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Abstract: This paper considers the near-field source location problem for a nonuniform linear array
(non-ULA) in the presence of sensor gain and phase errors. A sequential optimization calibration
method is proposed to simultaneously estimate the gain and phase errors as well as the locations
of calibration sources involving the ranges and the azimuths by exploiting some imprecise a-priori
knowledge of calibration sources. At each iteration of the proposed method, the source locations,
and the gain and phase errors are obtained iteratively. Finally, at the analysis stage, we evaluate the
effectiveness of the proposed technique using some numerical simulations. Results show that the
proposed algorithm shares the capability to jointly estimate the source locations and the errors.

Keywords: near-field source location problem; sensor gain and phase errors; a sequential optimization
calibration method

1. Introduction

Source localization with sensor arrays has broad applications in aerospace, navigation and
wireless acoustic sensor network societies [1–6]. Many effective algorithms for source locations,
such as the maximum-likelihood (ML) [7], the multiple signal classification (MUSIC) [8] and the
minimum-variance distortionless response (MVDR) algorithms [9], have been developed over the
years. Recently, some source location algorithms based on cumulative sum and steered-response
power [4,5,10–12] are also presented. It is worth pointing out that most of these algorithms suppose
the array manifold is perfectly available. However, in practice, the array manifold is often affected by
unknown array characteristics such as the sensor gain and phase errors as well as the unknown mutual
coupling [13–15], thus resulting in the performance deterioration of these algorithms. For example,
in [14], the precision of the direction-of-arrival (DOA) estimation would decrease due to the existence
of the unknown mutual coupling. In [15], the accuracy of measuring acoustic intensity would degrade
in the presence of the sensor gain and phase errors.

Some calibration algorithms for the gain and phase errors have been investigated. Specifically,
in [16,17], the eigendecomposition method was proposed to derive the DOAs with unknown gain and
phase errors. In [18], using the null characteristic of the MUSIC spectrum, a calibration technique was
proposed for the sensor gain and phase uncertainties as well as location errors. In [19], the maximum
a posteriori (MAP) method was presented to estimate the DOAs and the perturbations simultaneously.
In [20], an eigenstructure method with the aim of simultaneously estimating the DOA and gain-phase
errors without joint iteration, was proposed. In [21], based on different data models, two new
estimation algorithms were presented for uniform linear array (ULA) to estimate sensor gain and
phase errors. In [22], exploiting the subspace principle, the estimations of sensor gain and phase
errors were addressed in subarrays-based linear sparse arrays. In [23], a new method based
on the eigendecomposition of the Hadamard product of the covariance matrix and its conjugate
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was investigated requiring no a priori knowledge of calibration sources. In [24], the authors presented
an estimation of signal parameters via rotational invariance technique (ESPRIT)-like method that can
simultaneously estimate DOA, as well as the gain and phase errors in the uncalibrated portion of the
ULA in close form.

Summarizing, the aforementioned works focus on the far-field scenario, where the sources are
located far enough from the sensor arrays and only the DOAs are of interest. In the case of the
near-field scenario, the steering vector involves the knowledge of both the azimuths and the ranges.
Some works, such as [25–31], have been presented to obtain the ranges and DOAs of the sources
but with perfect knowledge of the array manifold. However, in the presence of the sensor gain and
phase errors, the estimation performance would be degraded significantly. There is very little work
with investigating the near-field source location problem for a nonuniform linear array (non-ULA)
in the presence of sensor gain and phase errors. In [32], the passive localization of near-field sources
with partly calibrated subarray-based arrays was studied. However, the proposed method cannot
apply in arbitrary arrays. We can employ the traditional active-calibration methods to estimate the
gain and phase errors no matter if they are far-field targets or near-field targets requiring the exact
information (azimuth or range) of the calibration source. However, from a practical point of view, the
exact information cannot be available.

In this paper, we consider the near-field source location problem for a non-ULA in the presence of
sensor gain and phase errors. We present a sequential optimization calibration method to simultaneously
estimate the error parameters and the locations of calibration sources under minimum variance
estimation criterion based on some imprecise a priori knowledge of calibration sources. Specifically,
we first obtain the estimates of source azimuths, the gain and phase errors using given ranges. Second,
the source ranges and the error parameters are derived according to the known azimuths. Finally, we
continue the iterative procedure until convergence. Simulation results highlight that the proposed
algorithm shares the capability of the joint estimates of the source locations and the error parameters.
In particular, it is worth pointing out that the proposed method exploits the imprecise knowledge of
calibration sources to estimate gain and phase errors. As a consequence, it is more effective than the
active-calibration methods owing to combing the self-calibration and active-calibration techniques.

