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Abstract: P-type semiconducting copper oxide (CuO) thin films deposited by radio-frequency
(RF) sputtering were integrated onto microsensors using classical photolithography technologies.
The integration of the 50-nm-thick layer could be successfully carried out using the lift-off process.
The microsensors were tested with variable thermal sequences under carbon monoxide (CO),
ammonia (NH3), acetaldehyde (C2H4O), and nitrogen dioxide (NO2) which are among the main
pollutant gases measured by metal-oxide (MOS) gas sensors for air quality control systems in
automotive cabins. Because the microheaters were designed on a membrane, it was then possible to
generate very rapid temperature variations (from room temperature to 550 ◦C in only 50 ms) and a
rapid temperature cycling mode could be applied. This measurement mode allowed a significant
improvement of the sensor response under 2 and 5 ppm of acetaldehyde.

Keywords: gas sensor; RF sputtering; thin film; CuO; tenorite; photolithography; metal oxide
microsensor; micro-hotplate; pulsed temperature

1. Introduction

Metal-oxide (MOS) gas sensors based on a micromachined silicon substrate [1] were a disruptive
development which led to a mature and robust form of technology [2]. There are a few examples
of devices on the market, which are notably based on SnO2 and WO3 metal oxides. To lower the
resistivity of the sensitive film and improve the kinetics of the chemical reactions, commercial MOS gas
sensors are operated in constant temperature mode (isothermal) knowing that the interactions between
the sensitive material and the surrounding gases are temperature-dependent. Because the temperature
dependence is not similar for all gases, the operation of a sensor at different temperatures can provide
discrimination of several gases with one single sensor [3,4]. It has also been shown that with very short
temperature pulses, transient sensor responses are strongly dependent on the ambient mixture of gases,
which provides a good opportunity to enhance sensor selectivity [5–8]. These micro-hotplates can
now be elaborated with different types of semiconducting sensitive layers, with the very interesting
possibility of modulating the operational temperature and integrating the electronics with the sensor
silicon chip. Current technologies allow temperature cycling up to several millions of cycles without
failure. Despite their increased system-level complexity, microsensors have many advantages, such
as, for example, high performance, small size, low cost, and low power consumption [9]. The latter
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requires on the order of a few or tens of mW for continuous operation, but sub-mW consumption can
be reached by using a pulsed operating temperature [3]. Such microsensors are particularly suitable
for air quality control systems in automotive cabins.

The literature therefore shows many examples of microsensors onto which sensitive layers
have been deposited by using various methods, such as for example micropipetting [10–13],
sputtering [14–21], precipitation–oxidation [22,23], stepwise-heating electrospinning [24], flame
spray pyrolysis [25], spin coating [26], carbo-thermal route [27], evaporation [28], metal-assisted
chemical etching [29], or organic binder printing [30]. Radio-frequency sputtering is a method
compatible with the industrial fabrication of miniaturized sensors by microelectronics and MEMS
(microelectromechanical systems) technologies. Radio-frequency (RF) sputtering has many other
advantages, like the possibility of obtaining thin films with nanometric-scale grain sizes and very easy
control of the inter-granular porosity by varying the deposition parameters [31,32]. Such films with
controlled nanostructure are of great interest as sensitive layers [33–35] and can be integrated in gas
sensing devices.

Cupric oxide (copper(II) oxide: CuO) is an intrinsically p-type semiconductor [36,37]. Among all
other p-type semiconducting oxides it is the most studied for gas sensing applications [38] due to its
low-cost, high stability and non-toxicity. Many researchers have focused on the development of novel
CuO nanostructures for the detection of a large range of gases, such as for example organic gases [39],
hydrogen sulfide (H2S) [40–46], CO [47–50], NO2 [50,51], ethanol gas [52–54], or NH3 [55].

