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Abstract: This paper aims at proposing a new wireless indoor localization system (ILS), called
TrackCC, based on a commercial type of low-power system-on-chip (SoC), nRF24LE1. This type
of chip has only l output power levels and acute fluctuation for a received minimum power level
in operation, which give rise to many practical challenges for designing localization algorithms.
In order to address these challenges, we exploit the Markov theory to construct a (l + 1)× (l + 1)
-sized state transition matrix to remove the fluctuation, and then propose a priority-based pattern
matching algorithm to search for the most similar match in the signal map to estimate the real position
of unknown nodes. The experimental results show that, compared to two existing wireless ILSs,
LANDMARC and SAIL, which have meter level positioning accuracy, the proposed TrackCC can
achieve the decimeter level accuracy on average in both line-of-sight (LOS) and non-line-of-sight
(NLOS) senarios.

Keywords: wireless indoor localization system; signal fluctuation; discrete power outputs; pattern
matching; cheap communication chip

1. Introduction

Localization plays a key role in various business scenarios. The most famous localization system is
the Global Position System (GPS). It has been widely used for outdoor localization but performs poorly
in indoor environments due to blocked satellite signals. During the last ten years, indoor localization
has been an important technical support in many wireless distribution systems due to: (1) its ability to
position objects in places where outdoor localization systems cannot cover; and (2) too large graininess
of outdoor systems to serve indoor environments with high precision requirements. Recently, indoor
localization systems (ILSs) based on wireless signals have attracted researchers’ interests in a wide
range of real applications, such as emergency personnel localization in a disaster area, patient tracking
in a hospital and location detection of assets in a warehouse. Compared to other ILSs, e.g., vision-based
localization system, wireless ILSs can simultaneously achieve low cost and high accuracy. According to
the wireless infrastructure, wireless ILSs are usually classified into the following categories: Radio
Frequency IDentification (RFID) ILS, WiFi ILS, Bluetooth ILS, etc. RFID ILS is capable of working
for a relatively long time due to low power consumption, but the main drawback that commercial
off-the-shelf readers have is that only a small reading distance of around 10 m [1] seriously limits its
application fields. Bluetooth ILS [2] suffers from similar limitations. WiFi ILS can achieve a centimeter
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level localization precision [3,4]. However, it is required to equip high-power and relatively expensive
WiFi chips with continuous AC power supplies into mobile devices and deploy a number of wireless
access points. In this paper, different from conventional wireless ILSs, we will explore the localization
possibility of a wireless ILS built on a low-power low-cost wireless chip, nRF24LE1, which only
provides several discrete power outputs, and is not capable of measuring received signal strengths.

Wireless ILS works mainly based on four metrics. They are time of arrival (ToA), time difference
of arrival (TDoA), angle of arrival (AoA) and received signal strength indicator (RSSI). Wang et al. [5]
proposed a ToA-based ILS. It used DBSCAN algorithm to divide potential positions into two parts,
inliers and outliers. The algorithm deleted outliers through iterative clustering, voting and filtering.
Consequently, the position of the inliers gradually converged to a calculated position. Although
ToA-based solutions have high accuracy in LOS scenarios, they require expensive time synchronization
devices to calibrate time between transmitters and receivers. Since the time of arrival can be disrupted
under NLOS scenarios, which significantly degrades localization accuracy, Pak et al. [6] proposed
a ToA-based hybrid particle finite impulse response filter algorithm to mitigate NLOS effects by
identifying NLOS links. A TDoA based localization approach adopts multiple receivers to record
arrival times of a same source signal and uses the time difference among multiple measuring receivers
for localization. Xiong et al. [7] proposed a TDoA-based ILS, called ToneTrack, to address the
challenging situation, where direct path signals were blocked. Based on ToA readings from pairs
of access points (APs), techniques such as triangle inequality, clustering and rejecting outlier, were
adopted to yield the location estimations of mobiles. However, similar to ToA, TDoA suffers from
multipath propagation in an NLOS environment, complex time asynchronization, and expensive
hardware cost. Xiong et al. [8] proposed an AoA-based ILS, called ArrayTrack, which used multiple
APs to form antenna arrays. It computed AoA of direct path to achieve a high accuracy. However,
the difficult large-scale antenna array deployment and the rare direct path make it hard to be used in
complex indoor environments.

