influence on the kernel values, allowing data points far away from each
other. The composition of kernels may integrate the advantages of different kernels and has better
performance than any single kernel.

Liu et al. [42] first proposed a multiple kernel extreme learning machine (MK-ELM) to address
two issues in the research of ELM: (i) ELM pays little attention to optimizing the choice of kernels, and
(ii) ELM lacks general a framework to integrate multiple heterogeneous data sources for classification.
The approach regards the combination coefficients of base kernels (weights) as an inner parameter of
SLFNs and obtains the optimal weights by serving them as a constraint of the optimization problem.
The sparse MK-ELM, non-sparse MK-ELM, and radius-incorporated MK-ELM can be obtained from
the uniform objective function form according to the different constraints as Equation (11):

min
λ

min
B,ξ

1
2‖B‖

2
F +

C
2

n
∑

i=1
‖ξ i‖2

s.t. BT g(xi; λ) = ti − ξ i, ∀i,
m
∑

q=1
λq = 1, λq > 0, ∀q

(11)

where g(xi; λ)(i = 1, . . . , N) is the hidden layer output (feature mapping) corresponding to the training
data xi, B is the aforementioned output weights matrix of the SLFNs, ξ is the training error matrix on
training data, ξ i = [ξ1i, ξ2i, . . . , ξmi]

T(1 ≤ i ≤ N) is the i-th column of ξ, and C is the regularization
parameter which trades off the norm of output weights and training errors.

∣∣∣∣·∣∣|2F is the Frobenius norm.

3.3. QPSO-Based Weighted Multiple Kernel Model

According to the above viewpoints, in this work, we empirically specified four different types of
kernels (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel), which are applied
as base kernels for multiple kernel combination and the model parameters Θ and λ, which need to be
learned and optimized in order to realize an optimum mapping in the feature space. In our method,
two base kernels that possess the same form, but different parameters are added in a weighted way as
a new kernel function:

kαρ(Θ) = k(xα, xρ; Θ) = λ1k1(xα, xρ; θ1) + λ2k2(xα, xρ; θ2)

λ1 + λ2 = 1 and λ1 > 0, λ2 > 0
(12)

where the values of the weighting coefficients λ1 and λ2 are constant scalars, which are tuned in the
training process and constitute a tradeoff of the two base kernels when mapping a given sample.
The different values of λ1 and λ2 for different input space regions determine the characteristic of the
weighted kernel. The weighting coefficient can be viewed as the rate of the relative contribution of one
base kernel with respect to the other one. We employ various kernels with different parameters as base
kernel functions to constitute a weighted multiple kernel and then implement the KELM shown in
Equation (8).

As we all know, the performance of classifiers can be strongly affected by their parameters, which
depend heavily on the training data. The kernel parameters of the base kernels have strong effects
on the spatial distribution of the data in the high-dimensional feature space, which is defined by the
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kernel implicitly, and the regularization parameter C is of great importance for the generalization
performance of MK-ELMs. Consequently, the kernel parameters and the regularization parameter C
need to be properly selected. Besides, the weighting coefficients mentioned in Section 3.2 also need
to be learned and optimized to indicate the importance of each kernel before the combination of the
kernels and make the new combinatorial kernel obtain the best performance.

However, for the existing MK-ELM algorithms [42–44], the authors regard weights as an inner
parameter of SLFNs and obtain the optimal weights by serving them as a constraint of the optimization
problems. The kernel parameters of the base kernels and regularization parameter C are not optimized,
they are just specified as several special values empirically. The algorithms emphasize on the
constrained-optimization problems for learning but lose sight of the effectiveness of intelligence
optimization algorithms for parameters optimization. Therefore, it is difficult to obtain the optimal
model parameters and thus the best performance of the classifier.

In our method, the weights are not regarded as the inner parameters of SLFNs and the optimal
weights are also not obtained by solving optimization problems. We regard the weights as an external
parameter and optimize them by intelligence optimization algorithm, and then, the weighted sum
of base kernels using the optimized weights is applied to construct the composite kernel function
before implementing the KELM shown in Equation (8) with the composite kernel function. Meanwhile,
the kernel parameters of each base kernel and the regularization parameter C are not specified
arbitrarily, but optimized by an intelligence optimization algorithm simultaneously in order to obtain
the optimal solution.