The rest of the paper is organized as follows. In Section 2, we formulate the signal model. Section 3
describes a self-calibrating method for near-field sources with unknown gain and phase errors.
In Section 4, we provide some simulations to illustrate the effectiveness of the proposed method.
Finally, in Section 5, some conclusions are derived.

2. Signal Model

Assume that a non-ULA contains M sensors, which are placed along the x-axis at
d0, d1, · · · , dM−1(d0 = 0) with unequal spacing, respectively, as shown in Figure 1. There are P
uncorrelated narrow-band near-field sources impinging on the SLA with azimuth and range pairs
(θp, r0p), p = 1, 2, . . . , P, where θp is the azimuth of the p-th source deviating normal direction of array
reference point and r0p is the distance between the p-th source and array reference point. Let sp(n),
n = 1, 2, . . . , L, be the source waveforms. Similar to [33], the received signal vector of the non-ULA at
the nth snapshot can then be expressed as,

x(n) =
P

∑
p=1

Γa(θp, r0p)sp(n) + v(n)

= ΓAs(n) + v(n) n = 1, 2, · · · , L,

(1)

where

• x(n) = [x0(n), x1(n), · · · , xM−1(n)]T is the measurement signal vector;
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• v(n) = [v0(n), v1(n), · · · , vM−1(n)]T is an independent and identically distributed complex
circular zero-mean Gaussian random vector with covariance matrix σ2IM, while IM is the
M-dimensional identity matrix;

• A = [a(θ1, r01), a(θ2, r02), · · · , a(θP, r0P)] is the nominal M× P steering matrix, the p-th column is

a(θp, r0p) =

[
1,

r0p

r1p
e
−j

2π∆r1p
λp , · · · ,

r0p

r(M−1)p
e
−j

2π∆r(M−1)p
λp

]T

,

(2)

where λp is the wavelength of the pth source and rmp denotes distance of the pth signal source
to mth sensor, p = 1, 2, · · · , P, m = 0, 1, · · · , M− 1. ∆rmp is the relative distance between r0p and
rmp, which can be derived by geometrical relationship,

∆rmp = r0p − rmp

= r0p −
√
(r0p sin θp − dm)2 + (r0p cos θp)2.

(3)

To simplify the notation, we write r0p into rp.
• Γ = diag{ρ0ejϕ0 , ρ1ejϕ1 , · · · , ρM−1ejϕM−1} is the error matrix of the array gain and phase,

where parameters ρm and ϕm are the gain and the phase errors associated with the m-th
sensor, respectively.

-th  radiation sourcep

0
d
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Figure 1. Diagram showing narrow-band non-ULA architecture.

3. Near-Field Calibration Method

Unlike [17], which investigated the calibration algorithm for the far-field sources where only
the DOAs are of interest, this paper focuses on the case of the near-field sources involving these
considerations of range and azimuth. To this end, we present a sequential optimization calibration
technique to estimate the gain and phase errors, and the locations of radiating sources, simultaneously.
Specifically, fixed the ranges of radiating sources, we first estimate the azimuths, the gain and phase
errors, and then obtain ranges and the error parameters exploiting the estimated azimuths, and
continue the procedure until convergence.

3.1. Joint Estimations of Error Matrix and Azimuthes with Known Ranges

In this subsection, we extend the method [16] to simultaneously estimate Γθ and {θp}P
p=1 using

estimated ranges {r̂p}P
p=1, where Γθ is the array gain and phase error matrix under known ranges and
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r̂p denotes the estimated value of rp. Precisely, given a Γθ , we look for P peak values corresponding to
{θp}P

p=1, with respect to one-dimensional MVDR spectrum [9], given by,

P(θ|r̂p, Γθ) =
1

aH(θ, r̂p)Γ
H
θ R−1

x Γθa(θ, r̂p)
,

p = 1, 2, · · · , P.
(4)