RSSI methods use signal strength to estimate distances between transmitters and receivers. It is
based on the signal-fading model that, as the distance increases, the RSSI of radio signal decreases
monotonically. Since changes in the RSSI value have a direct impact on the estimation of distance, the
positioning accuracy has high sensitivity to the link quality. Thus, there are many existing algorithms
in order to identify, smooth and even exclude impacts from poor link quality. Huang et al. [9] used
the Kalman Filter and a traditional geometric method for location estimation. The tags used could
continuously get accurate RSSI values in the range from 0 to 255. To achieve more precise localization,
the basic linear Kalman filter smoothed the fluctuations of RSSI rather than removing them completely.
However, different from conventional RSSI-based ILSs with an assumption that equipped chips can
measure received signal strength, some practical chips, especially those with low prices, only output
discrete power levels. As referred to LANDMARC in [10], the reader only supplied eight power
levels. Since the physical distance cannot be computed by using power level directly, LANDMARC
developed a fingerprint-based approach to identify a reference point with a uniquely marked vector
of power levels that the readers detected from a reference tag on the same point. When a target tag
goes into the communication range of readers, the system receives a power level vector between the
target and these readers, and uses this vector by matching to calculate the current position of the target.
Another ILS, called SAIL [11], utilized the feature that nearby reference nodes have similar signal
strengths. By adopting the k-means clustering algorithm, the corresponding cluster of an unknown
node was chosen. According to the similarity of signal strengths, the weight values of reference
nodes within the cluster were further assigned. Finally, the position of the node was calculated
using a linear-least-square algorithm. Different from both algorithms above, in this paper, we focus
on addressing the fluctuation issue of power levels caused by inexpensive communication chips
nRF24LE1 and developing a similarity match scheme of the received minimum power level vectors to
improve the localization accuracy.
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This paper proposes a new wireless indoor localization system, called TrackCC, which is built
on a commercial type of low-power low-cost chip, nRF24LE1. This chip supports four distinct
programmable power levels. They are −18 dBm , −12 dBm , −6 dBm, and 0 dBm, indicated as
PL-1, PL-2, PL-3, and PL-4, respectively. Since the chip is not able to measure the RSSI value of the
radio signal, traditional RSSI-based ILS solutions are not feasible in this case. In addition, during the
practical operation of TrackCC, we notice that there are serious nonlinear fluctuations in received
minimum power levels, which may be caused by environmental noise interference, unstable cheap
hardware, dynamic movements of obstruction, etc. All of them impose big challenges in achieving high
localization accuracy. Since the received minimum power level may not be necessarily proportional to
the distance in NLOS situations, we construct a signal map with grid center points as the fingerprints of
the whole area. Each fingerprint consists of a vector of received minimum power levels. The proposed
TrackCC consists of two phases. The offline phase is used to remove the fluctuations in power levels
and form the radio map, and the online phase exploits the proposed priority-based pattern matching
algorithm to find the nearest grid center point by selecting the most similar match on power level
vectors between fingerprints and that sent by the unknown node. We conduct extensive experiments
to demonstrate the effectiveness and superiority of the proposed TrackCC. The major contributions of
our work are summarized as follows:

(1) Based on a commercial low-cost low-power system-on-chip, nRF24LE1, the proposed system
can achieve decimeter-level accuracy for indoor localization and outperform a classical power
level based ILS, LANDMARC, and a recently proposed ILS, SAIL. In addition, in the aspect of
hardware cost, for a medium or large localization area, unlike SpotFi [3] that needed to deploy
multiple access points (APs) with continuous power supplies, and LANDMARC, including its
variants VIRE [12] and SAIL[11], which needed to deploy very expensive RFID readers to receive
the signal of tags with relatively long distances, the proposed system just needs to deploy the
corresponding number of cheap wireless nodes according to actual site area.

(2) This paper introduces the Markov theory to remove the fluctuation in power levels, which has
not been addressed in the literature.

(3) We propose a priority-based pattern matching technique to find the most similar power level
vector with fingerprint based localization methods. We found a noteworthy phenomenon that,
even if two power level vectors are similar in Euclidean distance, their corresponding nodes
may still be located at two far-away points in the constructed radio map. Thus, the conventional
sequence matching algorithm, such as k-Nearest-Neighbor (kNN), is unsuitable to our case.

The rest of this paper is organized as follows. Section 2 presents the framework of TrackCC.
This is followed by the background and problem in Section 3. Then, the implementation processes of
the offline stage and online stage are presented in Section 4 and in Section 5, respectively. Section 6
illustrates the system implementation and shows experimental results. Section 7 concludes our work.

2. System Framework

The proposed system consists of multiple wireless nodes and a server. According to requiring
location information, nodes are classified into two kinds, target nodes and reference nodes.
The network hardware infrastructure and logical communication links between these devices are
illustrated in Figure 1.

In this figure, a target node needs to be localized and has the ability to receive reference nodes’
signals in real time and periodically forwards them to the sink node. All reference nodes have known
locations. They do not communicate with each other, but broadcast data packets to the target. Because
the target may receive data packets from multiple reference nodes, a reference node only sends essential
data, such as its ID and current signal power level, to alleviate the traffic load at the target. The sink
only receives data packets from the target, integrates data into a frame, and sends it to the server
for further processing. The server is a workstation that is used as a center for data storing, frame



Sensors 2017, 17, 1391 4 of 17

processing and location estimation. Once a target is required to locate its position, the server will
process its frame to calculate a position and give feedback on the localization result to specified users.

Reference Node  1

Reference Node  2

Reference Node  3

Target Node

Sink
Server

Figure 1. The network hardware infrastructure and logical communication links of TrackCC.