Quite a few intelligent optimization algorithms, including genetic algorithm (GA) [49,50], particle
swarm optimization algorithm (PSO) [51,52], and quantum-behaved particle swarm optimization
(QPSO) [53,54], etc., have been devoted to e-nose pattern recognition. In view of the complexity and
especially the efficiency in our previous publication [38], QPSO [55,56] is leveraged to optimize the
values of C in Equation (8), λ1, λ2 in Equation (12), and the model parameters of the base kernels to
constitute a weighted multiple kernel and then implement the KELM shown in Equation (8), which is
named QPSO-based weighted multiple kernel extreme learning machine (QWMK-ELM).

QPSO integrates the quantum mechanics with the standard PSO by hypothesizing that each
particle has a quantum state which can be represented by its wave function ψ(X, t) instead of
the position and velocity in the standard PSO, where X = (x, y, z) is the position vector in
three-dimensional space. The behavior of the quantum-behaved particle is different from the particle
in standard PSO, where the position and velocity cannot be determined simultaneously. We can obtain
the probability density of the appearance of the particle in a certain position according to |ψ(X, t)|2,
and thus obtain the probability distribution function. For the probability distribution function, through
the Monte Carlo stochastic simulation method, the particle’s position is updated according to the
following equation:

xt+1
id = pt

id ± α
∣∣mbestt

id − xt
id
∣∣× ln(

1
u
), u = rand(0, 1) (13)

where xt
i = (xt

i1, . . . , xt
id, . . . , xt

iD)
T
(i = 1, 2, . . . M, 1 ≤ d ≤ D) means the position for the particle

i at iteration t, where M is the number of the particles in the population and D is the dimension
of the position (the number of the parameters that need to be optimized). α is the parameter of
the QPSO algorithm and called the contraction-expansion coefficient, and mbestt

id is the average

optimal position of all the particles and defined as mbestt
i =

1
M

M
∑

i=1
pbestt

i . pt
id is the local attractor and

defined as pt
id = ϕ× pbestt

id + (1− ϕ)× gbestt
gd, ϕ = rand(0, 1). pbestt

i = (pt
i1, . . . , pt

id, . . . , pt
iD)

T is
the local optimal position (the position giving the best fitness value) of particle i at iteration t and
gbestt

g = (pt
g1, . . . , pt

gd, ...pt
gD)

T is the global optimal position in the population at iteration t, where g is
the index of the optimal particle among all the particles in the population. The overall optimization
algorithm for solving the WMK-ELM incorporated QPSO is presented in Algorithm 1.



Sensors 2017, 17, 1434 9 of 19

Algorithm 1. The QPSO-based WMK-ELM.

1. Initialize: Swarm of QPSO: x = {λ, C, Θ}, pbest = pbest0, gbest = pbest0 and t = 0.
2. Construct: Composite kernel: K(Θ) = λ1K1(θ1) + λ2K2(θ2).
3. Input: K(Θ) and T.
4. Implement: KELM by solving Equation (8).
5. Output: Fitness value of QPSO (the classification accuracy).
6. Update: Position: λt+1, Ct+1, Θt+1 according to Equation (13),

Local and global optimum: pbestt+1, gbestt+1.
Iteration time: t = t + 1.

7. Repeat: Step 2 to step 8 until t = 200.
8. End and Output: gbest200 and the corresponding best fitness value.

4. Dataset

In this paper, two different datasets of gas sensor arrays are used, whose details have been
elaborated in our previous publications [57,58], respectively. Hence, the materials and experiments are
briefly revisited here to make the paper self-contained.

4.1. Dataset I

There are three indoor pollutant gases chosen as the targets, including toluene, formaldehyde, and
carbon monoxide, which will be distinguished by the e-nose. The sensor array contains five sensors: three
metal oxide semi-conductor (MOS) gas sensors (TGS 2201, TGS 2620, and TGS 2602) purchased from
Figaro Company (Osaka, Japan), one temperature sensor, and one humidity sensor. The TGS 2201 has two
outputs defined as TGS 2201A and TGS 2201B. The experimental platform is mainly made of an e-nose
system, a personal computer, a temperature-humidity controlling system, a flow meter, and a vacuum
pump. Before sampling experiments, the temperature and humidity of the chamber are set as 25 ◦C and
40%, respectively. Then, the experiment proceeds in terms of the following three procedures:

Procedure 1: Clean air circulates through all sensors for 2 min to acquire the baseline;
Procedure 2: Target gas is introduced into the chamber for 4 min;
Procedure 3: Clean air circulates through the array of the sensors for 9 min again to purge the

sensors and allow them to recover to the baseline.