In this work, we show the interest of using fully compatible micromachining technologies to
elaborate microheaters and deposit CuO-sensitive layers to obtain sensors at the micronic scale.
Elaboration of micro-hotplates, as well as photolithographic steps for layer integration, were
carried out using the micromachining facilities of the Laboratory for Analysis and Architecture
of Systems (LAAS-CNRS). The sensor is based on a p-type CuO resistive layer that was deposited by
radio-frequency (RF) sputtering in the Interuniversity Center of Materials Research and Engineering
(CIRIMAT). The microsensors were tested with variable thermal sequences with CO, NH3, C2H4O,
and NO2, which are among the main pollutant gases found in automotive cabins. Many works have
focused on the sensing properties of pure or doped CuO as the main sensitive material or as an additive
for other semiconducting oxides. There are fewer articles related to the sensing properties of CuO
layers integrated on microhotplates. For example, Walden et al. [56] tested inkjet-printed CuO layers
for NH3 detection in rapid temperature cycled mode. Kneer et al. [57] used similar inkjet-printed CuO
nanoparticles deposited on a microsensor and obtained good H2S selectivity in the NO2, NH3 and
SO2 atmosphere but with a time pulsation of few minutes. However, there are no articles relating to
acetaldehyde detection with a CuO-sensitive layer deposited on a microsensor and operated in pulsed
temperature mode, although temperature cycling gives good results for acetaldehyde detection with
other sensitive oxides [58].

2. Experimental

Thin sensitive films were deposited with an Alcatel SCM 400 apparatus using sintered ceramic
targets of pure CuO with a relative density around 75% (10 cm in diameter). The RF power was
lowered at 50 W to avoid target reduction [59] and the pressure inside the chamber was lower than
2 × 10−5 Pa before deposition. During the deposition of the films, the target-to-substrate distance
was fixed at 7 cm (Table 1). The thicknesses of the deposited films were set to 50 nm on microsensors
and 300 nm for the structural characterizations on fused silica substrates. In the case of copper oxides
that can have multiple valences of copper, like in tenorite CuO (CuII), paramélaconite Cu4O3 (mixed
CuI/CuII) or cuprite Cu2O (CuI), high deposition pressure could lead to a reduction [60] of the CuO
target and the deposition of a phase with lower valences states. Moreover, as the layer had to be
integrated by a wet process, a low deposition pressure of 0.5 Pa was preferred to obtain dense [61]
oxide layer. These deposition conditions are then adequate to avoid the filling of the intergranular
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porosity of the sensitive layer with dye or any residue obtained during photolithographic process but
should lead to layers with not optimized sensitivities.

Table 1. Deposition parameters of thin sensitive films.

Target material CuO
Magnetron Yes
Substrates Fused silica and micro-hotplate

Power 50 W
Argon pressure 0.5 Pa

Target to substrate distance 7 cm
Deposition rate 6.1 nm/min

Thickness calibrations were performed with a DEKTAT 3030ST profilometer. The structure
properties were determined by grazing incidence X-ray diffraction (GI-XRD) using a Bruker-AXS
D8-Advance X-ray diffractometer equipped with a copper source (λCuKα1 = 1.5405 Å and
λCuKα2 = 1.5445 Å) at 1◦ incidence, a Göbel mirror and Bruker LynxEye detector used in 0 D mode.
The GI-XRD data were analyzed with the Bruker-EVA software and the JC-PDF database, and refined
with the Rietveld method implemented in the FullProf-Suite program. Raman spectra were collected
under ambient conditions using a LabRAM HR 800 Jobin Yvon spectrometer with a fiber coupled
532-nm laser. Spectra acquisition was carried out for 150 s using a ×100 objective lens and 600 gr/mm
grating. During the measurement, the resulting laser power at the surface of the sample was adjusted
to 1.7 mW. Examination of multiple spots showed that the samples were homogeneous. Microscopic
studies were realized with a Veeco Dimension 3000 Atomic Force Microscope (AFM) in tapping mode
equipped with a super sharp TESP-SS Nanoworld tip (nominal resonance frequency 320 KHz, nominal
radius curvature 2 nm). The scanning rate was fixed at 1 Hz (1000 nm/s).

For sensing measurements, the sensors were placed into a chamber flown by different gases.
The composition and humidity of the gas mixture were controlled by mass flow controllers (MFC).
The heating and the sensing resistors of each sensor were connected to a source measurement unit
(SMU). The whole test bench was automatically controllable thanks to a suitable interface and dedicated
software. After a period of stabilization of 2 h under synthetic air, the target gases were introduced
alternatively. The global flow (200 sscm) and the relative humidity (30%) remained constant during
both air and target gas sequences. Response of gas sensor toward the four gases (CO, NH3, C2H4O
and NO2) has been calculated according to the formula (1).

S(%) =

(
Rgas − Rair

Rair

)
× 100 (1)

where, Rair and Rgas, are resistances in air and test gas, respectively.