3. Background and Problem

The proposed system adopts reference nodes embedded with nRF24LE1 chips. It only supports
four programmable signal propagation power levels (PL-1∼PL-4), where its maximum communication
range under power level 0 dBm reaches 100 m if an external antenna is equipped [13]. It is noticed that
the communication distance is comparable to that of a Wifi chip. We make a preliminary measurement
about minimum power levels from reference nodes at multiple randomly selected testing points.
According to measurement results, we observe that, for most of the testing points, the values of
minimum power levels from the same reference node on the same position at different times may
be rather different. This fact that received minimum power levels are variable over time is called
“fluctuation”. Due to the impacts of electromagnetic interference (EMI) or internal multipath echoes [9],
for a particular reference node, it is observed that the fluctuation phenomenas in received minimum
power levels are very serious sometimes. It may derive more reliable and location-specific signal
features from post-processing these measured data [14]. How to deal with such acute fluctuation has
not been addressed in the literature.

Since reference nodes are required to periodically transmit four power level signals, the server
only can provide one location estimation at every time slot. How to efficiently and correctly use a
target vector of received minimum power levels and remove its fluctuation is a challenge for TrackCC
to achieve high localization accuracy.

It is worth noticing that we found two candidates with the same Euclidean distance that
may be located at two far-away positions on the constructed radio map. Thus, the conventional
kNN-based sequence matching algorithm, which does not pre-build the classification model [15],
becomes infeasible.

In summary, the acute fluctuation, the simple low-dimensional data and different positions with
the same similarity challenge the fingerprint construction and affect the localization accuracy. The next
few sections elaborate the solutions for the above problems.

4. Offline Stage

The offline stage is mainly used to form the radio map of the coverage area. We first place reference
nodes at the grid points of the area. Then, based on collected vectors of received minimum power
levels, fingerprints of the area are constructed. Here, a vector of received minimum power levels is
abbreviated as VReMipl for the remainder of the paper.

4.1. Deployment

Without the loss of generality, we let l denote the number of supported power levels.
Each reference node transmits signals powered with PL-1, PL-2, . . . , PL-l. We divide the transmission
area of the node into two parts, a circle of radius R1 and an annular area of outer radius R2. For the
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former, because there is only one power level PL-1 available and its grain is coarse in terms of
localization precision, this area is labeled as “invaluable location area” (ILA). Similarly, the latter is
marked as a “valuable location area” (VLA). In VLAs, l signal power levels are distributed in the
small distance from R1 to R2, which makes more precise distance estimation possible. We consider a
deployment strategy that reference nodes are successively located at all grid points with grid side length
d′ = max{min{R2 − R1, 2R1}, R1}. Under this deployment strategy, we have the following theorem.

Theorem 1. Suppose that reference nodes are placed at all grid points with grid area d′× d′ in an approximately
rectangle shaped target region with the length at least 3d′, where d′ = max{min{R2 − R1, 2R1}, R1}, and the
ILA of any reference node can be covered by the VLAs of other reference nodes.

Proof: See Appendix A.
Suppose that the transmission range increment between two adjacent power levels are

a1, a2, · · · , al−1, consecutively. Then, we have R2 − R1 = ∑l−1
i=1 ai. If the minimum value in set

{a1, a2, · · · , al−1} equals d, then d can be considered as the localization accuracy. It is because

(1) for any reference node, if the target moves more than d in its VLA, even in the case of open space,
the value of received power level will be changed; and

(2) there may be d× d-sized square grids, where nodes’ movement will not result in changes in
VReMipl value.

4.2. Remove Fluctuation

During the measurement process, we first locate one target node at each grid center point for a
while to collect minimum power levels obtained from n different reference nodes. The detailed process
is described as follows. Every reference node transmits signals periodically with a period of h0, by
powering in the following order: PL-1, PL-2,. . . , and PL-l. When the target is closer to a reference node,
it may receive signals at multiple power levels. However, the target only records the minimum one,
denoted by PLmin, and reports it to the sink. Since the communication chip used in this paper only
supports several distinct programmable power levels, and it is not able to measure the RSSI value
of the radio signal, traditional RSSI-based ILS solutions are not feasible in this case. Here, PLmin is
used to reflect the received signal strength at the grid point from the reference node. Supposing that
PLmin =PL-i, it is implied that the target node can receive the data packets sent by the reference node at
the power from PL-i to PL-l. Therefore, the minimum power level actually represents all information
involved in all power levels. Smaller i means that the received signal strength of the reference node at
the location is stronger. For each time slot h0, a data frame is formed in the format as below:

< ti, gj, (re f1, PLj,i
1,min), . . . , (re fm, PLj,i

m,min), . . . , (re fn, PLj,i
n,min) >

where ti is the current time stamp (i ∈ Z), gj is the sequence number of grid center point, re fm is

the reference node’s ID and PLj,i
m,min(m ∈ {1, 2, · · · , n}) is the received minimum power level from

reference node m at ti. As mentioned earlier, even if in open space, not all frames formed during the
period of collection may be identical. In order to facilitate the pattern matching in the online stage,
removing fluctuation is required to obtain the fingerprint at grid point gj.

For a given reference node re fm, the target node at grid center point gj continuously records

the minimum power levels from re fm along the time, denoted as PLj,0
m,min, PLj,1

m,min, · · · , PLj,i
m,min, · · · .