The specific distribution of the data is shown in Table 1.

Table 1. Amount of samples in Dataset I.

Gases Training Set Test Set

Carbon monoxide 145 145
Toluene 33 33

Formaldehyde 126 126
Total 304 304

4.2. Dataset II

The sensor array (sensing unit) is composed of eight MOS sensors with four different models and
two different heater voltages, respectively. Two repetitions of the same sensor model are used in the
array, and the two repetitions operate at two different voltages (5.00 V and 5.65 V, respectively) induced
in the heater. Table 2 shows the details of the types and the heater voltages of sensors. Five independent
detection units (e-nose systems) are used, following the same system design and implementation.
Each unit is designed and built composed of eight MOS sensors (shown in Table 2) and is used for the
detection of four different kinds of gases (ethylene, ethanol, carbon monoxide, and methane). The same
experimental protocol is followed to measure the response of the five independent e-nose systems.
Each day, one single unit is devoted to test the four types of gases with 10 different concentration
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levels and obtains 40 samples in total. Moreover, the five independent units are tested several times
(a total of 16 days) over a 22-day period. Table 3 shows the day in which each unit is tested. The tests
are performed on 16 of the 22 days and no tests are conducted on the 5th, 6th, 12th, 13th, 19th and 20th
days. Overall, 640 samples are obtained.

Table 2. Models and Heater Voltages of MOS sensors.

Chanel Sensor Type Heater Voltage (V)

1 TGS2611 5.65
2 TGS2612 5.65
3 TGS2610 5.65
4 TGS2602 5.65
5 TGS2611 5.00
6 TGS2612 5.00
7 TGS2610 5.00
8 TGS2602 5.00

Table 3. Types and Heater Voltages of MOS sensors.

Number of Unit Days Tested

Unit 1 4, 10, 15, 21
Unit 2 1, 7, 11, 16
Unit 3 2, 8, 14, 17
Unit 4 3, 9
Unit 5 18, 22

MOS: metal oxide semi-conductor.

The experiment proceeds according to the following three procedures:

Procedure 1: All sensors are exposed to clean air for 50 s to measure the baseline of the
sensor response;

Procedure 2: The carrier gas is mixed with the selected volatile as the target gas and circulated
during 100 s;

Procedure 3: The sensors are purged out by re-circulating only clean air during the
subsequent 450 s.

The distribution of samples is shown in Table 4.

Table 4. Amount of samples in Dataset II.

Gases Training Set Test Set

Ethylene 80 80
Ethanol 80 80

Carbon monoxide 80 80
Methane 80 80

Total 320 320

Figure 1 manifests the representative response curves of the sensors for the two datasets.
The responses of Datasets I and II are respectively voltage values and resistance values. Additionally,
we take the steady-state values of responses for further research, or rather the peak values of responses
in Dataset I and the valley values of responses in Dataset II.
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Figure 1. Response curves of the sensors in the two experiments. Dataset I has four channels
(CH1–CH4), while Dataset II has eight channels (CH1–CH8).

5. Results and Discussion

Feature extraction methods have an important effect on the performance of the classifiers. They
can be roughly divided into three categories: (1) extract piecemeal signal features from the original
response curves of sensors, including steady-state response and transient responses such as peak
values, integrals and derivatives etc.; (2) extract fitting parameters of a specific model which is used
to fit the original sensor response curves; and (3) extract the transform coefficients of a specific
transformation of the original sensor response curves such as the fast Fourier transform (FFT) and the
discrete wavelet transform (DWT). Among the different features, the steady-state response (peak value)
denotes the final steady-state feature of the entire dynamic response process in its final balance and
reflects the maximum reaction degree change of sensors responding to odors. It is the most important
information to distinguish different types and concentrations of gases and is usually used as the most
common and simplest e-nose feature [59]. In this paper, we particularly emphasize the investigation
of the capability of the proposed classification model, but not the comparison of the discrimination
abilities of features. Therefore, the steady-state responses of the sensors are chosen as features for all
the control methods in order to eliminate the effect of different features. Each of the same operations
were carried out five times, and the average results of these are listed. The data has been divided into
two subsets: the training set and the test set, as shown in Tables 1 and 4. All procedures have been
designed and tested with the same operation environment (MATLAB R2014a under the Windows
Win10 (64-bit) operating system and 8 GB of RAM).