Using the {θp}P
p=1, we estimate Γθ based on minimum variance estimation criterion [9] and

proceed the iteration procedure until convergence. Specifically, given {θp}P
p=1, we extend the proposed

self-calibration algorithm [16] and develop a cost function computed as,

J(Γθ) =
P

∑
p=1

aH(θp, r̂p)Γθ
H R−1

x Γθa(θp, r̂p), (5)

where a(θp, r̂p) denotes the steering manifold in Label (2) with known range r̂p and Rx is covariance
matrix computed as,

Rx = E[xxH ] = Γθ ARs AHΓθ
H + σ2 IM, (6)

while Rs = E[ssH ], E[·] and (·)H represent the expectation and the Hermitian transpose operation,
respectively. Note that the number P of signal source can be estimated based on Schwartz and Rissanen

(MDL) criteria [34] and Rx can be estimated by the sample covariance matrix (i.e., Rx =
N
∑

n=1
x(n)xH(n),

where N is the number of snapshots).
Further, let

Γθa(θp, r̂p) = ã(θp, r̂p)δ, (7)

in which
Γθ = diag(δ), (8)

and ã(θp, rp) is a diagonal matrix, given by,

ã(θp, r̂p) = diag{a(θp, r̂p)}, (9)

while diag(·) denotes diagonal matrix formed by the entries of the vector.
Submitting Label (7) into Label (5), we have

J(Γθ) = δH

{
P

∑
p=1

ã(θp, r̂p)
H R−1

x ã(θp, r̂p)

}
δ. (10)

Hence, assuming that ρ0 = 1,ϕ0 = 0, the optimization problem P1 accounting for the constraint
δHw = 1 where w = [1, 0, . . . , 0]T , can be written as,

P1


min
Γθ

J(Γθ)

s.t. δHw = 1,
Γθ = diag(δ).

(11)

Employing the Lagrangian multiplier method, the optimal solution to P1 is derived as:

δ =
Q−1w

wTQ−1w
, (12)
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where

Q =
P

∑
p=1

ã(θp, r̂p)
H R−1

x ã(θp, r̂p). (13)

Summarizing, the procedure of joint estimating Γθ and source azimuths {θp}P
p=1 is summarized

in Algorithm 1:

Algorithm 1 Algorithm for the joint estimations of Γθ and θ.

Input: (d0, d1, . . . , dM−1), {rp}P
p=1, w, P, Rx.

Output: {θp}P
p=1 and Γθ .

1: For k = 0 and Γ(0) = IM;
2: Find the azimuths {θ(0)p }P

p=1 by searching for P highest peak using Label (4);
3: Compute J0 by Label (10);
4: k := k + 1;
5: Compute Q(k) by Label (13);
6: Compute δ(k) by Label (12);
7: Construct Γ(k) = diag{δ(k)};
8: Find the azimuths {θ(k)p }P

p=1 by searching for P highest peak using Label (4);
9: Compute Jk by Label (10);

10: If |Jk − Jk−1| > κ, where κ is a user selected parameter to control convergence, then k = k + 1,

return to step 4. Otherwise, stop and output Γθ = Γ(k), {θp}P
p=1 = {θ(k)p }P

p=1.

3.2. Joint Estimations of Error Matrix and Ranges with Known Azimuths

In this subsection, we focus on jointly estimating Γr and {rp}P
p=1 with known azimuths {θ̂p}P

p=1,

where Γr is the array gain and phase error matrix under known azimuths and θ̂p denote the estimated
value of θp. Specifically, given a Γr, we first find {rp}P

p=1 by searching for one-dimension MVDR
spectrum, given by

P(r|θ̂p, Γr) =
1

aH(θ̂p, r)ΓH
r R−1

x ΓraH(θ̂p, r)
,

p = 1, 2, · · · , P.
(14)

Then, according to the knowledge {rp}P
p=1, we employ the same above procedure to derive Γr

and continue the procedure until convergence.
Next, we focus on the derivation of Γr with obtained {rp}P

p=1. Similarly, the optimal problem P2

can be denoted as

P2


min
Γr

J(Γr),

s.t. δHw = 1,
Γr = diag(δ),

(15)

where

J(Γr) = δH

{
P

∑
p=1

ã(θ̂p, rp)
H R−1

x ã(θ̂p, rp)

}
δ, (16)

and
ã(θ̂p, rp) = diag{a(θ̂p, rp)}. (17)
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We can derive the solution of P2 as

δ =
Q−1w

wTQ−1w
, (18)

where

Q =
P

∑
p=1

ã(θ̂p, rp)
H R−1

x ã(θ̂p, rp). (19)

Finally, Algorithm 2 summarizes the procedure of jointly estimating Γr and source ranges {rp}P
p=1.