In order to represent the case that the target node does not receive PLmin from a reference node at
a certain time slot, a constant symbol Not-Receive (NR) is used. Such a recording process can be
modeled as a discrete time discrete state stochastic process, denoted as X j

m ∈ S = {s1, s2, · · · , sl , sl+1}.
Similar to [16], X j

m can be modeled as a Markov chain with a state space S, and the state transition
matrix P = {Pij, i, j = 1, 2, . . . , l, l + 1}, where Pij represents the transition probability from power level
si to sj. Pij can be estimated by empirical measurements over a time period, which approximates the
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proportion of the number of transition nij to the total number of all transitions starting from si, where
nij denotes transition from state si at one time slot to state sj at the next time slot. Pij can be written as

Pij =
nij

∑l+1
k=1 nik

. (1)

From [17], since the samples of X j
m are along a discrete time, every state is accessible to other

states, i.e., this chain is irreducible. In addition, this chain is not periodic due to the randomness of
signal multipath fading and temporal dynamics. According to the theorem in [17], there always exists
limiting probability in this chain. Define the state probabilities as Π = {πi, i = 1, 2, . . . , l, l + 1}. Then,
the state with the maximum probability is defined as the stable state of X j

m, i.e., the stable power level
for the reference node re fm at grid gj. Π can be obtained by solving the following set of equations:{

πj = ∑l+1
i=1 πiPij j = {1, 2, · · · , l, l + 1},

∑l+1
i=1 πi = 1.

(2)

Once the stable states of n reference nodes are obtained at grid gj, this grid’s fingerprint will
be constructed by them in series. Finally, the fingerprints of all grids will be stored in the database
stamped with the position of corresponding grid center points.

For n deployed reference nodes, when the server receives f frames for time f × h0 at grid gj,
it starts to construct the fingerprint for this grid. f frames are stored by row in a matrix Dj based on

FCFS (First Come, First Serve). In order to get Vm = {PLj,0
m,min, PLj,1

m,min, · · · , PLj,i
m,min, · · · , PLj, f

m,min},
every PLmin in Dj will be added into a corresponding vector Vm if its reference tag’s ID is m. Then, n
Markov chains are modeled on the vectors {Vm, m = 1, 2, . . . , n}. For a vector Vm, the calculation of
matrix Pm is as follows.

At the beginning, define three (l + 1)-order matrices, called frequency count matrix C, state
transition matrix P and summation vector S, which are initialized to zero. Then, vector Vm is traversed.
During the traversing process, if Vm(i) is in state a and Vm(i + 1) is in state b, Cab will increase by
one. Then, the total number of all transitions starting from si is summed as Si. Finally, based on (1),
the value of Pij is the proportion of the value of Cij to the total frequency Si. Once P is derived, set
Π will be calculated based on (2). The state that has the maximum limiting probability is recorded
as the stable state fm and { fm, m = 1, 2, . . . , n} represents the fingerprint F. The detailed fingerprint
construction algorithm is summarized in Algorithm 1.

In order to know how many frames are sufficient for evaluating f , we need to obtain the fluctuation
condition in real time. Therefore, TrackCC first receives a few frames to avoid the estimation error
caused by the accidental errors. Then, the above fluctuation removal procedure is executed once before
receiving a new frame, until the maximum value of Π can be obtained.

As stated in Section 3, fluctuations exist in the most of the grids. If the fluctuation is not severe in
a grid, the VReMipl may be the same for multiple frames. Thus, to further relieve the transmission
overhead, we define the empirical threshold TH. Denote the number of same received frames to be f ′.
If f ′

f > TH, no more frames are required and the same frame is considered as the fingerprint.
We now use an example as shown in Figure 2 to illustrate the fingerprint construction procedure.

The figure is plot based on 66 pieces of measurement data in the 7th grid of our location area as shown
in the experiment section, where there are 10 reference nodes deployed. The black line represents the
fingerprint of this grid and colorful lines represent different frames in D7. For example, for stable state
of reference node 4 with four power levels, f4, its 5 × 5-sized frequency count matrix C, state transition
matrix P and state limiting probability set Π have been calculated, respectively, as
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C =


0 0 0 0 0
0 56 3 1 1
0 3 0 0 0
0 1 0 0 0
0 1 0 0 0

 ,

P =


0 0 0 0 0
0 0.918 0.049 0.016 0.016
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

 ,

Π =
[
0 0.924 0.045 0.015 0.015

]
.