5.1. Performances of ELM with Different Models

First of all, we studied the effect of different numbers of hidden nodes and types of activation
functions on ELM. Figure 2 illustrates the performance of ELM with different numbers of hidden
nodes for the two datasets. In Figure 2, it is obvious that the classification accuracies of ELM for
both datasets are affected by not only the number of hidden nodes, but also the types of activation
functions. For Dataset I, the classification accuracy of ELM increases quickly with the number of
hidden nodes increasing from one to five, then goes up slightly until the number of hidden nodes
reaches 25, and thereafter, it remains relatively steady, except for ELM using the hardlim activation
function, which shows an overall rising trend. For Dataset II, the ELM using the hardlim activation
function is also an exception and presents an overall rising trend. For ELMs with the other four kinds
of activation functions, the classification accuracies climb up sharply until the number of hidden nodes
reaches 10, obtain the highest accuracies with hidden nodes with the number ranging from 20–40,
and then decline slowly. The generalization performance of ELM is affected greatly by the number of
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hidden nodes. It tends to become worse when too few or too many nodes are randomly generated.
When the hidden nodes are too few it cannot learn the training data well. On the contrary, if the hidden
nodes are too many, although the training error can be reduced, the training is easy to fall into the
local minimum because of the too complicated model and the training accuracy is inconsistent with
the test accuracy, i.e., overfitting. The number of hidden nodes is related not only to the number of
nodes in the input/output layer, but also to the complexity of the problem to be solved and the type
of the activation function, as well as the characteristics of the sample data. To avoid the overfitting
phenomenon when training the model and to ensure a good generalization performance, we should
make the structure of the model as compact as possible under the premise of meeting the accuracy
requirement, that is, we should use as few hidden nodes as possible.
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Figure 2. The classification accuracy of ELM in terms of 1–100 hidden nodes. The different colors of lines
represent different activation functions. (Note: ELM represents the kernel extreme learning machine).

5.2. Performances of KELM and QWMK-ELM with Different Kernels

Before comparing the performance of different classifiers, we first compared the influence of
four different kernel functions on QWMK-ELM and KELM for Dataset I and Dataset II (Figure 3).
Comparing the results of the two datasets, some similarities in performance can be observed.
The QWMK-ELM outperforms the KELM on the whole for both datasets no matter which type
of kernel is leveraged. Besides, it is worth noting that the weighted wavelet kernel shows the best
performance for both datasets. The sigmoid kernel presents the worst performance in KELM, and the
weighted sigmoid kernel also has the worst result compared with the other three QWMK-ELM models.Sensors 2017, 17, 1434  13 of 19 

 
Figure 3. Classification results of QWMK-ELM and KELM for Dataset I and Dataset II. (Note: QWMK-
ELM and KELM represent the quantum-behaved particle swarm optimization (QPSO)-based 
weighted multiple kernel extreme learning machine and kernel extreme learning machine 
respectively. In subplots (a) and (c), 1, 2, 3, and 4 represent Gaussian-kernel, polynomial-kernel, 
wavelet-kernel, and sigmoid-kernel, respectively. In subplots (b) and (d), 1, 2, 3, and 4 represent 
weighted-Gaussian-kernel, weighted-polynomial-kernel, weighted-wavelet-kernel, and weighted-
sigmoid-kernel.) 

