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Abstract: Data searching and retrieval is one of the fundamental functionalities in many Web of
Things applications, which need to collect, process and analyze huge amounts of sensor stream data.
The problem in fact has been well studied for data generated by sensors that are installed at fixed
locations; however, challenges emerge along with the popularity of opportunistic sensing applications
in which mobile sensors keep reporting observation and measurement data at variable intervals and
changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree,
a spatial indexing technique specially designed for searching data integrated from heterogeneous
sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected
from the SmartSantander smart city testbed show that the index structure allows efficient search
based on spatial distance, range and time windows in a large time series database.

Keywords: mobile sensor data search; opportunistic sensing; mobile sensing; spatial indexing; Web
of Things (WoT)

1. Introduction

The Web of Things (WoT) paradigm facilitates integration of the things and the data produced by
them, paving the way towards context-aware solutions and smart cyber-physical systems. The growth
in the number of connected things (a 2015 Ericsson report estimates 28 billion connected devices by
2021 [1]) will be accompanied with an explosive growth of data [2]. Since many applications can
be translated to a set of data queries [3], the ability to retrieve valuable information from the mass
of big data timely, efficiently and effectively is key to the success of cyber-physical systems. This
translates to the need for efficient data retrieval services that can provide support for structured (or
semi-structured) and rapidly changing content [2]. An important component of such data retrieval
service is an elastic and scalable indexing system, as identified in a recent survey of WoT indexing
models and techniques [2].

The emergent developments in domains such as smart cities, in which opportunistic sensing
become more and more ubiquitous, bring new challenges for searching data in the WoT. Opportunistic
sensing applications usually include mobile sources such as sensors mounted on city public transport
and from citizens’ smartphones for participatory sensing [4]. As noted in a recent survey of WoT
search techniques, the resulting data streams have dynamic properties that are “represented along
the thematic, temporal and spatial dimensions” [5]. They are typically termed as ‘frequently updated,
timestamped and structured’ (FUTS) data in the literature [4,6]. FUTS data cannot be treated as a pure
time-series, as each time-stamped observation value may be associated with a different geo-location
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value, and is not obtained at successive, equally-spaced time points. FUTS data is usually defined
in a structured format (e.g., JSON, XML or CSV), but the data models and schema adopted by the
heterogeneous sources to describe the data are normally different and not always compatible. The
resulting challenges for data search mechanisms can be summarized as follows: (1) data structures
used for indexing must be compact to avoid excessive state exchange; (2) the indexing method must
be able to deal with frequent updates of data from mobile sensing objects, and make it searchable
immediately, while at the same time support “low-latency query evaluation” [2]; (3) queries should be
able to request both current and historical data points for analysis; and (4) given the locality focus of
WoT applications, proximity queries must be efficiently supported.

Existing works for querying sensor observation data usually search for the data source (sensor
or smart objects) first and then establish communication channels to the selected objects to retrieve
the data, as in SensorMap [7] Liveweb [8] GeoCENS [9]. Such methods are not efficient for many
WoT applications that require complex data aggregation e.g., blending data from several sources.
Moreover, they mainly focus on real-time monitoring, where only the most recent (and usually static)
locations are recorded for data sources. For mobile data sources, retrieving historical data for previous
locations may not be a simple process, or sometimes even not possible as the location information
would have been over-written. Methods utilizing real-time indexing over data could be problematic
for data with high update frequency or velocity, for example in incremental indexing, only modest
update frequency is supported [2]. Another direction of research consists of approaches employing
trajectory indexing to address the challenge of mobile objects in the WoT, which indexes the trajectories
of moving objects [10–13]. However, the focus of trajectory indexing is the objects themselves, not
the data generated by those objects. As such, these mechanisms do not address the requirements
for updated locations with arbitrary timestamps, and cannot provide efficient time slice queries
for aggregation.

To address the identified challenges, this paper presents a spatial indexing method for observation
and measurement (O&M) data collected from mobile (as well as fixed) sensing objects. The method
enables: (1) opportunistic sensing queries over historical and current O&M values. This facilitates data
search in scenarios where there are no fixed installations of sensors in a geographical region. The data
can be approximated by using mobile sensors that may have reported the needed data for the desired
phenomenon (e.g., temperature) within a certain timeframe; and (2) time window-based queries
over historical data with spatial constraints. The developed mechanisms have been evaluated on the
SmartSantander (http://www.smartsantander.eu/) dataset, which is a real dataset with mobile sensing
sources covering a large area of the city of Santander, in northern Spain. The experiments performed on
this dataset show that the proposed method can successfully support both range and proximity queries
effectively. Comparisons to the state-of-the-art methods in terms of standard evaluation metrics, i.e.,
index creation and query response time, reveal that it outperforms the existing methods.

The rest of the paper is organized as follows: Section 2 reviews and compares related work in
sensor data search and supporting spatial indexing structures; Section 3 introduces the framework
of the data search system and elaborates the design of the Geohash-Grid Tree and query processing;
Section 4 presents the experiments and evaluation results in terms of index creation and query response
time. The results are also compared to those produced with the state-of-the-art; Section 5 concludes
the paper and outlines future research directions.

2. Related Work

A recent survey [2] of indexing mechanisms for the WoT identifies the R-family of data structures
as suitable for spatial access methods. A resolution framework for IoT services based on the R-Tree
data structure is presented in [14,15] where the operational areas covered by individual IoT services
are mapped into indexing servers. A distributed hierarchical discovery architecture is outlined with
catalogue servers storing the service areas of geographic indexing servers. On receipt of a discovery
request, first the top-level catalogue server is queried which uses the specified geographic scope to
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select the set of indexing servers that have service areas overlapping the request scope. The request is
then forwarded to the selected indexing servers with the rest of the service specification to be matched
and the results integrated. As R-Tree-based indexing is unable to scale with rapid metadata updates,
Wang et al. [16] overcome this limitation by indexing the gateways to which individual sensors connect
(the gateways also implement semantic repositories storing the sensor descriptions) instead of indexing
individual sensor service instances. Another semantics-based spatial search method [17] implements
a distributed federated architecture of nodes, with each node encompassing local semantic storage,
reasoning and search capabilities. The federated architecture is mapped to a hierarchical indoor
location model, which allows scalable management of the large number of IoT devices. This approach,
however, is tightly coupled to an indoor location environment, with semantic models describing logical
locations and their relative positioning. The OSIRIS sensor Web discovery framework [18] proposes
a combination of spatial, temporal (for temporal criteria in queries) and full-text (keyword-based
search) indices to improve discovery performance. However, it is difficult to envisage how this
approach can be applied in dynamic WoT environments which require frequent maintenance and
update of the services. The above reviewed approaches are geared towards searching for WoT-enabled
sensors or device descriptions, and not for the O&M values. Moreover, as stated in the WoT indexing
survey [2], traditional database indices and distributed indices are deemed insufficient to deal with the
WoT dynamics.