Algorithm 2 Algorithm for the joint estimations of Γr and rp

Input: (d0, d1, . . . , dM−1), {θp}P
p=1, w, P, Rx;

Output: {rp}P
p=1 and Γr;

1: For k = 0 and Γ(0) = IM;
2: Find the ranges {r(0)p }P

p=1 by searching for P highest peak using Label (14);
3: Compute J0 by Label (16);
4: k := k + 1;
5: Compute Q(k) by Label (19);
6: Compute δ(k) by Label (18);
7: Construct Γ(k) = diag{δ(k)};
8: Find the ranges {r(k)p }P

p=1 by searching for P highest peak using (14);
9: Compute Jk by Label (16);

10: If |Jk − Jk−1| > κ, then k = k + 1, return to step 4. Otherwise, stop and output Γr = Γ(k),

{rp}P
p=1 = {r(k)p }P

p=1.

3.3. Joint Estimations of Error Matrix, Azimuths and Ranges

In this subsection, the proposed iteration procedure for jointly estimating the source range
and azimuth (θp, rp), p = 1, 2, · · · , P, as well as the gain and phase error matrix Γ is summarized
in Algorithm 3. It is worth mentioning that the calibration algorithm based on eigenstructure
methods in [17] can also be used to calibrate the near-field sources. However, each iteration
of the calibration algorithm requires to search a two-dimensional pseudo-specturm resulting in
a large computational complexity. In particular, each iteration of the proposed algorithm provides
a computationally efficient calibration method through converting a two-dimensional spectrum
calibration problem into two one-dimensional spectrum calibration problems, which significantly
decreases the computational burden.

Finally, we point out that the proposed algorithm may not converge to an optimal solution since
both optimization problems (4) and (14) are not convex. The proposed iterative algorithm ensures
obtaining a quality suboptimal solution as the approximate solution of optimal solution (please see
Table 1).

Table 1. Theoretical and average estimated values of the gain and phase errors for 12 sensors.

Sensor 1 2 3 4 5 6 7 8 9 10 11 12

ρ 1.000 0.892 1.129 1.012 1.151 1.171 1.175 0.982 1.155 0.908 1.141 1.145
Gain error ρ̂ 1.000 0.878 1.115 0.999 1.134 1.155 1.161 0.966 1.136 0.894 1.122 1.128

ϕ(deg) 0 −4.067 −12.385 1.270 8.214 17.042 −1.542 11.344 14.826 −4.152 4.769 −4.553
Phase error ϕ̂(deg) 0 −4.093 −12.249 1.453 8.285 17.232 −1.312 11.868 15.387 −3.443 5.580 −3.674
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Algorithm 3 Algorithm for the joint estimation of Γ and {θp}P
p=1, {rp}P

p=1

Input: (d0, d1, . . . , dM−1), w, Γ0, Rx;
Output: Γ and (θp, rp), p = 1, 2, . . . , P;

1: For m = 0 and estimate the number P of signals;
2: Find the P peaks corresponding to locations (θ

(0)
p , r(0)p ), p = 1, 2, . . . , P by searching for

two-dimension MVDR spectrum Pc(θ, r|Γ(0)) = 1/aH(θ, r)(Γ0)
H R−1

x Γ0a(θ, r);
3: m := m + 1;
4: Estimate {θ(m+1)

p }P
p=1 and Γθ by Algorithm 1 using {r(m)

p }P
p=1;

5: Estimate {r(m+1)
p }P

p=1 and Γr by Algorithm 2 using {θ(m+1)
p }P

p=1;
6: If ‖Γθ − Γr‖2

F > κ, where ‖ · ‖F denotes matrix 2-norm, back to step 3; Otherwise, stop and output

Γ = Γθ , (rp, θp) = (r(m+1)
p , θ

(m+1)
p ), p = 1, 2, . . . , P.

4. Numerical Results

In this section, we evaluate the performance of the proposed algorithm via numerical simulations.
We suppose that the non-ULA composes of M = 12 isotropous elements randomly placed in the array
aperture D = 100 m with the working wavelength λ = 0.15 m and N = 1000. Additionally, we model
the array gain errors and phase errors as random variables obeying uniform distribution, which are
generated by [22]:

ρm = 1 +
√

12σpζm,

ϕm =
√

12σϕηm,

where ζm and ηm are independent and identically distributed random variables distributed uniformly
over [−0.5, 0.5], σp and σϕ are the standard deviations of ρm and ϕm, respectively. Finally, the exit
condition for Algorithms 1–3 is κ = 10−4.