3. Preparation of Microheaters

The devices have been developed on an optimized microheater that can work at high temperature
and low power consumption (500 ◦C and ~55 mW, respectively). In order to avoid edge effects, circular
membrane geometry (Figure 1a) was chosen. Figure 1b shows the resulting thermal distribution
simulated by Comsol Multiphysics software in such geometry. It can be observed that the temperature
is homogeneous in the center of the heated area onto which the measurement electrodes are placed
(Figure 1a).
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Figure 1. (a) Top view of the micro hotplate elaborated onto a membrane; (b) thermal simulation 
made with Comsol Multiphysics; (c) schematic view of a platform; (d) sensor packaged on TO5 
housing. 

Micro-hotplates have been elaborated by photolithographic process. The detailed 
microfabrication steps are presented in Figure 2. The platform consists of a silicon bulk on which a 
thermally resistive bilayer SiO2/SiNx membrane was grown. Afterwards, Pt metallization was carried 
out by lift-off process to obtain the heating resistor. A passivation layer was then deposited (a 0.7-µm 
thin PECVD SiO2 layer) and contacts were opened. Finally, a new lift-off step was used to elaborate 
the electrodes necessary for measuring the resistance of the sensing layer, and the rear side of the 
bulk was etched to release the membrane in order to increase the thermal resistance and then to limit 
thermal dissipation. Figure 1a shows the top view of the final membrane. Figure 1d shows a sensor 
mounted in its housing (TO5).  

 
Figure 2. Main steps of platform elaboration process. 
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Figure 1. (a) Top view of the micro hotplate elaborated onto a membrane; (b) thermal simulation made
with Comsol Multiphysics; (c) schematic view of a platform; (d) sensor packaged on TO5 housing.

Micro-hotplates have been elaborated by photolithographic process. The detailed microfabrication
steps are presented in Figure 2. The platform consists of a silicon bulk on which a thermally resistive
bilayer SiO2/SiNx membrane was grown. Afterwards, Pt metallization was carried out by lift-off process
to obtain the heating resistor. A passivation layer was then deposited (a 0.7-µm thin PECVD SiO2 layer)
and contacts were opened. Finally, a new lift-off step was used to elaborate the electrodes necessary
for measuring the resistance of the sensing layer, and the rear side of the bulk was etched to release the
membrane in order to increase the thermal resistance and then to limit thermal dissipation. Figure 1a
shows the top view of the final membrane. Figure 1d shows a sensor mounted in its housing (TO5).
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Figure 2. Main steps of platform elaboration process.
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Thermal measurement of the surface of the platform performed with a Jade MWIR infra-red
camera (CEDIP) allowed the calibration between the power applied and the resulting heating
temperature onto the membrane. The results given in the Table 2 show a good linear relation between
the power applied and the temperature measured. The heating platform makes it possible to heat from
room temperature to 550 ◦C in 50 ms and the cooling time is of the same order of magnitude [62]. This
type of platform can thus generate very rapid temperature variations, which is suitable for operating
the sensor in pulsed mode. At the end of the step 6 and before dicing the chips, it is possible to locally
deposit a metal-oxide layer onto the electrodes to form the sensing thin film resistor. This will be
described below in the Section 4.

Table 2. Temperature reached in the center of the center of the microheater vs applied heating power.

Power (mW) Temperature (◦C)

55 500.7
45 402.7
35 304.8
30 255.8
25 206.9

4. Integration of P-Type CuO Layer by Photolithography Process

4.1. Structural Characterizations of CuO Layer

Figure 3 shows XRD pattern of copper oxide thin film deposited on a fused silica substrate and
annealed at 500 ◦C. Measurement was carried out with a 50-nm-thick sample, similar to that deposited
on the microsensor for gas sensing tests. The X-ray diffractogram clearly shows the presence of a pure
tenorite phase (CuO: JCPDF 45-0937). The XRD patterns do not show any presence of extra phases
with copper oxidation state lower than +II (like for example paramelaconite Cu4

II/IO3, cuprite Cu2
IO,

or metallic copper Cu).
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Figure 3. X-ray diffraction (XRD) pattern of CuO thin film annealed at 500 ◦C (thickness = 50 nm).