O&M data search is handled in SensorMap [7], Liveweb [8] and GeoCENS [9], which apply
different indexing methods to the spatial information of sensors to support sensor search. The O&M
data is then obtained by communicating directly to the selected sensors. O&M value queries are
supported by the IoT-SVK [19] engine, which translates the sampled sensor observation values into
keywords and then applies the value-Symbolized Keyword B+-tree indexing data structure to retrieve
the O&M values. Queries for historical data are supported by indexing both the sensed O&M values
and corresponding temporal information. The work in Linked Sensor Middleware (LSM) [20] focusses
on sensor description and data annotations. Data provisioning, including historical data search,
is supported through common interfaces. These O&M data search methods are not flexible to the
dynamic WoT requirements as they assume that the O&M data context is static and not likely to
change frequently.

Some works use prefix-overlapping hierarchical spatial (and temporal) structures to support
spatial search for sensor data. The LOST-Tree [21] is a spatio-temporal data structure for managing
sensor data loading and data caching on a client’s sensor web browser. It applies quadtree as the
spatial framework and the Gregorian calendar as the temporal framework. A quadkey and a calendar
string can be used to represent a spatio-temporal area. One of the notable features of the LOST-Tree
is that it can avoid transmitting large amounts of sensor data repeatedly and therefore, make the
sensor data loading process efficient. However, because of the highly dynamic nature of mobile
sensing data and client queries, it is not clear how efficient the data loading process could be. The
Aggregated Hierarchical Spatial (AHS) model [22] has been proposed to determine the topological
relationships between sensor data and queries in publish/subscribe systems. With a predefined
hierarchical indexing framework for (potentially complex) geometries, the AHS model can evaluate
newly published sensor data against subscriptions in very efficient ways. However, it is reported that
the indexing latency for point-based geometry is much smaller than other more complex geometry
types, e.g., lines and polygons.

The research of trajectory indexing considers both spatial and time domain of moving objects,
to enable multiple query functionalities. One research direction of trajectory indexing provides
efficient query for the nearest trajectory to one or several points [10]. This approach stores
approximated trajectories of moving objects and applies Discrete Wavelet Transform [23], and
Chebyshev polynomials [24] to approximate trajectories better or index faster. However, the time series
need to have the same length and the transform functions are not flexible for different queries [12].
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Another research direction is to provide the most recent locations of moving objects. For example,
the work in [11] provides a combination of spatial temporal R-Tree, hash table, and B-tree with
MongoDB, aiming at enabling an efficient real time access to latest locations. The research direction
that is similar to the approach proposed in this paper is indexing of historical spatio-temporal data. Two
methods, Sampling and Update on change only, are mentioned in [13] to minimize update. However,
the work for trajectory indexing always focuses on indexing objects, and does not provide a proper
way of accessing data generated by moving objects. As a result, the design of trajectory indexing does
not consider time slices and data aggregations functionalities, which makes answering the related
query inefficient. Moreover, trajectory indexing sometimes just indexes proximity of moving objects’
trajectories. This is not suitable for analysis of data from opportunistic sensing as it loses information
of the context of data.

Comparison Table and Requirements for Mobile Sensing Environments

To provide a clear view on different methods for sensor data search and query in the literature,
we summarize the characteristics of those methods, with a particular focus on mobile sensing data.
Specifically, Table 1 explains the relevant metrics that are illustrative of the requirements, including
data items, indexed domain, supported query, metadata update frequency, and query for historical
data. The first three evaluate the search-related features of the corresponding indexing and query
mechanisms, while the last two determine whether the reviewed methods provide support for mobile
sensing environments.

Table 1. Metrics of Indexing and Query.

Metrics Descriptions

Data Items Indicates the items managed by the reviewed system. They are the objects used for the
indexed domains and corresponding query functionalities.

Indexed Domain Spatial, temporal, or thematic domains indexed by the system.

Supported Query Query functionalities supported by the system.

Metadata Update
Frequency

Frequency of update for the metadata of sensor data, especially spatial information.
Frequently changing spatial information is one of the key characteristics in mobile sensing

environments and a good system should support high metadata update frequency.

Query for
Historical Data

Whether the reviewed system supports queries for historical data. Historical data is
important for data analysis.

Table 2 provides a comparison of the current state-of-the-art methods according to the metrics
defined in Table 1. Based the study, we identify some additional challenges that need to be addressed by
search mechanisms for mobile sensing data: (1) support for efficient metadata update of incoming data,
especially spatial information produced by mobile sensing objects; (2) Support of query for historical
data, which is important for data analysis such as detecting patterns and anomalies from sensing data
in a particular geographical area over a particular time period; and (3) aggregation functionalities are
vital for mobile sensing environments as data might not be measured in a synchronized way. In light
of these requirements, we design a sensor data search framework which combines the Geohash-Grid
Tree for indexing the spatial domain and Time-series Databases for control of the time domain, and
provides query support with spatio-temporal constraints and aggregations on time-series data. The
proposed method enables efficient indexing of spatial information from mobile sensing objects and
supports different types of queries for historical data.
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Table 2. Comparison Table of Related Work.

