
 

Sensors 2017, 17, 1387; doi:10.3390/s17061387 www.mdpi.com/journal/sensors 

Article 

An LMS Programming Scheme and Floating-Gate 
Technology Enabled Trimmer-Less and Low Voltage 
Flame Detection Sensor 
Juan Carlos Iglesias-Rojas 1,*, Felipe Gomez-Castañeda 2 and Jose Antonio Moreno-Cadenas 2 

1 Department of Communications and Electronics, National Polytechnic Institute, Mexico City 07738, Mexico 
2 Department of Electrical Engineering, Center for Research and Advanced Studies of the National Polytechnic 

Institute, Mexico City 07360, Mexico; fgomez@cinvestav.mx (F.G.); jmoreno@cinvestav.mx (J.A.M.) 
* Correspondence: jiglesias@ipn.mx; Tel.: +52-55-5729-6000 (ext. 54598) 

Academic Editor: Vittorio M. N. Passaro 
Received: 4 May 2017; Accepted: 9 June 2017; Published: 14 June 2017 

Abstract: In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset 
voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 
VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset 
voltage over a wide range of values by means of electron injection. The flame detection sensor 
consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV 
offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage 
comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on 
the detection of the electrical changes produced by the flame ionization. The experimental results 
show that it is possible to measure the presence of a flame accurately after programming the 
amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are 
mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC 
source and several mechanical trimmings are used in order to accurately measure the presence of 
the flame. 

Keywords: flame detector sensor; CMOS analog integrated circuits; field programmable gate arrays; 
operational amplifiers; LMS; industrial heaters 

 

1. Introduction 

Flame detector sensors are widely used for industrial applications such as absorption 
refrigerators and large gas heaters. Some methods to detect a flame were already published. The 
methods described in [1–4], utilize an image sensor and image signal processing to determine the 
presence of flames. Not only is this method expensive, but also complex. In [5], a silicon micro-
structure to detect micro-flames is presented, but, due to the small size of the structure, it is difficult 
to implement it in large industrial applications. In [6,7] an ultraviolet (UV) sensor is used to detect a 
flame. The UV sensor has low reliability because the phototube applied as a detection device can 
easily become detached; furthermore, the UV sensor is temperature sensitive, so complex mechanical 
parts are needed.  

In this paper, the flame ionization principle was used to measure the presence of flames. This 
principle states that a single flame generates free carriers that bring about current conduction [8]. The 
flame detection sensor designed for this work exploits this principle to accurately measure the 
presence of the flame. 

Unfortunately, the flame ionization principle requires a high AC voltage to deliver reliable flame 
detection [8–10]. The flame detection principle consists of a pure AC voltage applied though the flame 
using a metal rod; the flame acts as a low forward current diode [8], so, a very small DC voltage 
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component is present at the rod. Therefore, the aim of the flame detector sensor circuit is to detect a 
very small DC voltage component mounted on a large AC voltage. 

According to [8], the AC voltage source that feeds the flame through the rod, should provide at 
least 5 V (more than 100 VRMS is recommended) to obtain a relative high DC component mounted on 
the large AC signal. This requirement is based on the assumption that common circuits, e.g., Bipolar 
Junction Transistors (BJT), common commercial operational amplifiers, etc. will be used. Common 
commercial circuits that can handle high input voltages are frequently high offset voltage devices. 
The offset voltage is very important for this application because the flame produces a very small DC 
component that in most cases is lower than the input referred offset voltage of the amplifiers used, 
resulting in detection failure. 

In this paper, an offset-cancelled operational amplifier and a trimmer-less field programmable 
analog comparator are used to detect the very small DC component produced by the flame; 
furthermore, the circuit design was implemented on chip so that typical industrial requirements such 
as robustness and reliability are met.  

To be compliant with the offset voltage requirements, a Programmable Offset Operational 
Amplifier (POOA) was used [11,12]. The POOA is the heart of the proposed flame detection sensor 
due to its capability of setting its offset voltage by means of programming. The POOA can be used 
for different applications, e.g., a precision amplifier (an amplifier whose offset voltage σ, is lower 
than 100 μV), or a voltage comparator, where σ is the decision level.  

A CMOS technology chip of 1.2 μm with an oxide thickness of 316 Å was used to implement the 
POOAs, however, submicron technologies such as 0.35 μm, 0.25 μm, and 0.18 μm are recommended 
since these fabrication technologies present better performance and reliability [13]. 