The Raman spectrum of a sample annealed at 500 ◦C is presented in Figure 4. The 50-nm-thick
sample was too thin to be measured and a 300-nm-thick sample deposited with the same deposition
conditions was characterized. Raman spectrum shows three vibration modes at 296, 346 and 636 cm−1,
which are characteristic of the CuO phase [54,63,64] and can be attributed to Ag, B(1)g, and B(2)g
modes, respectively. Raman spectra of the reduced phases containing Cu(I) such as paramelaconite
Cu4O3 or cuprite Cu2O may be easily differentiated from those of tenorite phase CuO. In particular,
paramelaconite provides a characteristic Raman peak at about 520–530 cm−1 and cuprite at 110 cm−1

and 220 cm−1. In the Raman spectra of as-deposited and annealed films, none of these signals are
visible, confirming the absence of such phases.
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Figure 4. Raman spectra of CuO thin film annealed at 500 ◦C (thickness = 300 nm).

In conclusion, the data obtained by XRD and Raman spectroscopy show a pure CuO phase in the
deposited films.

The image of the surface of CuO thin film, obtained by AFM, has been reported in Figure 5a.
To ensure consistency with the layer used for sensing tests, a 50-nm thin film was observed. The surface
consists of circular grains with surface domes (top of the grown column) which is a typical morphology
in the case of the sputtered thin films. The distribution of the grains size shown in Figure 5b was
estimated by an immersion threshold thanks to the Gwyddion software. The median grain size (d50)
was found to be equal to 27.6 nm, which is close to the half thickness of the sample.
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Figure 5. (a) Atomic force microscope (AFM) image of a 50-nm-thick CuO film annealed at 400 ◦C for
1 h under air atmosphere; (b) Grains size distribution deduced from the image analysis.

4.2. Description of the Integration Process

The integration of the copper oxide layer was performed using a classical photolithographic
process (Figure 6). The lift-off resist was deposited in step 1. In the second and third steps the photoresist
layer was exposed and then developed. The deposition of the 50-nm-thick CuO layer was undertaken
using RF sputtering in step 4. Finally, all the unwanted parts were removed in step 6 by dissolution of
the resist, thus leaving the sensitive layer in the desired areas.
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Figure 6. Main steps in the integration process of CuO-sensitive layers.

The deposition of the sensitive layer is a critical step, as the bombardment occurring during the
sputtering process is able to damage the photoresist used to mask the part that does not have to be
covered by the oxide layer. Figure 7 shows the successful integration of copper oxide onto a microheater.
The diameter of the area covered by the sensitive CuO layer is around 400 µm. The diameter of the
electrodes used for the electrical measurement was approximately 200 µm, which was then totally
covered by the sensitive layer.
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Figure 7. Images obtained by optical microscopy of a micro heater coated in the center with a p-type
CuO semiconducting layer.

5. Sensing Tests

At first, the sensing device with integrated CuO layer (as-deposited) was annealed from 0 mW
(room temperature) to 55 mW (~500 ◦C) in step at 5 mW/10 min and kept for 120 min at 55 mW to
stabilize both the sensing layer and the microheater (Figure 8). XRD showed (Figure 3) that the CuO
phase is stable up to 500 ◦C, and then only microstructural reorganization and a possible formation of
slight over-stoichiometry in copper oxide (CuO1+δ) are expected.
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concentrations were used for 15 min, and this sequence was repeated twice. Before changing the 
composition of the gas, the sensor was returned to air for 30 min.  

The CuO layer showed decreases in resistance upon exposure to oxidizing gas (NO2) and 
increases in resistance upon exposure to reducing gases (C2H4O, NH3, and CO). This is consistent 
with the p-type semiconducting behavior of copper oxide. The results show that the response of the 
sensor is very low for carbon monoxide and almost zero for ammonia. On another hand, significant 
response values were obtained for acetaldehyde at 400 °C and for nitrogen dioxide at 200 °C. It can 
be noted in contrast that the response of the CuO layer under acetaldehyde at 200 °C and under 
nitrogen dioxide at 400 °C is roughly equal to zero.  
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Figure 8. (a) Initialization program and (b) variation of the electrical resistance of the sensitive layer
during the initialization (zoom in the heating power range of 50–55 mW, ~450–500 ◦C).

Figure 8b shows the evolution of the layer resistance during initialization in the 50–55 mW heating
power range. A decrease of the resistance was observed during annealing with 50 and 55 mW heating
power. After 120 min at 55 mW the resistance of the sensitive layer was stabilized.