Algorithm 1: The construction of fingerprint for grid gj

Input :The matrix Di stored f frames received at grid gj;
The number of deployed reference nodes n;

Output :The fingerprint Fj for grid gj;
1 for m = 1; m 6 n; m ++ do
2 —————-Initialization—————————

Get vector Vm = {PLj,0
m,min, · · · , PLj,i

m,min · · · }, C = 0, P = 0, S = 0, cnt = 0;
3 —————Frequency statistics——————–

while cnt 6 f − 1 do
4 cnt ++;
5 if Vm(cnt) in state a and Vm(cnt + 1) in state b then
6 Cab = Cab + 1.
7 end
8 end
9 ———–Calculating transition matrix————-

for row i of C do
10 for column j of C do
11 Si = Si + Cij;
12 end
13 end
14 for row i of C do
15 for column j of C do

16 Pij =
Cij
Si

;

17 end
18 end
19 ————Calculating the stable state ————

Calculate Π based on Equation (2);
20 π = max Π;

21 Index the stable state fm corresponding π;
22 Connect fm at the end of Fj;
23 end
24 Report Fj as the fingerprint;
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Figure 2. The resulting demonstration of removing fluctuation using Markov chain.

From matrix C, we can observe that there are 56 (the value of C22) times that received minimum
power levels from reference node 4 is PL-2. There are also three (the value of C23) times fluctuating
from PL-2 to PL-3. Clearly, fluctuation exists between PL-2, PL-3, PL-4, and even NR. However,
because π2 is the maximum one, the stable state is PL-2 after removing fluctuations. Finally, 10 stable
states can be derived to represent the fingerprint.

5. Online Stage

The main task of the online stage is to provide position estimation for the target. The process is
briefly described as follows. When the target node goes into the grid of a location area, it receives
power levels from reference nodes and records PLmin for each of them. Then, when the server receives
a frame forwarded from the target, it extracts all power levels PLmin and integrates them into a target
vector by the ascending order of corresponding reference node’s ID re fn. After that, a sequence
classification scheme is applied to choose a fingerprint with the highest similarity. This procedure
includes the similarity calculation between fingerprints and target vector and priority-based pattern
matching. Finally, the position of that selected fingerprint is considered the target’s estimated position.

5.1. Similarity Calculation

Xing et al. [15] have pointed out that the distance function, which measured the similarity
between sequences, determined the quality of distance-based sequence classification significantly. The
target vector extracted from each frame is highly valuable in the similarity calculation process. More
specifically, those elements PL-2–4 in the vector mean that the target tag is located in the VLA of the
corresponding reference nodes. The drift (the effect of Dynamic Time Wrapping (DTW)) on the whole
vector will make characteristics lost so that the accuracy of further pattern matching degrades seriously.
Therefore, Euclidean distance, which is sensitive to small distortions on both axes, is chosen in this
case. If the Euclidean distance is smaller, the similarity will be higher. Note that Keogh et al. [18] have
shown that, when applying the 1NN classifier, Euclidean distance is surprisingly competitive in terms
of accuracy compared to other more complex similarity measures.
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Suppose that n reference nodes are deployed in the location area that is split into G grids. In the
ith grid, the target vector Ti and the fingerprint Fi are

Ti =
[

Ti(1) Ti(2) . . . Ti(k) . . . Ti(n)
]

,

Fi =
[

Fi(1) Fi(2) . . . Fi(k) . . . Fi(n)
]

.

Then, their Euclidean distance is

dist(Ti, Fi) =

√
n

∑
k=1

(Ti(k)− Fi(k))2. (3)

In TrackCC, we calculate the Euclidean distances between Ti and all {Fi, 1 6 i 6 G} and record
the calculations in a candidate list CL by ascending order.

5.2. Priority-Base Pattern Matching

As stated above, the list CL contains position coordinates and their distances. If the Euclidean
distance of the candidate with the highest similarity is zero, this candidate will be directly considered
as the calculated position of the target. Otherwise, the priority-based 1NN technique will be adopted
for the list CL to calculate elements’ priorities, and the candidate with the highest priority is then
considered as the calculated position.

To facilitate the presentation, we only focus on multiple candidates with the same smallest
Euclidean distance in list CL and ignore all others. Each candidate has an initial priority of 5. The lower
the number, the higher the priority. The process of priority evaluation is described as follows:

(1) In accordance with their existing order in list CL, a candidate is selected as a benchmark, denoted
with CLB .

(2) TrackCC records two power levels from the same reference node in the target vector and the
benchmark, denoted as PLT and PLB, respectively.

(3) The priority to CLB is changed based on a priority conversion rule from transition PLT to PLB.
The details of the priority conversion rule will be provided later. Then, return to step 2 until two
vectors have been traversed.

(4) Return to step 1, pick another candidate as a new benchmark and go to step 2, until all candidates
have been traversed.

During the above process, the priority conversion rule is a key. Before presenting its formulation,
we first introduce the definition of Transformation as follows.

Definition 1. Transformation is defined as an action that the value of PLT needs to be changed to PLB in
operation to remove fluctuations for the target vector T.

When the target is located correctly, we investigate the transformation trend of power levels
between a target vector and its true candidate. According to the records for specified transformation,
the following hypotheses are verified correctly.

Hypothesis 1. If a power level transforms to itself, the priority will not change.

Hypothesis 2. The probability that a power level transforms from PL-1 to others is lower than transforming
reversely and the probability of transformations from NR to PL-1–l is the minimum.