4.1. The Joint Estimations of the Array Gain and Phase Errors and Source Locations

In this subsection, we focus on jointly estimating the array gain and phase errors and source
locations using the imprecise location knowledge of calibration sources. Specifically, without loss
of generality, we consider a scenario involving three calibration sources (note that we can exploit a
calibration source or two calibration sources) located at (1400 m, 10◦), (1500 m, 22.5◦), (1600 m,−15◦),
respectively assuming that all signal-to noise ratio (SNRs) are 20 dB. In particular, we suppose
the imprecise distances (this is reasonable due to the measurement error) of the three sources are
1385 m, 1485 m, 1615 m, respectively, which are chosen as initializations of Algorithm 3. Additionally,
we randomly generate L1 = 50 experiments for gain and phase errors under σp = 0.1 and σϕ = π/18.
For each experiment corresponding to a set of fixed gain and phase errors, we conduct L2 = 50 Monte
Carlo trials for eliminating the impact on the noise. To this end, the RMSE (Root Mean Square Error) of
the gain and phase errors are defined as, respectively,

RMSE1 =

√√√√√ L2
∑

l=1

M
∑

m=1

∣∣∣ρm − ρ
(l)
m

∣∣∣2
ML2

, (20)

RMSE2(in deg) =

√√√√√ L2
∑

l=1

M
∑

m=1

∣∣∣ϕm − ϕ
(l)
m

∣∣∣2
ML2

, (21)
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where ρ
(l)
m and ϕ

(l)
m , respectively, are estimation values of the gain and phase errors of m-th sensor for

l-th Monte Carlo trial.
Figure 2 depicts the average estimation values of the range and the azimuth of calibration source

versus different experiments. Note that the obtained results are average over 50 Monte Carlo trials.
We observe that all range estimation values of three calibration sources hover around their true ranges
in Figure 2a, respectively. In particular, the maximum estimation error is about 9 m. This is reasonable
since the obtained solution is suboptimal in Algorithm 3. Interestingly, in Figure 2b, all azimuth
estimation values overlap perfectly with the theoretical values. These performance behaviors indicate
that the proposed algorithm can accurately estimate the azimuth of calibration source but sharing
a slight error in range.
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Figure 2. Average estimation values of the range and the azimuth of calibration source versus different
experiments, (a) range; (b) azimuth.

Figure 3 shows RMSEs of the gain and phase errors versus different experiments. Results reveal
that the different gain and phase errors would result in different estimation errors due to the existence
of range estimation errors. In particular, it can be observed that the mean RMSEs of the gain and
phase errors are about 0.015 and 3.5◦, respectively. Finally, it is worth pointing out that the proposed
technique shares the capability of the robustness to estimate the different gain and phase errors in
correspondences of the analyzed parameters.
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Figure 3. RMSEs of gain and phase errors versus different experiments, (a) gain error; (b) phase error.
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Next, we randomly select a set of values of the gain and phase errors among 50 experiments.
In Table 1, we report the theoretical and average estimated values of the gain and phase errors for
12 sensors, where ρ and ρ̂ are respectively theoretical and estimated values of the gain error, and ϕ

and ϕ̂ are, respectively, theoretical and estimated values of the phase error. Note that the estimated
values for each sensor are average results of 50 Monte Carlo trials. Interestingly, it can be seen that the
estimated values are close to the true values showing that the proposed technique can well estimate
the gain and phase errors.

Next, we analyze the MVDR spectrum given by

P(r, θ) =
1

aH(θ, r)ΓH R−1
x Γa(θ, r)

. (22)

In Figure 4, we plot the two-dimensional MVDR spatial spectrums for three calibration sources
considering two cases of before correction (Figure 4a) and after correction (Figure 4b). It can be
observed that the high sidelobe level emerges around the locations of true targets before calibration
due to the nominal steering vector imperfectly matching the real one when existing the gain and phase
errors. After calibration, as expected, the sidelobe levels significantly decrease and three notable peaks
can be observed.

(a) (b)(b)

Figure 4. Two-dimensional MVDR spatial spectrums for three calibration sources, (a) before calibration;
(b) after calibration.