The microsensor based on the CuO semiconducting layer (thickness 50 nm) was tested under
carbon monoxide CO, ammonia NH3, acetaldehyde C2H4O, and nitrogen dioxide NO2 according to
the gas concentrations shown in Table 3. Each gas concentration was chosen close to the threshold
concentration given by the various national (ANSES, French Agency for Food, Environmental and
Occupational Health and Safety) [65] and international (WHO, World Health Organization) [66]
health-based guidelines and guidance values for short time exposure in the case of indoor polluting
gases. This is the reason why the concentration ranges are different for the four target gases.

Table 3. Gases and concentrations used during the sensing tests with the CuO-sensitive layer.

Gas Concentration (ppm)

CO 100 200
NH3 2 5

C2H4O 2 5
NO2 0.2 0.5

In a first step, a “classical” constant temperature profile has been used. In this case the temperature
is maintained at a constant temperature, while the gas composition and its concentration are alternated.
The Figure 9 shows the response obtained at 400 ◦C (45-mW heating power) and at 200 ◦C (25-mW
heating power) with the gases and the concentrations presented in the Table 3. Before starting the gas
alternation, the resistance was stabilized under air for 2 h. For each gas, two concentrations were used
for 15 min, and this sequence was repeated twice. Before changing the composition of the gas, the
sensor was returned to air for 30 min.

The CuO layer showed decreases in resistance upon exposure to oxidizing gas (NO2) and increases
in resistance upon exposure to reducing gases (C2H4O, NH3, and CO). This is consistent with the
p-type semiconducting behavior of copper oxide. The results show that the response of the sensor is
very low for carbon monoxide and almost zero for ammonia. On another hand, significant response
values were obtained for acetaldehyde at 400 ◦C and for nitrogen dioxide at 200 ◦C. It can be noted in
contrast that the response of the CuO layer under acetaldehyde at 200 ◦C and under nitrogen dioxide
at 400 ◦C is roughly equal to zero.
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Figure 9. Response of the CuO-sensitive layer at 400 ◦C and 200 ◦C with constant temperature mode.

These results are in accordance with the bibliography which shows that the sensitivity of CuO
toward C2H4O and NO2 in constant temperature mode is dependent on the temperature measurement.
For NO2 gas sensing, various studies [50,57,67] have shown that higher sensitivity is obtained at low
or moderate temperature (150–250 ◦C). For acetaldehyde it is more difficult to refer to sensing studies
as there is no article related to the detection of this gas by CuO. However, Cordi et al. [68] have carried
out temperature-programmed oxidation (TPO) measurements on CuO for catalytic applications, and
they showed that C2H4O is oxidized at higher temperatures (340 ◦C). By alternating high and low
measurement temperature, the discrimination of C2H4O and NO2 can then be improved. Even if the
response values remain quite low, it should be borne in mind that the gas concentrations used for the
test are also very low.

In a second step, a dynamic test profile was carried out with the same gas and concentrations.
Many works have already shown the interest of operating the sensor with temperature cycling by
using different profile shape and plateau duration in order to rapidly change its sensitivity and then
the selectivity after suitable data treatment. Among the thermal cycle approaches, one consists of
making the temperature vary with stair shape from ambient to high temperature or vice-versa. Another
consists of using short heating or cooling pulses from a reference temperature which can be set at
ambient, high or intermediate temperature [69]. The pattern we chose in this study is the latter, with
two-second steps at each target temperature and a baseline fixed at 500 ◦C. The measurement pattern
had already been optimized in the past and the temperature profile that allowed a good reproducibility,
the fastest stabilization, and the best discrimination was selected [70]. The short plateau duration is
well-adapted to only observe transient phenomena, while the high baseline temperature allows regular
cleaning of the surface of the sensitive layer to obtain good reversibility and reproducibility. Moreover,
this profile is easy to implement in embedded electronics. The temperature profiles are presented in
the Figure 10a,b: each step lasts 2 s; the temperature baseline is the highest operating temperature
(500 ◦C), while the other steps are at lower temperatures (400, 300, and 200 ◦C for high temperature
measurements and 50, 30, and 20 ◦C for low-temperature measurements), and a complete cycle lasts
12 s. This profile is repeated throughout the test under various gaseous atmospheres.
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Figure 10. Power profiles in (a) high temperature range and (b) low temperature range.