The POOA is based on Floating Gate Metal Oxide (FGMOS) field effect transistors that should 
be programmed by means of hot electron injection and electron tunneling. FGMOS applications that 
utilize hot electron injection and electron tunneling require a fast and accurate programming scheme 
in order to improve reliability and yield efficiency. A typical programming scheme is used in [14,15], 
where the source-drain voltage (VSD) is modulated for controlling the injected current into the floating 
gate. This scheme presents fast and accurate programming, but the circuit implementation  
is complex. 

The proposed programming scheme utilizes the least mean square (LMS) algorithm to control 
the frequency of the injection pulses in order to set accurately the floating-gate voltage in FGMOS 
transistors. Due to the ease of LMS computational implementation and the use of injection pulses 
instead of VSD modulation, this programming scheme dramatically reduces the circuit 
implementation complexity, therefore the LMS algorithm was used for setting the offset voltage of 
an operational amplifier over a wide range of values.  

The experimental results show that it is possible to measure the presence of a flame using a  
60 Hz AC input signal of just 0.95 VRMS. These results were tested after programming two POOAs. 
The POOAs were programmed using an LMS algorithm implemented into a Field Programmable 
Gate Array (FPGA). The main contributions of this paper can be summarized as follows: 

1. A low voltage flame detector sensor based on the flame ionization principle. 
2. A trimmer-less voltage comparator. 
3. A programming scheme that is based on the LMS algorithm. 
4. An easy circuit implementation of the LMS algorithm. 
5. A programming circuit that utilizes injection pulses instead of VSD modulation. 

The organization of the paper is as follows: first, in Section 2, the flame ionization principle and 
the flame detection sensor scheme are presented; circuit analysis is also discussed. In Section 3, a 
detailed description of the POOA design is shown. In Section 4, details of the LMS programming 
scheme as well as the FPGA implementation of the LMS algorithm is presented. The circuit design of 
the flame detecting circuit based on two POOAs is presented in Section 5, and the experimental 
results of the LMS programming performance and the measurement of the flame presence are shown 
in Section 6. Finally, a conclusion of the results obtained is presented in Section 7. 
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2. The Flame Detection Sensor  

2.1. The Flame Ionization Principle 

The flame ionization principle is described and studied in depth in [8]. This principle is used not 
only to detect the flame presence, but also to characterize the flame behavior [16]. According  
to [8], all flames conduct electrical current by means of the free ions generated by the flames 
themselves. The most accepted argument of this principle is explained by the chemical reaction shown 
in Equation (1): 

CH O CHO e       (1) 

In theory, the flame conducts electrical current in one direction, i.e., it acts as a diode. In Figure 1, 
the equivalent circuit of an active flame is presented. The equivalent circuit is formed by a diode and 
two resistors; the diode is supposed to be ideal, whereas the resistors are of different values that fulfill 
the rule: RF < RR. RF and RR are the forward and reverse flame resistances, respectively. 

 
Figure 1. The equivalent circuit of a flame ionization measurement system. RF and RR are the forward 
and reverse flame resistances, respectively. The forward resistance is always lower than the reverse 
resistance, no matter the AC voltage applied to the flame. 

In reference [8], a deep study of the flame resistances was made, concluding that the RR/RF 
relation depends on the rod (flame test probe) position and the AC voltage applied to the flame. For 
voltages lower than 5 V, the RR/RF relation is a little bit higher than the unit. Therefore, the flame 
behaves as a non-ideal diode whose forward and reverse currents are very similar. The forward 
current (from the rod to the burner) is always higher than the reverse current. The rectification 
property of the flame has been widely used in flame detectors due to its reliability and  
robustness [9,10]. 