Search Method Data Items Indexed Domain Supported Query
Metadata
Update

Frequency

Query for
Historical

Data

IoT service resolution
framework [14,15] (R-tree)

IoT Service
metadata Spatial Point or area-based spatial

query Slow -

Wei et al. [16] (R-tree) Sensor
metadata Spatial Point-based spatial query Very fast Not

supported

OSIRIS [18] Sensor
metadata

A spatial Index for
spatial domain, a

temporal index for
temporal domain, a
full-text index for
thematic domain

Sensor instance discovery and
sensor service discovery based
on search criteria of metadata,

including spatial, temporal, and
thematic metadata

Medium Yes

SensorMap [7] Sensor
metadata Spatial Spatial search for latest values

generated by sensors Medium No

Liveweb [8] Sensor data

Keywords indexing for
thematic domain,

binary search tree for
values

Search for real-time content
based on keywords, category,

and value range
Slow Yes

GeoCENS [9] Sensor Web
Service

Spatial filling curve for
spatial domain

Geospatial search based on
key-value pair queries Slow Yes

IoT-SVK [19] Sensors,
devices, objects

Spatial-Temporal
R-Tree for spatial and

temporal domain,
B+-Tree for keywords

and values

Keyword-based search
Spatial-temporal search

Value-based search
Fast Yes

Linked Stream
Middleware (LSM) [20]

Sensor streams
as RDF triples -

SPARQL-based continuous
query with semantic constraints
(including spatial and temporal

domain constraints)

Slow Yes

LOST-Tree [21] Sensor data
and geometries Spatial, Temporal Spatial and temporal queries - -

AHS model [22]
Sensor

observation
data

Spatial Spatial query with complex
geometry Very fast Not

supported

Bouros et al. [10] Trajectories Spatial and temporal
Retrieval of the top-k

trajectories that pass as close as
possible to all query points.

Fast Yes

Chan et al. [23]
Haar Wavelets
transformed
trajectories

Spatial and temporal Range query and nearest
neighbour query for trajectories Fast Yes

Cai and Ng [24]
Chebyshev

approximation
of trajectories

Spatial and temporal K nearest neighbours query for
trajectories Fast Yes

Chen et al. [12] Trajectories Spatial and temporal K nearest neighbours query for
trajectories Fast Yes

Zhu and Gong [11] Trajectories
Spatio-temporal R-tree

for spatial and time
domain,

real-time access to latest
trajectories, trajectory-based

queries
Fast Yes

Proposed Approach
Virtualized
objects and
sensor data

Geohash-Grid Tree for
spatial domain, TSDB

for time domain

Query with spatio-temporal
ranges and phenomenon,

Aggregations on time-series
data

Very fast Yes

Note: “-“ means the feature is unknown or not made explicit from the paper.

3. Data Retrieval Framework

FUTS data has a number of properties that can be used for searching: the phenomenon
being measured (e.g., temperature, humidity etc.), the time and geographical location at which
the measurement was recorded, the involved mobile sensing source (e.g., public bus), etc. The
geographical property can be used to effectively reduce the search space, while others can be exploited
to perform accurate search within the reduced search space. With this consideration, we build the data
retrieval framework using geospatial indexing techniques and distributed O&M data repositories. We
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propose a spatial indexing mechanism as part of the data retrieval framework, particularly suitable for
opportunistic and participatory sensing applications. Before presenting the data retrieval framework,
we first introduce some of the important terms used throughout the paper and clarify their specific
meanings in the context of this work.

Definition 1 (Phenomenon). A physical property that can be observed and measured, whose value is estimated
by applying some procedure in an observation (OGC O&M [25], SWE terms [26]).

Example: temperature being measured by a temperature sensor installed on the top of a bus to
measure the temperature in the center of a city.

Definition 2 (Virtual Object). Virtual Objects (VO) are virtualizations of Real World Objects (RWO) that
have communication and interaction facilities with the surrounding environment and can provide real world
data. A VO has metadata describing the associated RWO and O&M data indicating the status of RWOs or
the environment.

Example: a virtualization of a public transport bus equipped with a temperature sensor to record
temperature values along its route in a city.

3.1. System Overview

Figure 1 shows a schematic representation of the functional blocks in the framework and their
sub-components: (1) a virtualization component to control the data processing flow that parses the
incoming data to extract the various features and feeds the extracted location values to the indexing
component. It also maps the parsed data according to a virtual object schema, along with the geohash
value generated by the Indexing component, to generate a data record to be stored in the time-series
database; (2) an indexing component that enables efficient search based on spatial properties and
returns the IDs of the selected VOs during query processing; (3) an Observation and Measurement
(O&M) Time-Series Database (TSDB) to store the sensing data; (4) a query flow control component to
analyse query features, distribute features to indexing component, rewrite the query to retrieve data
from the TSDB, and refine the returned results from TSDB; (5) a query interface for interacting with
users: specifying query parameters and presenting results.Sensors 2017, 17, 6  7 of 21 
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Figure 1. FUTS data retrieval framework. 

The framework supports FUTS data retrieval from a variety of data sources, which expose the 

data through Web interfaces. In our work, it collects data from mobile sensing objects in physical 

world (blue box), parses, processes, and manages the data in the cyber world (purple box). Since the 

schemas adopted by different sources may differ, a plug-and-play approach is adopted, with 

adaptors for extracting the data from heterogeneous sources. The adaptors utilize different scripts in 

various formats, e.g., JSON, CSV, XML etc., to parse the data. Our experience with sensor data 

streams (e.g., JSON data for SmartSantander and the Hypercat catalogue [27], CSV for London Air 

Quality Network [28] and a recent survey [29] on available sensor data streams for urban areas) 

shows the prevalence of these three representation formats. Figure 2 shows an example of the JSON 

data retrieved from the SmartSantander testbed and the resulting data record stored in the TSDB 

(the corresponding mapping template employs the gson (https://github.com/google/gson) 

deserialization library to convert JSON into Java objects). 

To overcome the technological heterogeneity, the parsed data from fixed as well as mobile 

sensors is mapped to a virtual object (VO) representation. This allows applications to interact with 

the data without being concerned about the dynamicity of the underlying objects. Abstraction of 

sensing sources should differentiate between ‘data about things’ (i.e., things’ metadata, e.g., identity, 

location etc.) and ‘data generated by things’ (i.e., O&M data) [30]. The proposed VO model is 

lightweight and includes metadata related to the RWOs. 

An abridged version of the VO model described in [4] is adopted in this work. Each VO is 

described with a unique identifier (ID) and a name. The associated O&M data is described by its 

associated phenomenon (e.g., temperature), actual measured value, unit of measurement, and time 

of the measurement. The measurement location information is captured in terms of a 

latitude-longitude pair and a geohash (http://geohash.org/) value. An example of VO instance is 

shown in Table 3.  

Table 3. Example of VO instance. 