Hypothesis 3. The probability that a power level transforms to the next strong level is greater than transforming
to the previous weak level in the range of PL-2–l.
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Based on the above hypotheses, we develop the priority conversion rules, as shown in the
Table 1. From the table, based on Hypothesis 1, if PL-1T–NRT transform to themselves, the
priority to CLB will not change. Therefore, the numbers in the diagnoses are zeros. To implement
Hypothesis 2, we set the rule in the PL-1T and NRT rows. In the PL-1T row, after transformation
from PL-1T to {PL-iB, i = 2, 3, . . . , l}, the priority will be lower than that after transformation from
{PL-iT , i = 2, 3, . . . , l} to PL-1B. In the NRT row, if NR transforms to {PL-iB, i = 1, 2, . . . , l}, the priority
will be reduced with the decrease of PLB. In addition, the priority after transformation from PL-iT
to PL-(i + 1)B will be 1 higher than that after transformation from PL-iT to PL-(i− 1)B, i = 2, 3, . . . , l.
This takes Hypothesis 3 into account. The detailed priority-based 1NN pattern matching algorithm is
given by Algorithm 2.

Table 1. The priority conversion rule.

Benchmark Candidate

PL-1 PL-2 PL-3 PL-4 . . . PL-l NR

Target

PL-1 0 +2 +3 +4 . . . +l +(l+1)
PL-2 -1 0 -2 +1 . . . +(l-3) +(l-2)
PL-3 +1 -1 0 -2 . . . +(l-4) +(l-3)
PL-4 +2 +1 -1 0 . . . +(l-5) +(l-4)

...
...

...
...

...
. . .

...
...

PL-l +(l-2) +(l-3) +(l-4) +(l-5) . . . 0 −2
NR +(l-1) +(l-2) +(l-3) +(l-4) . . . −1 0

Algorithm 2: The priority-based 1NN pattern matching algorithm
Input :Candidates list CL; Target Vector T
Output :The final calculated position

1 if exist multiple candidates with the same smallest Euclidean distance then
2 while exist unlabeled candidates with the smallest distance do
3 Select an unlabeled candidate as benchmark CLB;
4 for i = 1 to n do
5 if Ti transforms to CLB,i then
6 Increase or decrease the priority to CLB based on the conversion rule;
7 end
8 end
9 Label CLB.

10 end
11 Label the position with the highest priority by applying 1NN classifier.
12 else
13 Label the position with the smallest distance.
14 end
15 Report the final calculated position.;

6. System Implementation and Experimental Results

We implemented a prototype system of TrackCC. In our implementation, every node integrates
an nRF24LE01 SoC, which works normally on 3.3 V and equips a 4.2 V rechargeable Li-Battery.
The corresponding key circuit diagram is shown in Figure 3. This diagram incorporates the usage of
nRF24LE01’s pins and the design of critical peripheral circuits, such as FLASH programming interface
and Peripheral board interface. Due to the gain effect of external antenna, the sink can receive a target’s
signal within around 100 m. The server is a workstation equipped with Windows 7 operating system.
A localization software encoded by C# runs on the server to implement the algorithm, as shown in
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Figure 4. For the convenience of coding and the chip’s configuration, we let the values of PL-1–4
correspond to 8, 10, 12, 14, respectively. We also let NR correspond to 16, instead of zero, to avoid
sudden increment of Euclidean distance between two sequences.
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Figure 3. The key circuit diagram of the TrackCC hardware.

Figure 4. The software of the TrackCC running on the server.

We deployed 10 reference nodes around a 6 m × 4 m space area for LOS and a 6 m × 4 m common
office with some obstacles (include desks, chairs and computers) for NLOS, as shown in Figure 5.
There are 2 m spacing between reference nodes. Under the condition that reference nodes and target
nodes do not equip external antennas, the maximum transmission distance of PL-1 and PL-4 are
measured as R1 = 4 m and R2 = 6 m, respectively, and the minimum localization accuracy is d = 0.5 m.
Thus, the deployment area is divided into 96 grids in both LOS and NLOS.
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Figure 5. The experimental environment.

According to the observation, receiving at least 10 frames in each grid can avoid estimation errors
caused by accidental errors, and setting the threshold TH = 0.6 enables a few more grids in which
almost no fluctuations exist to accelerate fingerprint construction. For other grids, up to 60 frames are
adequate to obtain state transition probability matrices and a grid’s fingerprint. All frames received at
two stages are recorded for further detailed performance evaluation. Every experiment is repeated
20 times to avoid statistical errors. The initial position of any target node is randomly selected and the
target can move along any of eight directions for requiring consecutive location services. We define
straight-line distance e between the true coordinate (xt, yt) and the calculated coordinate (xc, yc) as the
position error as

e =
√
(xc − xt)2 + (yc − yt)2. (4)

Benchmarks: Both LANDMARC [10] and SAIL [11] have been implemented as the comparison
benchmarks, where the numbers of reference tags and readers used in LANDMARC and SAIL
are the same as the number of grid center points and reference nodes in the TrackCC prototype
system, respectively.