2.2. The Flame Detection Sensor Scheme  

The complete design of the flame detecting sensor using two POOAs is shown in Figure 2, where 
the first POOA was configured as an offset-cancelled voltage follower, and the second POOA was 
configured as a voltage comparator. A 60 Hz AC signal is applied to the flame through a 4.7 MΩ 
resistor, so that the rectifying property of the flame produces a DC component while the flame is 
present. The DC component is separated of the 60 Hz AC signal by means of a passive integrator 
circuit formed by R1 and C1. Because the flame ionization measurement system is high impedance 
and the DC component produced by the flame would be down to a few millivolts, an offset-cancelled 
voltage follower is needed. The passive integrator circuit formed by R1 and C1, dramatically reduces 
the AC signal, whereas the DC component will pass through it with almost no attenuation. The 
integrator’s output signal is then compared to a decision level given by the second POOA in order to 
detect the presence of the flame. The second POOA is configured as a voltage comparator, whose 
offset voltage σ is the decision level. While the flame is active, a DC voltage with a small 60 Hz ripple 
is presented at the non-inverting comparator’s input. Since the DC component of this signal is greater 
than the comparator’s decision level, the comparator’s output will become logically high.  
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Figure 2. The flame detecting sensor using CMOS technology and Floating Gate Transistors. The AC 
voltage is applied through the flame by means of a metal rod and a burner. The two Programmable 
Offset Operational Amplifiers and the integrator’s network are clearly shown.  

3. The Programmable Offset Operational Amplifier 

3.1. The POOA Design 

The circuit design of the POOA is presented in Figure 3. FG1 and FG2 are indirect programming 
floating-gate structures [15], M1 and M2 are the input differential pair transistors, M3 is the input 
differential pair bias current source, M4–M9 are the folded-cascode transistors, and M10–M11 are the 
output buffer transistors. 

 

Figure 3. The POOA circuit design. FG1 and FG2 are indirect programming floating-gate structures, 
M1 and M2 are the input differential pair transistors, M4–M9 are the folded-cascode transistors, and 
M10–M11 are the output buffer transistors.  

The circuit design procedure (including transistors Mop1 and Mop2) is presented in [17], and the 
simulation model for circuit design is presented in [18]. Adding a tunneling transistor (Mtun), an 
injection transistor (Minj), and a control gate capacitor (Cin), to each tail of the folded-cascode amplifier, 
forms a POOA. The length (L) of all transistors is 3.6 μm, whereas the widths (W) were obtained from 
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the geometry relations (S = W/L) [17]. The final widths were modified by means of PSpice simulations 
in order to increase the POOA’s phase margin [11].  

The tunneling voltage (Vtun) is equal to VSS during normal operation and programming process, 
and should be increased up to 27 V for tunneling. The injection voltages (Vinj1 and Vinj2) are equal to 
VDD during normal operation and tunneling process and equal to VSS during programming. The 
programming voltage (VSD) is equal to VDD during normal operation and tunneling process and equal 
to 7.5 V during programming. The programming voltage should be increased up to 8 V to bring on 
the injection current, and consequently, increase the adaptation rate (ξ) explained in the next section. 
The main POOA’s electrical parameters obtained experimentally are shown in Table 1 and its 
microphotograph is shown in Figure 4. 

Table 1. The main POOA’s electrical parameters. 

Parameter 1 Magnitude Unit 
Open loop gain 65 dB 

Bandwidth 235 kHz 
Phase margin 60 dB 

Slew rate 2 V/μs 
Settling time 1550 ns 
Output range (VSS + 0.55) − (VDD − 1.7) V 

Common mode rejection ratio 65 dB 
Power supply rejection ratio 70 dB 
Input referred offset voltage Programmable V 

Total power dissipation 7.2 mW 
1 The above electrical parameters were measured at a room temperature of 27 °C and a supply voltage of 5 V. 

 
Figure 4. Microphotograph of the POOA. The final layout is 400 μm × 245 μm and requires about 
15.6% more die area than a regular folded-cascode operational amplifier.  

3.2. The POOA as A Precision Amplifier 

In practice, any operational amplifier presents an offset voltage due to mismatch. The offset 
voltage can be reduced by adding floating-gate structures into a folded-cascode topology. From 
Figure 3, it is observed that the tail currents I1 and I2, depend on the floating-gate voltages of FG1 and 
FG2, respectively. If it is assumed that the floating-gate voltages (VFG1 and VFG2) are equal, and the 
input voltages (Vin+ and Vin−) are also equal and within the input range voltage interval, the currents 
I1 and I2 are equal in theory. Again, due to mismatch, the tail currents of the folded-cascode are 
different in practice, causing an offset voltage at the amplifier’s output. Because the tail currents of 
the folded-cascode can be controlled by means of the floating-gate voltages, and the floating-gate 
voltages depend on the charge stored in them, the tail currents can be programmed by means of 
electron injection and tunneling. The electron tunneling removes electrons from the floating gate, 
increasing the floating-gate voltage; to the contrary, electron injection inserts electrons into the 
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floating gate, decreasing the floating-gate voltage. Equation (2) describes the floating-gate voltage at 
FG1 and FG2: 