ID 3021 Name bus3021 

Type http://dbpedia.org/page/Bus Mobile Yes 

Location {Latitude, Longitude, Geohash} 

{43.430007, −3.949993, eztpn45wn} 

Information {Name, Value, Unit of Measurement, Time, Description} 

{Particles, 0.89, mg/m3, 02 January 2015 17:33:19, density of particles with a diameter between 2.5 and 10 micrometres} 

{Humidity, 0.64, percentage, 02 January 2015 17:33:19, Humidity} 

Figure 1. FUTS data retrieval framework.
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The framework supports FUTS data retrieval from a variety of data sources, which expose the
data through Web interfaces. In our work, it collects data from mobile sensing objects in physical
world (blue box), parses, processes, and manages the data in the cyber world (purple box). Since
the schemas adopted by different sources may differ, a plug-and-play approach is adopted, with
adaptors for extracting the data from heterogeneous sources. The adaptors utilize different scripts in
various formats, e.g., JSON, CSV, XML etc., to parse the data. Our experience with sensor data streams
(e.g., JSON data for SmartSantander and the Hypercat catalogue [27], CSV for London Air Quality
Network [28] and a recent survey [29] on available sensor data streams for urban areas) shows the
prevalence of these three representation formats. Figure 2 shows an example of the JSON data retrieved
from the SmartSantander testbed and the resulting data record stored in the TSDB (the corresponding
mapping template employs the gson (https://github.com/google/gson) deserialization library to
convert JSON into Java objects).Sensors 2017, 17, 6  9 of 21 
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{ "id": "3021", 

  "latitude": "43.430007", 

  "longitude": "-3.949993", 

  "title": "bus3021", 

  "image": "http://lira.tlmat.unican.es/SmartSantander/iconos/tus.png", 

  "content": "<div class='googft-info-window'\n style='font-family: sans-serif; font-size: 10px;width: 

200px; height: 18em ; overflow-y: auto;'><table width='100%' border='0'>\n <tr>\n <td valign='top'> 

<h2 style='color: #5080e1'>NODE 3021</h2>Last update: 2015-01-02 17:33:19<br>Particles: 0.89 

mg/m3<br>Humidity: 64.00% </td>\n <td valign='top'></td>\n </tr>\n</table></div>", 

  "tags": "BUS"} 

{...} 

Figure 2. Example of Original Collected Data and its record in InfluxDB. (a) Example of Original
Collected Data; (b) Example of Data Record in InfluxDB.

To overcome the technological heterogeneity, the parsed data from fixed as well as mobile sensors
is mapped to a virtual object (VO) representation. This allows applications to interact with the data
without being concerned about the dynamicity of the underlying objects. Abstraction of sensing
sources should differentiate between ‘data about things’ (i.e., things’ metadata, e.g., identity, location
etc.) and ‘data generated by things’ (i.e., O&M data) [30]. The proposed VO model is lightweight and
includes metadata related to the RWOs.

An abridged version of the VO model described in [4] is adopted in this work. Each VO is
described with a unique identifier (ID) and a name. The associated O&M data is described by its
associated phenomenon (e.g., temperature), actual measured value, unit of measurement, and time of
the measurement. The measurement location information is captured in terms of a latitude-longitude
pair and a geohash (http://geohash.org/) value. An example of VO instance is shown in Table 3.

https://github.com/google/gson
http://geohash.org/
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Table 3. Example of VO instance.

ID 3021 Name bus3021

Type http://dbpedia.org/page/Bus Mobile Yes

Location {Latitude, Longitude, Geohash}

{43.430007, −3.949993, eztpn45wn}

Information {Name, Value, Unit of Measurement, Time, Description}

{Particles, 0.89, mg/m3, 02 January 2015 17:33:19, density of particles with a diameter between 2.5 and 10 micrometres}
{Humidity, 0.64, percentage, 02 January 2015 17:33:19, Humidity}

In the following, we provide details on the two main parts of the framework: data repository
mapping and query processing.

3.2. Data Repository Mapping

The data can be collected by using either available Web APIs or by engineering data transfer
using URLs (cURL (https://curl.haxx.se/) scripts), and then parsed by the ‘Data Parser’ by applying
relevant mapping JSON, CSV or XSL scripts. The location information from the parsed data, in terms
of latitude-longitude pair, along with the VO-ID, forms the input to the Indexing component (described
in Section 3.2.1).

The indexing component uses grids to partition the indexing space into equal-sized cells, which
can achieve potentially good performance during updating and querying. It also generates the geohash
value of the location information and returns it to the ‘Data Record Mapping’ component, which
stores the generated geohash string, the O&M values and the associated metadata into the TSDB. The
O&M data store is an InfluxDB (https://docs.influxdata.com/influxdb/v1.2/) time-series database
that is optimized for high speed data ingest, query loads and data compression. It is available in
both enterprise (Linux packages) and containerized (Docker image) versions. It offers write and
query HTTP(S) APIs and a SQL-like query language for the aggregated data. To support FUTS
data queries, which combine both spatial and temporal constraints, we extend InfluxDB with spatial
query functionality.

As listed in Table 4, InfluxDB provides six concepts in its implementation. Databases in InfluxDB
are independent of each other. To store data into or query InfluxDB, a specific database has to be
chosen. Measurements are different groups of data, and are used for indicating the source virtual
objects. InfluxDB is a schema-less data store, so measurements (comparable to tables in relational
databases) do not need to have defined structures. Both tag and field (tag-key, tag-value, field-key
and field-value) are columns in the table. Data in the same row in a measurement is called a data
record. InfluxDB provides built-in indexing for tag-values (as string) and efficient query matching.
Field-values are numeric and not indexed. Arithmetic comparisons of field-values are performed in a
brute force way in the InfluxDB. The parsed VO information, including the measured environment
phenomenon, their values and the associated timestamp, along with the generated geohash value, are
reformatted into a data record before being written into InfluxDB.

Table 4. Storage Mechanism of InfluxDB.