5.3. Performances of Other Contrast Classification Models 

In order to further certify the advantages of QWMK-ELM in classification, we perform an 
explicit comparison between QWMK-ELM and other classification methods. A host of different 
classifiers, i.e., ELM, MLP-BP, RBFNN, PNN, KNN, and SVM, are used as contrasts to demonstrate 
the validity of the proposed methods. Tables 5 and 6 display the classification accuracies among 
different methods for Dataset I and Dataset II, respectively. From Tables 5 and 6, we can see that all 
classifiers performed consistently well for both datasets, and most of them obtained accuracies of 
more than 90%, except for KNN for Dataset II, which has an accuracy lower than 80%. In addition, it 
is interesting to note that the overall trend of the classification results of different methods for Dataset 
I is in accord with that for Dataset II (shown in Figure 4). The proposed QWMK-ELM classifier 
consistently has the highest accuracies for both datasets and can attain 97.90% and 95.57% accuracies, 
respectively, while the KNN has the worst performances for both datasets, which are much lower 
than those of the other classification methods. This indicates that QWMK-ELM has an obvious 
advantage over other control classification methods. Comparing Tables 5 and 6, we also can find that 
under the condition of uneven class sizes in the samples, the advantages of QWMK-ELM are more 
obvious, as it can choose a more appropriate kernel function to reflect the characteristics of the 
training data and thus has stronger generalization and robustness.  

Table 5. Classification accuracy of QWMK-ELM and the control methods for Dataset I.  

Class 
Accuracy Rate (%)

QWMK-ELM KELM ELM MLP-BP RBFNN PNN KNN SVM 
1 99.31 99.31 98.48 96.55 98.62 100.00 95.86 98.62 
2 98.79 93.94 92.73 100.00 96.79 93.94 96.97 93.94 
3 96.03 93.65 93.02 93.65 93.65 90.48 91.75 95.24 

Average 97.90 96.38 95.59 96.71 96.38 95.39 90.13 96.71 
1, carbon monoxide; 2, toluene; 3, formaldehyde; MLP-BP, multi-layer perceptron with error back 
propagation algorithm; RBFNN, radical basis function neural network; PNN, probabilistic neural 
network; KNN, k-nearest neighbors; SVM, support vector machine. 

1 2 3 4

Average

Formaldehyde

Toluene

Carbon monoxide

 
KELM for Dataset I

(a)

 
1 2 3 4

Average

Formaldehyde

Toluene

Carbon monoxide

 

(b)

WMK-ELM for Dataset I

 

1 2 3 4

Average

Ethylene

Ethanol

Methane

Carbon monoxide

 
KELM for Dateset II

(c)

 
1 2 3 4

Average

Ethylene

Ethanol

Methane

Carbon monoxide

 
WMK-ELM for Daataset II

(d)

 75

80

85

90

95

100

75

80

85

90

95

100

75

80

85

90

95

100

75

80

85

90

95

100

Figure 3. Cont.



Sensors 2017, 17, 1434 13 of 19

Sensors 2017, 17, 1434  13 of 19 

 
Figure 3. Classification results of QWMK-ELM and KELM for Dataset I and Dataset II. (Note: QWMK-
ELM and KELM represent the quantum-behaved particle swarm optimization (QPSO)-based 
weighted multiple kernel extreme learning machine and kernel extreme learning machine 
respectively. In subplots (a) and (c), 1, 2, 3, and 4 represent Gaussian-kernel, polynomial-kernel, 
wavelet-kernel, and sigmoid-kernel, respectively. In subplots (b) and (d), 1, 2, 3, and 4 represent 
weighted-Gaussian-kernel, weighted-polynomial-kernel, weighted-wavelet-kernel, and weighted-
sigmoid-kernel.) 

5.3. Performances of Other Contrast Classification Models 

In order to further certify the advantages of QWMK-ELM in classification, we perform an 
explicit comparison between QWMK-ELM and other classification methods. A host of different 
classifiers, i.e., ELM, MLP-BP, RBFNN, PNN, KNN, and SVM, are used as contrasts to demonstrate 
the validity of the proposed methods. Tables 5 and 6 display the classification accuracies among 
different methods for Dataset I and Dataset II, respectively. From Tables 5 and 6, we can see that all 
classifiers performed consistently well for both datasets, and most of them obtained accuracies of 
more than 90%, except for KNN for Dataset II, which has an accuracy lower than 80%. In addition, it 
is interesting to note that the overall trend of the classification results of different methods for Dataset 
I is in accord with that for Dataset II (shown in Figure 4). The proposed QWMK-ELM classifier 
consistently has the highest accuracies for both datasets and can attain 97.90% and 95.57% accuracies, 
respectively, while the KNN has the worst performances for both datasets, which are much lower 
than those of the other classification methods. This indicates that QWMK-ELM has an obvious 
advantage over other control classification methods. Comparing Tables 5 and 6, we also can find that 
under the condition of uneven class sizes in the samples, the advantages of QWMK-ELM are more 
obvious, as it can choose a more appropriate kernel function to reflect the characteristics of the 
training data and thus has stronger generalization and robustness.  