6.1. The Performance in the LOS Scenario

Figure 6a shows the cumulative distribution function (CDF) of position estimation errors for three
ILSs, LANDMARC, SAIL and TrackCC. The performance is evaluated in the LOS scenario through
three experiments. In the first experiment, we apply the fluctuation removal and the priority-based
1NN pattern matching techniques. From this figure, we can observe that the performance of TrackCC
in terms of localization accuracy is much more superior, where 68% localization errors are lower than
0.5 m and 80% errors are lower than 1 m. In contrast, for SAIL, 5% of localization errors are lower than
0.5 m and the value for LANDMARC is less than 2.5%. The poor localization precision of LANDMARC
and SAIL mainly owns to acute fluctuations of VReMipls. In addition, it is worth noticing that we
found that two candidates with the same Euclidean distance may be located at two far-away positions
in the constructed radio map. Thus, the conventional kNN based sequence matching algorithm,
integrating LANDMARC and SAIL, is unsuitable for our situation.
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Figure 6. The performance evaluation of TrackCC in the case of line-of-sight (LOS). (a) the performance
in the case of LOS; (b) fluctuation removal; (c) similarity calculation; (d) priority conversion rule;
(e) expand grid to the size of 1 m × 1 m.

6.2. The Effect of Fluctuation Removal

The fluctuation removal at the offline stage is a key step to constructing fingerprints with higher
state possibility values. In the experiment in which the fluctuation removal is disabled, a grid’s
fingerprint is constructed by randomly selecting a frame that was previously collected in that grid.
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Figure 6b shows the cumulative distribution function (CDF) of position estimation errors
with/without fluctuation removal. We can observe that the accuracy of correct localization with
fluctuation removal is about 17% higher than that without fluctuation removal, and 63% higher
than LANDMARC. For TrackCC without the fluctuation removal, we found that the probability of
fingerprints in different grids being the same is 2–13% based on 20 groups of experiments with each
containing 96 random samples. If the target vector is the same as multiple fingerprints, TrackCC will
not provide a correct location estimation, and the accuracy will decrease almost 13% along with the
increase in the number of location requisitions. On the contrary, through removing signal fluctuations,
we observed that none of the fingerprints in the LOS or NLOS scenarios are identical. Namely, each
fingerprint of the grid is unique. Therefore, even if the number of fingerprints becomes larger, their
uniqueness is greatly enhanced after the fluctuation removal. In addition, these fingerprints can better
reflect the real situation of signal strength in corresponding grids.

6.3. Euclidean Distance and DTW

As mentioned earlier, some distance function, such as DTW, is likely to distort, drift, stretch, or
filter two series during the similarity calculation. This makes characteristics of sequences become
lost. The goal of DTW is aligning two similar series and calculating the best distance by dynamic
programming. It has a parameter window (w), which constrains the boundary of wrapping path.
We implement the DTW algorithm for comparison and evaluate the effect of distortion as shown
in Figure 6c. Note that Euclidean distance is replaced by DTW, while w is 1–4, respectively, in four
experiments. We can observe that the precision using Euclidean distance is the best and much better
than DTW. The effect of fluctuation removal disappears once the distortion is allowed. In addition, if
w > 3, the precision will change very little. It means that only a few characteristics, which are used by
Euclidean distance to obtain the real similarity, have been wrapping.

6.4. The Performance of Priority Conversion Rule

The proposed priority conversion rule is an empirical one. The priority-based 1NN pattern
matching technique can improve 2% in terms of accuracy, as shown in Figure 6d. Note that, since
Hypothesis 3 is proposed based on the observation of correct location, this rule including Hypothesis 3
is beneficial to the improvement of the accuracy.

6.5. The Localization Effect for Different Sizes of Grids

In Section 4, it has been shown that the side length of grid d is the same as the localization accuracy.
Thus, enlarging the grid will reduce the sampling time, but it will impact the resolution of the radio
map, resulting in sparse radio map data. When the length of the grid is increased to 1 m, the CDF of
position errors is shown in Figure 6e. We can observe that, when the grid becomes larger, the ability to
correctly localize target nodes in their located grid cells can be improved. This is because decreasing
the number of grids results in the reduction in the number of fingerprints, which directly leads to a
drop in the probability of fingerprint matching errors. Therefore, in our experiment, 72% positioning
errors are less than 1 m. However, once the positioning fails, the localization error will be greater than
the length of grid (1 m), and the gradient of the increase in error becomes larger.

6.6. The Performance in the NLOS Scenario

We also evaluate the performance of TrackCC in the NLOS scenario. The experiment process is the
same as that in the LOS scenario. The CDF curves of overall performance and detailed evaluation are
shown in Figure 7a,b, respectively. It is obvious that the accuracy is similar to that in the LOS scenario.
This is beneficial from the whole area’s radio map that has taken the interference from obstacles into
account at the offline stage. Imagining that if a target node receives PL-2 from a reference node on the
side of a table, it may suddenly change to PL-4 due to a multipath effect after moving to the other side.
Thus, LANDMARC may choose multiple far-away locations as the input of kNN, so that its accuracy
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is much lower than that in the case of LOS. While SAIL utilizes the fact that adjacent tags have high
similarity in received signal strengths, the clustering result may not change greatly, although there
may be changes in received minimum power level of tags. Hence, compared to the LOS scenario, its
localization accuracy does not decline obviously in the case of NLOS.
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Figure 7. The performance evaluation of TrackCC in the case of non-line-of-sight (NLOS). (a) the
performance in the case of NLOS ; (b) the detailed evaluation of NLOS scenario.