Database Measurement Tag-key Tag-value Field-key Field-value

mydb vo_3021 geohash eztpn45wn humidity 0.64

Definition 3 (Data Record). A data record is a 5-tuple of the form [<vo-id>, [<tag-key>=<tag-value> . . .
(0..n)], [<field-key>=<field-value> . . . (1..n)], <geohash>, <unix-nano-timestamp>].

http://dbpedia.org/page/Bus
https://curl.haxx.se/
https://docs.influxdata.com/influxdb/v1.2/
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Thus, a data record consists of a vo-id, O&M measured values recorded in terms of at least
one field-key and field-value pair, zero-to-many tag-key and tag-value pairs, the timestamp and the
generated geohash. Figure 2a shows a snippet of an example FUTS data point and the resulting data
record (Figure 2b) in InfluxDB.

3.2.1. Geospatial Indexing for FUTS data from Mobile Sources

The core component of the proposed indexing method is the Geohash-Grid Tree structure, which
is responsible for indexing spatial information of VOs. The tree stores the IDs of the VOs in leaf nodes
whose spatial range covers the location of those VOs. The detailed information of VOs, formatted into
data records, is stored in InfluxDB according to the data repository mapping mechanism, as described
in the preceding section.

In the Geohash-Grid Tree structure, a node stores the prefix of geohash and the range it covers.
Geohash is a geocoding algorithm that uses Base-32 (https://en.wikipedia.org/wiki/Base32) encoding
and bit interleaving to convert latitude and longitude pairs to a string (which can also be reverted
to the original latitude and longitude pair). A geohash is an encoded latitude and longitude pair
representing a grid on the map. One bit divides the entire map area into two parts and adding more
bits divides the map into more grids (e.g., 4, 8, 16, and 32). Since one character in a geohash string
represents a 5-bit array, an area can have 32 grids in the order of Z as shown in Figure 3. For example,
the grid of ez can be divided into 32 child grids, among which the grid of ezt can be divided into
another 32 child grids. The longer the geohash string, the smaller the range of the grid and the higher
the resolution. Geohash also represents a hierarchical structure, with a longer geohash string’s spatial
range subsumed by a shorter geohash string with the same prefix. With different lengths of geohash, a
geographical area can be divided into different number of grids with different sizes.Sensors 2017, 17, 6  10 of 21 
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Figure 3. Z-order Filling Curve to Show Geohash Division. Maps are generated by using the Geohash
Explorer service [31].

The structure of the Geohash-Grid Tree is shown in Figure 4, in which a parallelogram represents a
node of the tree. A node stores the two pairs of latitudes and longitudes of the corresponding map grid
as well as its geohash. The rectangles (showing part of the maps) in Figure 4 indicate the geographical
scope covered by the nodes. The maximum level of the tree is set as 8 and the root node is at level
0. Each non-leaf node of the tree can have at most 32 children and the leaf nodes are represented
by 8-length geohashes. An example of the range covered by the leaf node is shown in Figure 4 with
geohash “eztr32jn”, which covers around 200 m2 in Santander, Spain. A node in the Geohash-Grid tree
specifies a fixed spatial range which covers the range of all its child nodes. There is no overlapping
between nodes at the same level. The inserted IDs of the Virtual Objects (VO_IDs) are only stored in
the leaf nodes.

https://en.wikipedia.org/wiki/Base32
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Due to the mobile nature of the VOs, it is possible that the same VO_IDs may be stored at different
leaf nodes, as shown in Figure 4 for VO_ID 5 and 9. In the worst case, when all the VOs have passed
through all the map areas of a city and have reported observation data, every leaf node corresponding
to the city area will store all the VO_IDs. In these extreme cases, the tree structure will not be able to
provide efficient search based on spatial constraints. One possible solution to alleviate the problem
is to make a new tree after some period so each leaf node of the tree is likely to store only a limited
number of VO-IDs. The search process then knows which copy of the tree to search based on the
temporal constraints in the query. This will impose additional storage requirement; however, it is not a
challenging issue given the fact that the size of the tree is usually not large.

Algorithm 1 shows the algorithm for inserting a new value into the Geohash Grid Tree. During
insertion, the tree receives a VO with a VO_ID and spatial information expressed as a latitude-longitude
pair. The steps of indexing a VO into the tree structure can be summarized as follows:

Step 1: The VO_ID is inserted to the root node (Line 5). Upon receiving a VO, the node performs
several checks: (1) the node checks whether the spatial information of the VO is contained in
the range of the node (Line 7). If the VO is outside of the range of the node, the node ignores
the insertion and the VO is discarded (Line 8); (2) the node is initialized if it is null (Line 10–12);
and (3) if the node is a leaf node, VO_ID is added to the tree (Line 13–16).

Step 2: After Step 1, the location of the VO is confirmed to be within the range of the node. Then
the node computes in which smaller range (the child node) the VO should be inserted. The
smaller range, subrange, is computed by the node (Line 18).

Step 3: The node computes the index of a child node that matches the subrange (Line 20).
Step 4: At the end, the VO is inserted to the child node iteratively till the leaf node (Line 22). The node

with the indexed VO will be returned (Line 13–16).
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Algorithm 1: Insertion in the Geohash-Grid Tree

1. INPUT: Virtual Object with VO_ID vo_id, latitude lat, and longitude lon
2. OUTPUT: rootnode of tree
3. max_range = rootnode.getrange();
4. geolevel = 0;
5. rootnode = insert(rootnode, vo_id, max_range, lat, lon, geolevel);
6. FUNCTION insert(node, vo_id, range, lat, lon, geolevel) {
7. IF lat is outside of range.latrange || lon is outside of range.lonrange
8. RETURN node; // node unchanged
9. END IF
10. IF node == null
11. node = createNode(range, geolevel, geohash); // create new node in this level
12. END IF
13. IF geolevel == maxlevel // reach the maximum level
14. node.entry.add(vo_id);
15. RETURN node;
16. END IF
17. //Compute the smaller range that contains the location of VO
18. subrange = computeRange(lat, lon, range, geolevel)
19. //Get index of child_node that contains subrange
20. index = computeIndex(subrange, range)
21. // insert void to child_node, until reach the maxlevel
22. node.getchild(index) = insert(node.getchild(index), subrange, vo_id, ++geolevel);
23. RETURN node;
24. }

A node only needs to be created when a VO, whose O&M location falls under the node’s spatial
range, needs to be inserted. For example, assume a Geohash-Grid Tree has no nodes, if a VO reports a
temperature value within the range of Node eztr (refer to Figure 3), the insertion will start from the
root node and create Node e, Node ez, Node ezt, Node eztr, till a leaf node is created. The leaf node
then creates a list to store the ID of the VO. The actual temperature value and associated metadata will
be stored in InfluxDB. Subsequently, if another VO generates a temperature value within the range of
Node eztm, just Node eztm and related nodes at the lower levels will be created, since nodes at upper
levels already exist and do not need to be changed.