The Figure 11 shows an example of resistance measurement under pulsed temperature mode
over one hour with a relative humidity (RH) of 30%. The sensor has been set successively under four
different “ambiances”: (1) synthetic air; (2) 2 ppm of acetaldehyde; (3) 5 ppm of acetaldehyde; and
finally (4) synthetic air. During these “sequences”, the sensor is periodically powered (on the heater)
with the four different two-second steps (0, 5, 10 and 55 mW) as seen before in Figure 10b, considering
that 55 mW is the reference or the base-line. In this view the resistance values at all temperature steps
are multiplexed, and it is hardly possible to guess all the step transitions and the behavior of the
resistance at each power step. For this reason, it is necessary to extract or separate results from the
different power-steps in order to calculate their associated normalized response in the same way as it
was done for the static operating mode.
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Figure 11. CuO sensor operated with dynamic temperature cycling mode (temperature cycle of the
Figure 10b has been used). Resistance measurement under 30% RH for 1 h with a first injection of
2 ppm of acetaldehyde (15 min), then a second injection of 5 ppm (15 min). The resistance values
corresponding to the four temperatures (or heating power) are multiplexed due to two-second step
temperature cycling.
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The detailed views of the resistance variation under the same pulsed temperature cycles are
shown in Figure 12a for the last three cycles just before the injection of acetaldehyde and in Figure 12b
for the last three cycles at the end of the gas sequence under 5 ppm of acetaldehyde. The small red
lines correspond to the penultimate point of each step in the last cycle before a gas transition. For the
calculation of the response ∆R/R given in the Formula (1), the reference values (Rair) have been taken
in the last cycle under air for each heating power, while the Rgas values have been taken in the last
cycle under target gas (acetaldehyde in the example of the Figure 12).
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Figure 12. Detailed view of resistance variation during (a) the last three cycles under air and (b) the last
three cycles under 5 ppm of acetaldehyde. The sensor was operated with dynamic temperature cycling
mode (the sequence presented in the Figure 10b has been applied), under 30% relative humidity, and a
55 mW baseline. Rair: resistance in air; Rgas: resistance in test gas.

Pulsed temperature cycling mode has been carried out under the same gases and concentrations
which were used in static mode previously (Table 3), during 15 min for each target gas and with 30%
RH. The response has been calculated according to the procedure explained just before. The sequence
from the Figure 10a was used first. Every 12 s (i.e., one complete cycle) the power was switched
between 100 µA and 1 mA to study, in addition to the gas pulse, the influence of the current applied
during the electrical resistance measurement. Because all this information was multiplexed in the same
experimental file, the normalized responses for each gas, concentration and current were extracted
and presented as a synthetic result in the form of bar-graph in the Figure 13. It can be seen that the
values of the bias current have almost no influence on the response. On the contrary, the measurement
temperature has a strong effect and it can be seen that the best results have been obtained for the
lower power step (25 mW~200 ◦C). Even if the response under CO and NH3 has been slightly
increased in dynamic mode, the maximal change in resistance remains less than about 10% for
200 ppm of CO and 5% for 5 ppm of NH3. The strongest improvement has been obtained for the
measurements under C2H4O, which show an improvement of the response that has been multiplied
by 4 in comparison with the tests carried out with constant temperature profiles. Moreover, the trend is
reversed between the two measurement modes. In constant temperature mode the response decreases
when the measurement temperature (i.e., the heating power) is lowered, whereas the response increases
strongly in dynamic mode.



Sensors 2017, 17, 1409 12 of 17
Sensors 2017, 17, 1409 12 of 16 

 

 
Figure 13. Comparison of the response obtained under dynamic tests at high temperature range (200–
500 °C) by using two different bias currents (100 µA and 1 mA).  