Table 5. Classification accuracy of QWMK-ELM and the control methods for Dataset I.  

Class 
Accuracy Rate (%)

QWMK-ELM KELM ELM MLP-BP RBFNN PNN KNN SVM 
1 99.31 99.31 98.48 96.55 98.62 100.00 95.86 98.62 
2 98.79 93.94 92.73 100.00 96.79 93.94 96.97 93.94 
3 96.03 93.65 93.02 93.65 93.65 90.48 91.75 95.24 

Average 97.90 96.38 95.59 96.71 96.38 95.39 90.13 96.71 
1, carbon monoxide; 2, toluene; 3, formaldehyde; MLP-BP, multi-layer perceptron with error back 
propagation algorithm; RBFNN, radical basis function neural network; PNN, probabilistic neural 
network; KNN, k-nearest neighbors; SVM, support vector machine. 

1 2 3 4

Average

Formaldehyde

Toluene

Carbon monoxide

 
KELM for Dataset I

(a)

 
1 2 3 4

Average

Formaldehyde

Toluene

Carbon monoxide

 

(b)

WMK-ELM for Dataset I

 

1 2 3 4

Average

Ethylene

Ethanol

Methane

Carbon monoxide

 
KELM for Dateset II

(c)

 
1 2 3 4

Average

Ethylene

Ethanol

Methane

Carbon monoxide

 
WMK-ELM for Daataset II

(d)

 75

80

85

90

95

100

75

80

85

90

95

100

75

80

85

90

95

100

75

80

85

90

95

100

Figure 3. Classification results of QWMK-ELM and KELM for Dataset I and Dataset II. (Note:
QWMK-ELM and KELM represent the quantum-behaved particle swarm optimization (QPSO)-based
weighted multiple kernel extreme learning machine and kernel extreme learning machine respectively.
In subplots (a) and (c), 1, 2, 3, and 4 represent Gaussian-kernel, polynomial-kernel, wavelet-kernel, and
sigmoid-kernel, respectively. In subplots (b) and (d), 1, 2, 3, and 4 represent weighted-Gaussian-kernel,
weighted-polynomial-kernel, weighted-wavelet-kernel, and weighted-sigmoid-kernel).

5.3. Performances of Other Contrast Classification Models

In order to further certify the advantages of QWMK-ELM in classification, we perform an explicit
comparison between QWMK-ELM and other classification methods. A host of different classifiers, i.e.,
ELM, MLP-BP, RBFNN, PNN, KNN, and SVM, are used as contrasts to demonstrate the validity of the
proposed methods. Tables 5 and 6 display the classification accuracies among different methods for
Dataset I and Dataset II, respectively. From Tables 5 and 6, we can see that all classifiers performed
consistently well for both datasets, and most of them obtained accuracies of more than 90%, except
for KNN for Dataset II, which has an accuracy lower than 80%. In addition, it is interesting to note
that the overall trend of the classification results of different methods for Dataset I is in accord with
that for Dataset II (shown in Figure 4). The proposed QWMK-ELM classifier consistently has the
highest accuracies for both datasets and can attain 97.90% and 95.57% accuracies, respectively, while
the KNN has the worst performances for both datasets, which are much lower than those of the other
classification methods. This indicates that QWMK-ELM has an obvious advantage over other control
classification methods. Comparing Tables 5 and 6, we also can find that under the condition of uneven
class sizes in the samples, the advantages of QWMK-ELM are more obvious, as it can choose a more
appropriate kernel function to reflect the characteristics of the training data and thus has stronger
generalization and robustness.

Table 5. Classification accuracy of QWMK-ELM and the control methods for Dataset I.