During insertion, the Geohash-Grid Tree either directly adds VO_ID to the matched list at an
existing leaf node or creates a new leaf node to store the VO_ID. There is no need to update the existing
tree structure to balance the tree, which accelerates the insertion process. In addition, since the VO_ID
insertion is independent of the data records insertion in InfluxDB, the Geohash-Grid Tree also does not
need to be updated every time when a VO (sensor) observation is generated, e.g., when the observation
location of the VO is within the spatial range of the leaf node that already contains the ID of that VO.
In this case, only a new data record is inserted into InfluxDB.

3.3. Query Processing

The query interface accepts a number of searching criteria, e.g., location of interest, observed
phenomenon, temporal extent and aggregation functions for creating queries. The spatial filtering
functions and temporal aggregation functions supported by the system include the following:

• Range queries—a rectangular area specified on a map, along with the desired time window.
• Distance queries—a circular area of interest specified as a point and a radius on the map within

which observations are sought. Time window is also supported.
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• Time window and aggregation—several temporal aggregation functions: minimum, maximum or
mean of the stored O&M values within a given time window.

The details of the query processing procedure are shown in the algorithm in Algorithm 2. For
data retrieval, the location information in the query is first used to search the spatial index to narrow
down the potential VO-IDs. The query process first retrieves the matched nodes from the tree by
checking whether the range of nodes is contained in or intersects with the range of the query (Line
4, Line 9–21). VO-IDs are retrieved from obtained nodes if there are any (Line 5, Line 23–33). This
information, together with the environmental phenomenon, spatial range and temporal constraints,
are converted into a template by the ‘Query Rewriting’ component, which serves as a pattern to query
the relevant ‘measurement series’ in InfluxDB (Line 6). The actual O&M data retrieval based on the
sliding time window is performed by InfluxDB (Line 7). The retrieved data records are parsed into a
format appropriate for presentation in the query interface.

Algorithm 2: Query Mechanism of Geohash-Grid Tree and InfluxDB

1. INPUT: Query with env-phenomenon, e; range area, r; time window, t; a Geohash-Grid Tree, tree, with a
rootnode.

2. OUTPUT: dataRecords
3.
4. listOfNodes = tree.getNodesbyrange(listOfNodes, rootnode, r);
5. VO-IDs = tree.getVOsfromNodes(VO-IDs, listOfNodes);
6. queryString = queryGeneration(VO-IDs, e, r, t);
7. dataRecords = queryInfluxDB(queryString);
8.
9. FUNCTION getNodesbyrange(listOfNodes, node, r){
10. IF node.isempty() or node.exclude(r)
11. RETURN null;
12. END IF
13. IF node.containedIn(r)
14. listOfNodes.add(node);
15. END IF
16. // the node neither exclude nor contained in a range is intersect with the range
17. FOR EACH child_node of node
18. child_range = child_node.getRange();
19. getNodesbyrange(listOfNodes, child_node, child_range);
20. END FOR
21. }
22.
23. FUNCTION getVOsfromNodes(VO-IDs, listOfNodes){
24. FOR EACH node in listOfNodes
25. IF node.level == maxlevel
26. VO-IDs.add(node.getVOs());
27. ELSE
28. FOR EACH child_node of node
29. getVOsfromNodes(VOs, node.getChildNodes());
30. END FOR
31. END IF
32. END FOR
33. }
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4. Experiments and Evaluation

In order to assess the effectiveness of the proposed spatial indexing mechanism, we evaluated it on
a real-world, mobile sensing dataset collected from the SmartSantander smart city testbed. The results
were also compared to state-of-the-art and the baseline geographical coordinates-based methods.

4.1. Dataset Description

The SmartSantander project provides a city-scale testbed for experimental research on smart cities.
It offers various types of sensing data from both fixed and mobile sensors that support environmental
monitoring of the city of Santander. Our experiments only made use of the data collected from mobile
sensing devices installed on public transport systems, i.e., buses and taxis. These are 84 in total,
corresponding to 84 VOs.

The dataset was created by scraping the map visualization of the sensor readings of the
SmartSantander project (http://maps.smartsantander.eu/). The data was sampled 12 times each
day (every two hours) for a period of 223 days, from 02 January 2015 to 13 August 2015. It consists
of five different types of phenomena (environment qualities), i.e., CO, Humidity, Ozone + NO2,
Particulate Matter (PM10), and Temperature. Each observation contains an ID of the mobile source
and spatial and temporal information (i.e., where and when the observation was reported). There
are in total 224,784 data records (corresponding to 1,123,920 observation values). However, since the
data comes from mobile sensing objects, many issues arise such as loss of communications or battery
power loss, which result in missing locations and observation values, and outliers in the collected
data. Moreover, some VOs do not update measurements for some time periods. Therefore, the data
was cleaned by removing all the records that have missing locations and observation values. Outliers
were removed by setting thresholds for different sensor types. After cleaning, a complete dataset with
around 100,000 records (corresponding to 500,000 observation values) was created.

The statistics of the dataset are illustrated in Table 5. There are in total 84 distinct mobile objects
(buses or taxis attached with sensors) in the dataset, which are mapped to VOs, as described in
Section 3.2. There are on average 448 data records per day, which are distributed almost uniformly.
The locations of the data points are distributed within a 50-km distance in the city of Santander, with
most of them clustered within the latitude range (43.4, 43.5) and longitude range (−3.9, −3.78).

Table 5. Statistics of the collected SmartSantander Data.

Dimension Total From To Distribution

VO 84
Environmental
Phenomenon 5 CO, Humidity, Ozone + NO2, Particles

(PM10), and Temperature
Latitude 827 42.9855 43.6636 Largely distributed between 43.4 to 43.5

Longitude 9978 −4.13309 −3.53594 Largely distributed between −3.9 to −3.78

Date 223 distinct days Friday, 02 January
2015 17:33:19 GMT

Thursday, 13 August
2015 11:59:09 GMT Almost a uniform distribution

For the experiments, 21 datasets were created, with the number of data records ranging from
1000 to 100,000, with increments of 5000. Different datasets have different time range; however, their
location distributions are similar.