The use of a pulsed-temperature operating mode promotes the transient chemical reactions. The 
difference observed between constant and modulated temperature mode can be due to the fact that 
the adsorption/desorption and reaction phenomena occur in out of equilibrium conditions in this last 
mode [71]. The effective adsorption, which is the result of the competition between OH−, O2−, O2−, O− 
and the target gas, is thus modified when the sensitive layer is brought to high temperature and then 
cooled very rapidly [72]. Another consequence of this rapid thermal cycling mode is the total 
disappearance of the resistance variation under NO2, which is not observed even at low heating 
power. It has already been shown in the literature that NO2 has a complex interaction with oxide 
surface [73] which can lead in some cases to a transition from reducing to oxidizing behavior with 
the operating temperature [74]. The lack of response of NO2 on the surface of CuO in quick pulsed 
temperature mode can be due to kinetic reactions longer than pulse duration and/or opposite 
reactions that counteract each other in the high and low temperature alternate steps. 

To further explore the effect of the decrease in the measurement temperature, three additional 
powers (10, 5 and 0 mW) have been used according to the cycle shown in Figure 10b. The comparison 
of all measurements carried out between 20 °C (0 mW) and 500 °C (55 mW) with 100-µA bias current 
are shown in the Figure 14. The results show that the increase of the response observed when the 
measuring heating power was decreased from 55 mW to 25 mW continues to occur when it is lowered 
down to 0 mW. Finally, the response under C2H4O could be multiplied by 7 in comparison with 
constant temperature mode when a thermal cycling mode was applied. This last measurement also 
confirms that cycled mode allows total selectivity with respect to NO2, which is not detected whatever 
the temperature applied.  

0

10

20

30

40

50

60

70

CO
100_ppm

CO
200_ppm

NH3
2_ppm

NH3
5_ppm

C2H4O
2_ppm

C2H4O
5_ppm

NO2
0.2_ppm

NO2
0.5_ppm

Re
sp

on
se

 (%
)

25 mW - 100 µA
25mW_1mA
35mW_100µA
35mW_1mA
45mW_100µA
45mW_1mA
55mW_100µA
55mW_1mA

Figure 13. Comparison of the response obtained under dynamic tests at high temperature range
(200–500 ◦C) by using two different bias currents (100 µA and 1 mA).

The use of a pulsed-temperature operating mode promotes the transient chemical reactions.
The difference observed between constant and modulated temperature mode can be due to the fact
that the adsorption/desorption and reaction phenomena occur in out of equilibrium conditions in this
last mode [71]. The effective adsorption, which is the result of the competition between OH−, O2

−,
O2−, O− and the target gas, is thus modified when the sensitive layer is brought to high temperature
and then cooled very rapidly [72]. Another consequence of this rapid thermal cycling mode is the
total disappearance of the resistance variation under NO2, which is not observed even at low heating
power. It has already been shown in the literature that NO2 has a complex interaction with oxide
surface [73] which can lead in some cases to a transition from reducing to oxidizing behavior with
the operating temperature [74]. The lack of response of NO2 on the surface of CuO in quick pulsed
temperature mode can be due to kinetic reactions longer than pulse duration and/or opposite reactions
that counteract each other in the high and low temperature alternate steps.

To further explore the effect of the decrease in the measurement temperature, three additional
powers (10, 5 and 0 mW) have been used according to the cycle shown in Figure 10b. The comparison
of all measurements carried out between 20 ◦C (0 mW) and 500 ◦C (55 mW) with 100-µA bias current
are shown in the Figure 14. The results show that the increase of the response observed when the
measuring heating power was decreased from 55 mW to 25 mW continues to occur when it is lowered
down to 0 mW. Finally, the response under C2H4O could be multiplied by 7 in comparison with
constant temperature mode when a thermal cycling mode was applied. This last measurement also
confirms that cycled mode allows total selectivity with respect to NO2, which is not detected whatever
the temperature applied.
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Figure 14. Comparison of the response obtained under dynamic tests in the full temperature range
(20–500 ◦C). Bias current has been fixed at 100 µA.

6. Conclusions

Micro-hotplates were first prepared by using silicon microtechnologies. P-type semiconducting
CuO layers deposited by RF sputtering were integrated onto these microsensors by using classical
photolithography technologies that were used for the preparation of micro-hotplates. Even if this route
has the disadvantage of exposing the sensitive layer to chemical products which are able to attack it
(acidic or basic solutions), the integration of the copper oxide layer could be successfully carried out.
Because the microheater was designed on a membrane, it was then possible to generate very rapid
temperature variations and a rapid temperature cycled mode could be applied. This measurement
mode showed a strong improvement, by of a factor of 7, in the sensor response under 2 and 5 ppm of
acetaldehyde and by a factor 2 in the case of carbon monoxide.
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