In Figure 5, we show the estimation values of range and azimuth of calibration source for 50 Monte
Carlo trials. Again, we observe that the obtained ranges show a slight oscillatory in comparison with
the true ranges, whereas the estimated azimuths perfectly overlap with true values. These performance
behaviors reveal that the proposed technique can better estimate the locations of calibration sources.
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Figure 5. Estimation values of range and azimuth of calibration sources versus different Monte Carlo
trials, (a) range; (b) azimuth.

4.2. Array Gain and Phase Error Compensation for Near-Field Source Localization

In this subsection, we focus on estimating the locations of near-field radiating sources exploiting
the array gain and phase error matrix Γ obtained by Algorithm 3. Specifically, we consider a scenario
where four near-fieldsources are located at (1250 m,−35◦), (1450 m, 15.5◦), (1650 m, 20.1◦), (1840 m,−5◦),
respectively. In particular, for the following simulations, we consider the theoretical and estimated
values of the gain and phase errors in Table 1. In addition, we search the range and azimuth of interest
with steps 1 m and 0.1◦, respectively.

In Figure 6, we plot the two-dimensional MVDR spatial spectrums for four sources with the same
SNR = 20 dB considering two cases of before compensation and after compensation. As expected,
in Figure 6a, many high sidelobe levels emerge around the true targets locations due to the effect
of array gain and phase errors. However, after exploiting Γ to compensate the nominal steering
vector, in Figure 6b, we can observe that the spectrum peaks can be readily found, even though the
estimation may be precise. Figure 7a,b depict one-dimensional MVDR spatial spectrums at θ = −35◦

and r = 1251 m for a source with the estimated location (1251 m,−35◦), respectively, considering
two cases of before compensation and after compensation. The lower sidelobe levels are obtained
compared with before compensation. For example, in Figure 7a, the peak sidelobe level (PSL) is about
−13 dB before compensation, whereas it becomes about −27 dB after compensation.

(a)(a) (b)(b)

Figure 6. Two-dimensional MVDR spatial spectrums for four sources with the same SNR = 20 dB,
(a) before calibration; (b) after calibration.
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Figure 7. One-dimensional MVDR spatial spectrums for a source with estimated location (1251 m,−35◦)
under SNR = 20 dB, (a) θ = −35◦; (b) r = 1251 m.

Next, we assess the estimation results of four sources (1250 m,−35◦), (1450 m, 15.5◦),(1650 m, 20.1◦),
(1840 m,−5◦) with SNRs= 10 dB, 25 dB, 30 dB, 5 dB, respectively. In Figure 8, we provide the
two-dimensional MVDR spatial spectrums for two cases of before compensation (Figure 8a) and after
compensation (Figure 8b). We can observe that the peak of the weak target location (i.e., (1840 m,−5◦))
drowns by high

sidelobe levels. In particular, the four peaks are more easy to obtain after compensation compared
with Figure 8a. Furthermore, we show the one-dimensional MVDR spatial spectrums at −35◦

and 1251 m in Figure 9a,b, respectively, considering two cases of before compensation and after
compensation. Particularly, the low sidelobe levels can be observed after compensation while showing
higher sidelobe levels in comparison with Figure 7b since the low power. Finally, it is worth pointing
out that these performance behaviors reflect that error parameters estimated by the devised algorithm
can compensate manifold very well and significantly decrease the sidelobe level of MVDR spectrum.

(a) (b)

Figure 8. Two-dimensional MVDR spatial spectrums for four sources with different SNRs, (a) before
calibration; (b) after calibration.
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Figure 9. One-dimensional MVDR spatial spectrums for a source with estimated location (1251 m,−35◦)
under SNR = 10 dB, (a) θ = −35◦; (b) r = 1251 m.

In Table 2, we summarize the estimated values of the locations for four sources. Results exhibit
that all estimated ranges share the error values of 1 m with the true values and there is no error for the
obtained azimuths. Consequently, these performance behaviors again show the effectiveness of the
proposed algorithm.

Table 2. Estimated values of the locations for four sources.