4.2. Experimental Settings

The proposed Geohash-Grid Tree approach was evaluated and compared to a widely used spatial
indexing approach, R-Tree [32]. The Java Spatial Index (http://jsi.sourceforge.net/) library was used
to implement the R-Tree index. It was also compared to the Geohash-based location tagging approach
as detailed in our previous work [4] and the geo-coordinate location based approach using InfluxDB
(as the baseline). In the geo-coordinate location based approach, the latitude and longitude values were
part of the stored data records and were not indexed. The Geohash-based tagging method encoded the

http://maps.smartsantander.eu/
http://jsi.sourceforge.net/
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latitude and longitude as a geohash, and stored it as a tag column, which was indexed by the InfluxDB
native indexing method. Experiments were carried out on different InfluxDB databases that stored
different number of data records.

4.3. Evaluation Results

In this section, we present the evaluation results for the index creation and query processing. First
the proposed Geohash-Grid Tree was compared to the R-Tree in terms of indexing creation time. Then
the designed system was compared with the three other methods (detailed in Section 4.2) in terms of
query response time.

4.3.1. Index Creation Time

The first evaluation metric is the index creation time as it has a considerable impact on the
performance of the data retrieval. The time taken for indexing using the Geohash-Grid Tree and the
R-Tree was recorded for each datasets, with the number of data records varying from 1000 to 100,000.
The tree structure was used to manage the spatial information of virtual objects. The indexing step
also stored the VO_ID within each node. The experiments were repeated 20 times.

Figure 5 shows the average indexing time using the two methods on different number of data
records. Both tree structures took approximately linear time for indexing. R-Tree took around 180 ms
to index 100,000 data records, while the proposed Geohash-Grid Tree method only took about 67 ms to
index the same number of data records. The proposed method reduced around 43% time for indexing
compared to R-Tree for 100,000 data records insertion. The index creation time is much shorter for the
proposed method due to its fixed tree structure where indexed values are stored directly at the leaf
nodes. It does not suffer from the tree balancing or reorganization problem, which is an expensive
operation and inherent in the R-Tree.
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Figure 5. Index creation time: Geohash-Grid Tree and R-Tree.

4.3.2. Tree Query Response Time

The second evaluation metric is the tree response time which measures the efficiency of data
retrieval under certain spatial constraints. The response time used for retrieving the data records using
the two methods was recorded for each dataset. Test queries were prepared for spatial point matching
(i.e., find VOs at a specific point) and range matching (i.e., find VOs within a specific geographical
area). The queries were tested in both sparse and dense areas; by ‘dense’ or ‘sparse’, we mean how
dense or sparse the data records are at the specific geographical locations. Features of the test queries
are summarized in Table 6.
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Table 6. Query Constraints and Number of Query Results from Tree Structures.

Query constraint Query 1 Query 2 Query 3 Query 4

Point (43.1702, −3.89954) (43.4632, −3.80883)

Location range (43.4, −3.6) to
(43.5, −3.5)

(43.4, −3.9) to
(43.5, −3.8)

Indexed items density
in nearby area sparse dense sparse dense

Number of distinct
VO_IDs of returned

indexed items
1 1 1 84

The experiments were also repeated 20 times and the results were averaged and shown in
Figure 6. In this experiment, four queries were carefully prepared: Query 1 and 2 to search at a
particular point and Query 3 and 4 to search a large area. Query 1 and 3 were to search points in
sparse areas, while Query 2 and 4 were to search in dense areas. As can be seen from Figure 6, query
processing in Geohash-Grid Tree was more efficient in dense areas compared to the R-Tree structure
(Figure 6b,d), while it was slightly worse in sparse areas (Figure 6a,c). This can be attributed to the fact
that Geohash-Grid Tree uses a fixed height tree structure and there is no overlap between different
nodes. On the contrary, ranges of nodes in the R-Tree overlap a lot in a dense area and little in a
sparse area. Geohash encoding is only an approximation process and different levels of geohash
have various precisions. The longer of the geohash string, the more precise of the encoding. The
experiments applied a fixed length of 8 for the Geohash-Grid tree. This corresponds to errors in latitude
of ±0.000085 degrees and longitude ±0.00017 degrees, i.e., around 40 m, which can be tolerated in city
environmental monitoring applications. It is common that movement of the mobile sensors and objects
is unpredictable and this often results in extremely unbalanced spatial distribution of the generated
data. As the spatial distribution of data does not impact much on the Geohash-Grid Tree, it tends to be
more scalable than R-Tree and thus more suitable for mobile sensing environments.
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Figure 6. Tree response time: Geohash-Grid Tree and R-Tree. (a) Query 1: point matching in a sparse
area; (b) Query 2: point matching in a dense area; (c) Query 3: range matching in a sparse area; (d)
Query 4: range matching in a dense area.
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4.3.3. Query Response Time

Query response time for the proposed data retrieval system using the Geohash-Grid Tree
method was recorded and compared to the systems implemented with the R-Tree indexing, the
Geohash_as_Tag and the Geo-coordinates_as_Field location retrieval based methods. All of the
systems were implemented using InfluxDB as the data store.

Range queries were used to evaluate the query response time. A range query was specified
by using an environmental phenomenon together with a spatial range area and a time window,
i.e., query = {env-phenomenon, range area, time window}. The output was the observation and
measurement values matching the query. The env-phenomenon is a type of measurement, e.g.,
Particles. The range area was represented by a rectangle with two pairs of latitude and longitude,
which could be automatically retrieved from the map-based Query Interface of the framework. The
time window was indicated by a start and end time.

Geo-coordinates_as_Field is a naive method that stores geo-coordinates as field in the InfluxDB,
which considers fields as numeric values supporting arithmetic comparisons. Query matching can be
done by directly comparing all the geo-coordinates of the data records with the constraints in the query.

Geohash_as_Tag is an approach to store spatial information by using geohash strings as tag-values.
During retrieval, the Geohash_as_Tag method computes a geohash based on the spatial constraints
of the query and retrieves data records with matching or overlapping geohash. For this method, the
built-in InfluxDB functionality was used.

The query processing in the proposed data retrieval framework consisted of probing the
Geohash-Grid Tree structure and InfluxDB sequentially, as described in Figure 6.