Class
Accuracy Rate (%)

QWMK-ELMKELM ELM MLP-BP RBFNN PNN KNN SVM

1 99.31 99.31 98.48 96.55 98.62 100.00 95.86 98.62
2 98.79 93.94 92.73 100.00 96.79 93.94 96.97 93.94
3 96.03 93.65 93.02 93.65 93.65 90.48 91.75 95.24

Average 97.90 96.38 95.59 96.71 96.38 95.39 90.13 96.71

1, carbon monoxide; 2, toluene; 3, formaldehyde; MLP-BP, multi-layer perceptron with error back propagation
algorithm; RBFNN, radical basis function neural network; PNN, probabilistic neural network; KNN, k-nearest
neighbors; SVM, support vector machine.
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Table 6. Classification accuracy of QWMK-ELM and the control methods for Dataset II.

Class
Accuracy Rate (%)

QWMK-ELMKELM ELM MLP-BP RBFNN PNN KNN SVM

1 99.00 100.00 93.50 98.00 91.88 87.75 87.50 99.50
2 98.25 92.50 95.00 96.25 95.00 93.75 86.25 93.00
3 96.25 96.25 90.50 97.50 96.88 94.00 83.75 92.25
4 88.75 85.00 81.00 88.75 85.00 89.50 61.25 88.50

Average 95.57 93.44 90.00 95.16 92.20 91.78 79.69 93.32

1, carbon monoxide; 2, methane; 3, ethanol; 4, ethylene.
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optimal model parameters obtained by QPSO is much different, which is shown in Table 7. MLP-BP, 
RBFNN, and PNN have much longer time consumptions than any other methods, which are from 
several times to more than 100-times those of the others. On the contrary, in sharp comparison to the 
better classification performance, the time consumption of QWMK-ELM is much less than the other 
classifiers, except for ELM, which means it has lower computational complexity. However, the 
increasing requirement for calculation compared with ELM represents a negligible loss as compared 
to the improvement of accuracy obtained. Besides, in order to show a notable improvement with 
respect the other methods clearly, we provide the relative improvement gain (RIG) of accuracy and 
execution time with respect the best competitors in Tables 8 and 9. It is obvious that for both datasets, 
the MLP-BP is the best competitor with the highest accuracy among the several control methods. 
However, the execution times of the QWMK-ELM are over 150 times and 200 times better than the 
MLP-BP, and the RIGs in the classification accuracy are 1.23% and 0.43% for two datasets, 
respectively. This means that QWMK-ELM not only obtains higher accuracy but also has huge 
advantages in real-time application. 

We use one-way analysis of variance (ANOVA) to test whether the classification methods have 
a significant influence on classification accuracy rate. Then, the test results from the two datasets can 
be obtained by statistical product and service solutions (SPSS), as shown as Tables 10 and 11. It can 
be found that the values of F statistic are 1276.017 and 2042.881, respectively, which are significantly 
greater than 1 and the significance values are both 0.000. Give the level of significance α = 0.05, we 
can reject the null hypothesis and judge that there is a significant difference of accuracy rate under 
different classification methods.  
  

1 2 3 4 5 6 7 8
75

80

85

90

95

100

Classifier Type

A
cc

ur
ac

y(
%

)

 

 

Dataset I
Dataset II

Figure 4. The overall trend of classification result among different methods of Dataset I and Dataset II.
(Note: 1, QWMK-ELM; 2, KELM; 3, ELM; 4, MLP-BP; 5, RBFNN; 6, PNN; 7, KNN; 8, SVM).

On the other hand, the execution time consumption of each classification method using the
optimal model parameters obtained by QPSO is much different, which is shown in Table 7. MLP-BP,
RBFNN, and PNN have much longer time consumptions than any other methods, which are from
several times to more than 100-times those of the others. On the contrary, in sharp comparison to
the better classification performance, the time consumption of QWMK-ELM is much less than the
other classifiers, except for ELM, which means it has lower computational complexity. However, the
increasing requirement for calculation compared with ELM represents a negligible loss as compared
to the improvement of accuracy obtained. Besides, in order to show a notable improvement with
respect the other methods clearly, we provide the relative improvement gain (RIG) of accuracy and
execution time with respect the best competitors in Tables 8 and 9. It is obvious that for both datasets,
the MLP-BP is the best competitor with the highest accuracy among the several control methods.
However, the execution times of the QWMK-ELM are over 150 times and 200 times better than the
MLP-BP, and the RIGs in the classification accuracy are 1.23% and 0.43% for two datasets, respectively.
This means that QWMK-ELM not only obtains higher accuracy but also has huge advantages in
real-time application.