Target 1 2 3 4

Range (m) 1651 1451 1251 1841
Azimuth (deg) 20.1 15.5 −35 −5

5. Conclusions

In this paper, we have addressed the near-field source location problem for a non-ULA embedded
in gain and phase errors. We have presented a sequential optimization calibration algorithm to
simultaneously estimate error parameters and locations of calibration sources under minimum variance
estimation criterion exploiting some imprecise information. The source locations and the gain and
phase errors are obtained iteratively with known ranges or azimuths at each iteration. Numerical
results have shown that the array gain and phase errors obtained by the devised algorithm can
compensate manifold very well and reduce MVDR spectrum sidelobe levels significantly. It is worth
pointing out that the calibration method framework can be extended to other DOA algorithms,
i.e., MUSIC, for arbitrary array geometries. Additionally, future work would be possible to consider
the study of the convergence rate of the proposed sequential optimization algorithm. Last but not
least, since the considered problem represents a case of optimization under uncertainty, it would be
interesting to evaluate the integration of the proposed method with robust optimization and stochastic
programming techniques [35–37].

Acknowledgments: This work was supported by the National Natural Science Foundation of China under
61501083 and by the Fundamental Research Funds of Central University under ZYGX2014Z005.

Author Contributions: Jingjing Li and Xianxiang Yu conceived and designed the experiments; Jingjing Li
performed the experiments; Jingjing Li and Guolong Cui analyzed the data; Jingjing Li and Xianxiang Yu wrote
the paper. Guolong Cui revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2017, 17, 1405 13 of 14

References

1. Chen, J.C.; Yao, K.; Hudson, R.E. Source localization and beamforming. IEEE Signal Process. Mag. 2002, 19, 30–39.
2. Parr, A.; Miesen, R.; Vossiek, M. Comparison of phase-based 3D near-field source localization techniques for

UHF RFID. Sensors 2016, 16, 978 .
3. Tiete, J.; Dominguez, F.; Silva, B.D.; Segers, L.; Steenhaut, K.; Touhafi, A. SoundCompass: A distributed

MEMS microphone array-based sensor for sound source localization. Sensors 2014, 14, 1918–1949.
4. Cobos, M.; Perez-Solano, J.J.; Felici-Castell, S.; Segura, J.; Navarro, J.M. Cumulative-Sum-Based Localization

of Sound Events in Low-Cost Wireless Acoustic Sensor Networks. IEEE/ACM Trans. Audio Speech Lang. Process.
2014, 22, 1792–1802 .

5. Canclini, A.; Antonacci, E.; Sarti, A.; Tubaro, S. Acoustic source localization with distributed asynchronous
microphone networks. IEEE Trans. Audio Speech Lang. Process. 2013, 21, 439–443 .

6. Meng, W.; Xiao, W. Energy-Based Acoustic Source Localization Methods: A Survey. Sensors 2017, 21, 376.
7. Krim, H.; Viber, M. Two Decades of Array Signal Processing Research: The Parametric Approach. IEEE Signal

Process. Mag. 1996, 13, 67–94.
8. Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Aerosp. Electron. Syst.

1986, 34, 276–280.
9. Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418.
10. Cobos, M.; Marti, A.; Lopez, J.J. A Modified SRP-PHAT Functional for Robust Real-Time Sound Source

Localization With Scalable Spatial Sampling. IEEE Signal Proc. Lett. 2011, 18, 71–74.
11. DiBiase, J.H. A High Accuracy, Low-Latency Technique for Talker Localization in Reverberant Environments

using Microphone Arrays. Ph.D. Thesis, Brown University, Providence, RI, USA, 2000.
12. Silverman, H.F.; Yu, Y.; Sachar, J.M.; Patterson, W.R. Performance of real-time source-location estimators for

a large-aperture microphone array. IEEE Trans. Speech Audio Process. 2005, 13, 593–606.
13. Paulraj, A.; Kailath, T. Direction of arrival estimation by eigenstructure methods with unknown sensor gain

and phase. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
Tampa, FL, USA, 26–29 April 1985; Volume 10, pp. 640–643.

14. Wang, M.; Ma, X.; Yan, S.; Hao, C. An Autocalibration Algorithm for Uniform Circular Array With Unknown
Mutual Coupling. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 12–15.

15. Krishnappa, G. Cross-spectral method of measuring acoustic intensity by correcting phase and gain mismatch
errors by microphone calibration. J. Acoust. Soc. Am. 1981, 69, 307–310 .

16. Friedlander, B.; Weiss, A. Eigenstructure methods for direction finding with sensor gain and phase
uncertainties. Proc. Int. Conf. Acoust. Speech Signal Process. 1988, 5, 2681–2684.