The steps involved in the R-Tree implementation were similar, with InfluxDB storing the
actual latitude and longitude values of the data record as field. The generation of query string
for InfluxDB in the cases of Geohash-Grid Tree and R-Tree used the same constraints as that for the
Geo-coordinates_as_Field location retrieval method. One difference was that this query used the
VO_IDs obtained from Geohash-Grid Tree and the R-Tree index, respectively, to retrieve answers,
instead of using wildcards to query the entire InfluxDB database.

Table 7 shows the details of the test queries as well as the number of data records retrieved.
It should be noted that these queries were prepared to test the performance of different methods in
some extreme conditions, taking into consideration the characteristics of the datasets.

Table 7. Query Constraints and Number of Query Results.

Phenomenon
Query 1 Query 2 Query 3 Query 4 Query 5

Temperature

Time_from 21 January 2015
10:00 a.m.

21 January 2015
10:00 a.m.

21 January 2015
10:00 a.m.

21 January 2015
10:00 a.m.

21 January 2015
10:00 a.m.

Time_to 22 January 2015
10:00 a.m.

26 January 2015
10:00 a.m.

22 July 2015
10:00 a.m.

26 July 2015
10:00 a.m.

22 July 2015
10:00 a.m.

Time range 1 day 5 days ~6 months ~6 months ~6 months

Location range (43.4, −3.94) to
(43.42, −3.93)

(43.47, −3.79) to
(43.473, −3.785)

(43.4, −3.94) to
(43.42, −3.93)

(43.47, −3.79) to
(43.473, −3.785)

(43.467, −3.79) to
(43.47, −3.787)

Data records density of
nearby area sparse dense sparse dense dense

VOs in indexed trees 2 46 2 46 58

Number of Returned Data Records

Geo-coordinates_as_Field 1 4 7 107 1004
Geohash-Grid Tree 1 4 7 107 1004

R-Tree 1 4 7 107 1004
Geohash_as_Tag 616 2774 88,864 85,459 93,404

Query 1 and 2 set a short temporal range as the selection criteria, with 1-day and 5-day time
window, respectively. Queries 3–5 set a longer time range, i.e., 6 months. Query 1 and 3 were
specifically designed to search data in a relatively sparse area, and the number of returned data
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records was small. They were in the same spatial range, which contains just two indexed VOs in the
largest dataset.
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Figure 7. Query Response Time for different methods and selection criteria: (a) Query 1; (b) Query 2;
(c) Query 3; (d) Query 4; (e) Query 5.
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Query 1 returned 1 data record for 3 of the methods, this is because there is just one data record
for the temporal parameter specified in the query but all the VOs in the dataset fall within the spatial
range of the query (hence, are returned by the indexing tree structure). Queries 2 and 4 retrieved data
in a relatively dense area and retrieved 46 VOs. Query 5 specified a long temporal range (6 months)
and a spatial range in a dense area, and retrieved 58 VOs. As the VOs in the spatial range of Query 5
repeatedly traversed the area, it retrieved much more matched data records than Query 4. The results
for the query response time using the four different methods were plotted in a log scale in Figure 7.
The indexed Geohash_as_Tag approach performed the worst, taking 138.30 ms for Query 1, 313.37 ms
for Query 2, 4895.08 ms for Query 3, 4852.11 ms for Query 4 and 4972.48 ms for Query 5 for database
containing 100,000 data records. These numbers were an order of magnitude different from that of the
other methods. The large response time was due to the fact that generation of an overlapped geohash
string enlarged the spatial range significantly. This resulted in many non-related data records that were
outside the spatial range of the query, being retrieved from InfluxDB. This can be seen from Table 7,
for Query 1, 616 data records were retrieved from the dataset, and for Query 5, 93,404 data records
were retrieved from the largest database in the experiments.

All the other three methods returned the same number of data records for all queries (the numbers
of the largest test dataset are listed in Table 7). Since the dominant cost of the query response time was
the query time in InfluxDB, the performance difference between the two methods using Geohash-Grid
Tree and R-Tree couldn’t be seen clearly. From Figure 7, it also can be seen that if the number of
VOs retrieved from tree indices was large (close to the total number of VOs in the dataset), the query
response time of the proposed method tended to close to that of Geo-coordinates_as_Field based
method, for example, in Query 5, 58 VOs were retrieved and there were only 84 VOs in the dataset.

5. Conclusions

The presented work provides a fundamental solution to sensor data search and query, which is
important for many WoT applications; especially those that employ opportunistic and participatory
sensing for data analysis purposes. For example, for environment monitoring in smart city applications,
a large amount of opportunistic sensing data can be collected, stored, processed and analysed to
discover useful knowledge both in (near) real time and long term. Based on this, we could derive
pollutant concentrations everywhere in the city at all times and present the implications for health
risk to everyone. As a key component of the mobile sensing data search framework, the proposed
Geohash-Grid Tree uses grids to partition the indexing space into equal-sized cells, which enables
efficient index update and query. The data search framework is particularly suitable for opportunistic
sensing queries over historical and current O&M values with spatial constraints. The experiments
and evaluations showed that the Geohash-Grid Tree method is scalable, and the proposed method
outperforms the existing approaches in terms of index creation and retrieval of a substantive number
of data records over a large span of time. For shorter time periods, the performance of the proposed
approach is comparable to the R-Tree based indexing.

Processing and analyzing mobile sensing data is a challenging and complex problem and data
search is one of the first steps in dealing with such a problem. One important objective of our future
research is to extract patterns and anomalies from both mobile and fixed sensing data collected from a
city’s environment. Usefulness of the mobile sensing data has already been shown in some research
works, such as analyzing traffic anomalies in cities by integrating mobile sensing data and social
media data [33], and monitoring air quality urban areas [34]. Our work aims to design methods for
trustworthy knowledge discovery by harmonizing data and information collected from not only the
physical, but also the social and cyber worlds. Our current implementation of the Geohash-Grid Tree
only focuses on point-based sensor observations. However, sensor observations and queries can also
be specified by using more complex geometries, such as lines or polygons. There has been research
on developing hierarchical spatial data structures and topological operators in deriving relationships
between complex geometries in publication/subscription settings [22]. In our future work, we plan
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to extend our current design to support queries with more complex spatial constraints and to design
more suitable representation and visualization methods for the results of those queries.
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