We use one-way analysis of variance (ANOVA) to test whether the classification methods have
a significant influence on classification accuracy rate. Then, the test results from the two datasets can
be obtained by statistical product and service solutions (SPSS), as shown as Tables 10 and 11. It can
be found that the values of F statistic are 1276.017 and 2042.881, respectively, which are significantly
greater than 1 and the significance values are both 0.000. Give the level of significance α = 0.05, we can
reject the null hypothesis and judge that there is a significant difference of accuracy rate under different
classification methods.
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Table 7. Time consumption of QWMK-ELM and the control methods.

Classifier Type
Time Consumption (s)

Dataset I Dataset II

QWMK-ELM 0.1221 0.0493
KELM 0.1024 0.0612
ELM 0.0394 0.0411

MLP-BP 18.6100 10.0449
RBFNN 3.2600 3.5389

PNN 2.3503 4.9807
KNN 0.5115 0.8992
SVM 0.2054 0.1060

Table 8. Accuracy and execution time improvement gain with respect to the best competitor for
Dataset I.

Classification
Method

Accuracy (%) Execution Time (s)
Relative Improvement Gain

Accuracy Execution Time

QWMK-ELM 97.90 0.1221
1.23% 151.42 timesMLP-BP 96.71 18.6100

Table 9. Accuracy and execution time improvement gain with respect to the best competitor for
Dataset II.

Classification
Method

Accuracy (%) Execution Time (s)
Relative Improvement Gain

Accuracy Execution Time

QWMK-ELM 95.57 0.0493
0.43% 202.75 timesMLP-BP 95.16 10.0449

Table 10. ANOVA for Dataset I.

Sum of Squares df Mean Square F Sig.

Between Groups 194.542 7 27.792 1276.017 0.000
Within Groups 0.697 32 0.022

Total 195.239 39

Table 11. ANOVA for Dataset II.

Sum of Squares df Mean Square F Sig.

Between Groups 896.013 7 128.002 2042.881 0.000
Within Groups 2.005 32 0.063

Total 898.018 39

In order to visualize the process of the performance change, Figures 5 and 6 illustrate the iterative
process of both datasets when using QPSO to optimize the model parameters. It can clearly reflect how
the classification rates change in the optimization procedure. According to the two figures, it seems to
be able to draw conclusions that the control classification methods easily run into partial optimization
at the early stage of the iteration, and the performance of all methods tends to be stable within 100
iterations. Although the times of total iterations are 200, it is not useful to enhance the classification
effect with the increasing number of the iteration times, which only increases the time consumption of
the parameter optimization.
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Figure 6. The accuracy of QWMK-ELM and the control classifiers in the process of optimization for
Dataset II.

6. Conclusions

In this paper, we explored a new framework to enhance the performance of ELM, which was
combined with the weighted multiple kernels and the QPSO overmatching a generic single kernel.
QWMK-ELM leveraged the weighted combination of multiple kernel functions and the QPSO for
model parameters optimization. The weights were regarded as external parameters and optimized by
QPSO, and then, the weighted sum of the base kernels using the obtained weights was applied as a
kernel function. Meanwhile, the kernel parameters of each base kernel and the regularization parameter
were not specified arbitrarily, but optimized by QPSO simultaneously. Therefore, it could better identify
the characteristics of the data, increase the search space of the optimal kernel, enhance the robustness
of the classifier, and thus further ameliorate the accuracy of classification. In order to further certify the
efficiency of our method in classification, seven approaches, including ELM, KELM, MLP-BP, RBFNN,
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PNN, KNN, and SVM, were employed to deal with the same datasets and were compared with the
QWMK-ELM. The results indicated the proposed model, QPSO-based WMK-ELM, outperformed
KELM, ELM, BP, RBFNN, PNN, KNN, and SVM and had lower computational complexity. It was the
first time that the multiple kernels ELM algorithm was applied to e-nose data, which shows promising
performance. The results of the examination testified that the proposed QWMK-ELM offers a desired
precision and efficiency in classification. It also had great potential to be optimized in a better way in
future studies.
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