17. Weiss, A.J.; Friedlander, B. Eigenstructure methods for direction finding with sensor gain and phase
uncertainties. J. Circuits Syst. Signal Process. 1990, 9, 271–300.

18. Ng, B.P.; Lie, J.P.; Er, M.H.; Feng, A. A practical simple geometry and gain/phase calibration technique for
antenna array processing. IEEE Trans. Signal Process. 2009, 57, 1963–1972, .

19. Viberg, M.; Swindlehurst, A.L. A Bayesian approach to auto-calibration for parametric array signal
processing. IEEE Trans. Signal Process. 1994, 42, 3495–3507.

20. Liu, A.; Liao, G.; Zeng, C.; Yang, Z.; Xu, Q. An eigenstructure method for estimating DOA and sensor
gain-phase errors. IEEE Trans. Signal Process. 2011, 59, 5944–5956.

21. Jiang, J.; Duan, F.; Chen, J.; Chao, Z.; Chang, Z.; Hua, X. Two new estimation algorithms for sensor gain and
phase errors based on different data models. IEEE Sens. J. 2013, 13, 1921–1930.

22. Liao, B.; Chan, S. Direction-of-arrival estimation in subarrays-based linear sparse arrays with gain/phase
uncertainties. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2268–2280.

23. Cao, S.; Ye, Z.; Xu, D.; Xu, X. A Hadamard product based method for DOA estimation and gain-phase error
calibration. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1224–1233.

24. Liao, B.; Chan, S. Direction finding in partly calibrated uniform linear arrays with unknown gains and
phases. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 217–227.

25. Liang, J.; Liu, D.; Zeng, X.; Wang, W.; Zhang, J.; Chen, H. Joint azimuth-elevation/(-range) estimation
of mixed near-field and far-field sources using two-stage separated steering vector-based algorithm.
Prog. Electromagn. Res. 2011, 113, 17–46.



Sensors 2017, 17, 1405 14 of 14

26. Zaman, F.; Qureshi, I.M.; Naveed, A.; Khan, Z.U. Joint estimation of amplitude, direction of arrival and
range of near field sources using memetic computing. Prog. Electromagn. Res. 2012, 31, 199–213.

27. Huang, Y.; Barkat, M. Near-field multiple source localization by passive sensor array. IEEE Trans.
Antennas Propag. 1991, 39, 968–975.

28. Challa, R.N.; Shamsunder, S. High-order subspace-based algorithms for passive localization of near-field
sources. In Proceedings of the 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, 30 October–1 November 1995; Volume 2, pp. 777–781.

29. Yuen, N.; Friedlander, B. Performance analysis of higher order ESPRIT for localization of near-field sources.
IEEE Trans. Signal Process. 1998, 46, 709–719.

30. Wu, Y.; So, H.; Hou, C.; Li, J. Passive localization of near-field sources with a polarization sensitive array.
IEEE Trans. Antennas Propag. 2007, 55, 2402–2408.

31. Jiang, J.; Duan, F.; Chen, J.; Li, Y.; Hua, X. Mixed near-field and far-field sources localization using the
uniform linear sensor array. IEEE Sens. J. 2013, 13, 3136–3143.

32. Xie, D.; Huang, J.; Ge, H. Localization of near-field sources with partly calibrated subarray-based array.
In Proceedings of the 2010 the 5th IEEE Conference on Industrial Electronics and Applications, Taichung,
Taiwan, 15–17 June 2010; pp. 1758–1761.

33. Yuan, L.; Jiang, R.; Chen, Y. Gain and phase autocalibration of large uniform rectangular arrays for
underwater 3-D sonar imaging systems. IEEE J. Ocean. Eng. 2014, 39, 458–471.

34. Wax, M.; Kailath, T. Detection of Signals by Information Theoretic Criteria. IEEE Trans. Acoust. Speech
Signal Process. 1985, 33, 387–392.

35. Bauschert, T.; Busing, C.; D’Andreagiovanni, F.; Koster, A.C.A.; Kutschka, M.; Steglich, U. Network planning
under demand uncertainty with robust optimization. IEEE Commun. Mag. 2014, 52, 178–185.

36. D’Andreagiovanni, F.; Nardin, A. Towards the fast and robust optimal design of Wireless Body Area
Networks. Appl. Soft Comput. 2015, 37, 971–982.
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