7. Conclusions

This paper exploits a type of low-power and widely used commercial chip, nRF24LE1, for indoor
localization, and proposes a novel estimation approach package, called TrackCC. Compared to RSSI
based radio chips, the sensing node has obvious superiority in terms of cost, but has two inherent main
drawbacks: (1) it has only four available power outputs so that directly applying existing distance
estimation based strategies results in tremendously poor localization accuracy, and (2) it is extremely
sensitive to environmental noise. To address these challenges, this paper adopts the fingerprint-based
technique, which can perform well in both LOS and NLOS scenarios. In order to address the fluctuation
issue, we exploit the Markov theory to construct a state transition matrix to remove the fluctuation.
Then, by adopting the 1-nearest-neighbor (1NN) technique, we propose a priority-based pattern
matching algorithm to search for the most similar match in the radio map to estimate the real position
of unknown tags. Experimental results show that in both LOS and NLOS cases, TrackCC can guarantee
that 68% localization errors are lower than 0.5 m.
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Appendix A

Proof of Theorem 1:
For the purpose of explanation, we consider a diagram as shown in Figure A1. We let OA

1 denote
reference tag A’s ILA, OA,L

1 and OA,R
1 denote the left and the right half-circle of OA

1 , respectively. Let ÓB
2
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denote the VLA of reference tag B, and OB
2 denote its ILA. Similarly, define ÓB,L

2 (OB,L
2 ) and ÓB,R

2 (OB,R
2 )

as the left and the right half circle of ÓB
2 (O

B
2 ), respectively. Two different cases are discussed as follows.

(1) When 2R1 6 R2 − R1, we have R2 > 3R1. Since d′ = max{min{R2 − R1, 2R1}, R1}, we have
d′ = 2R1, and the radius of OA

1 and OB
1 are R1 . It is easy to get that OA

1 and OB
1 are two

circumscribed circles. Define that the overlapping area of OA
1 and OB

1 , denoted with OA,B, equals
φ. For OB

2 of radius R2 centered at B, even in the case R2 = 3R1, it also contains OA
1 and OB

1 .
Since ÓB

2 = OB
2 −OB

1 and OA
1 ∩OB

1 = OA,B = φ, we can derive OA
1 ⊆ ÓB

2 . Similar with the above
derivation, reference tag B’s ILA can also be covered by A’s VLA. In the case of 2R1 6 R2 − R1,
the theorem holds as long as there exist at least two tags in a row in the target region.

(2) When 2R1 > R2 − R1 , from d′ = max{min{R2 − R1, 2R1}, R1}, it is easy to derive that
d′ = R2 − R1 < 2R1. Since the radius of OA

1 and OB
1 are R1, and d′ < 2R1, OA

1 and OB
1 overlap,

i.e., OA,B 6= φ. For the two circles OA
1 and OB

2 with d′ = R2 − R1 meters away from their
centers, because the radius of OB

2 and OA
1 are R2 and R1, respectively, we can obtain that OA

1
is contained in OB

2 , i.e., OA
1 ⊂ OB

2 . Furthermore, OA
1 − OB

1 ⊂ OB
2 − OB

1 . It is equivalent to
(OA

1 −OA
1 ∩OB

1 ) ⊂ (OB
2 −OB

1 ). Thus, OA
1 −OA,B ⊂ ÓB

2 . Similar to the above derivation, we have
OB

1 −OB,C ⊂ ÓC
2 . Since the minimum value of d′ is R1, according to the geometry theory, when

d′ belongs to the interval [R1, 2R1), it is not hard to derive that OA,B ⊂ OB,L
1 , and OB,C ⊂ OB,R

1 . It
means that OA,B ∩OB,C = φ. Thus, OA,B ⊂ (OB

1 −OB,C)⇒ OA
1 − (OB

1 −OB,C) ⊂ OA
1 −OA,B ⇒

OA
1 = {(OA

1 − (OB
1 − OB,C)) ∪ (OB

1 − OB,C)} ⊂ {(OA
1 − OA,B) ∪ (OB

1 − OB,C)} ⊂ (ÓB
2 ∪ ÓC

2 ).
Finally, we get that A’s ILA is covered by the union set of the VLAs of both tags B and C, which
are two consecutive tags located on the right side of A as shown in Figure A1. Likewise, the claim
holds true for the case on the left side. In the case of 2R1 > R2 − R1, it can be summarized that
the theorem holds as long as there exist at least two continuous adjacent tags either on the left
side or the right side.

A CB

Ó2
B  

11
#,4 

11
#,.  

1#,$ 

Figure A1. The illustration of proof of the second case

Because the length of the rectangular target region is no less than 3d′, there are four deployed tags
in a row. Therefore, for any tag, there must exist at least two tags deployed on the left or right side of it.
Therefore, the theorem holds in both cases.
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