in in FG
FG

T

C V Q
V

C


   (2) 

where QFG is the total electron charge stored in the floating gate, and CT is the total capacitance seen 
by the floating gate. The capacitances Cin and CT and the voltage Vin are constant, so, the floating-gate 
voltage only depends on the total charge stored in it. Equation (2) describes the floating-gate voltage 
dependence of the total floating-gate charge. Electron tunneling increases the floating-gate voltage, 
whereas electron injection decreases it, which means that electron tunneling decreases the tail 
current, whereas electron injection increases it. 

4. LMS Programming Scheme 

4.1. The LMS Algorithm 

The LMS algorithm was presented for the first time by Widrow and Hoff in 1959. The LMS is a 
stochastic gradient descent algorithm that iterates the weight of each tap of a transversal filter in 
direction of the instantaneous gradient of the square error signal [19]. Despite the fact that the LMS 
algorithm is very complex in mathematical terms, it is easy to implement it in computational terms. 
Equation (3) shows the simplicity of the LMS algorithm update rule: 

( 1) ( ) ( ) ( )i in n e n x n       (3) 

where ωi is the weight of the tap i, n is the iteration number, x(n) is the input signal, e(n) is the error 
signal, and ξ is the adaptation rate. Despite the LMS algorithm simplicity, it has a fast and stable 
convergence compared to other adaptive algorithms such as the Hybrid RLS-NLMS [20].  

The LMS algorithm has been proven to be fast and robust as described in [21]. These 
characteristics are suitable for industrial applications such as measurement equipment and sensor 
calibration. 

4.2. Programming scheme based on LMS algorithm 

The programming scheme based on LMS algorithm is shown in Figure 5. The POOA is 
connected as a voltage follower with an input voltage equals to the common mode voltage  
(VC = 2.5 V). 

 
Figure 5. The POOA’s programming scheme based on LMS algorithm. The POOA is connected as a 
voltage follower in order to read the offset voltage directly. Because the offset voltage could be too 
small, an error amplifier is used. The ADC digitizes the error signal, so that the LMS control block is 
able to process it.  
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The offset voltage can be obtained by subtracting the POOA’s output voltage (Vout) from the 
input common mode voltage. VC is also used as the input signal x(n). The desired signal (d(n)) is 
obtained from Equation (4): 

( ) Cd n V    (4) 

Equation (4) is the starting point of the programming scheme. At this point, the desired offset 
voltage is selected in order to obtain d(n) with a common mode voltage VC = 2.5V, e.g., if an offset 
voltage of +5 mV is desired, d(n) yields 2.495 V. For offset cancellation (σ = 0), d(n) = VC. Vout is used 
by the error amplifier to obtain the error signal. The error amplifier is a commercial non-inverting 
linear operational amplifier with an input referred offset voltage of 15 μV whose commercial 
manufactured number is OP177. The error voltage, according to Figure 5 is given by:  

 ( ) ( ) ( ) Verror Ce n y n d n A V     (5) 

where AVerror is the error amplifier’s gain. Equation (5) shows that the error signal is a signed value. If 
y(n) is greater than d(n), the error signal is positive, to the contrary, if y(n) is lower than d(n), the error 
signal is negative. Because the ADC cannot read negative values, a common mode voltage (VC) is 
added, so that the ADC reads a value of ‘0’ when e(n) = VC. The error signal values greater than VC 
are positive values, i.e., the most significant bit (MSB) of the ADC represents the error signal sign. If 
MSB = ‘1’, the error signal is positive, otherwise, the error signal is negative. The lower seven bits of 
the ADC output represent the magnitude of the error signal. 

The digitalized-signed-error signal is processed by the LMS control block in order to generate 
the programming pulses. Because the amplitude of the programming pulses at the FPGA terminals 
is 2.5 V and the amplitude of the pulses in VSD to enable electron injection is approximately 7.5 V, a 
signal conditioner is needed. The signal conditioner is also needed to condition the 27 V-tunneling 
pulse in amplitude. 

The weight ω(n) is stored into the internal floating gate of the POOA. The injection pulses 
generated by the LMS algorithm update the floating-gate voltage, i.e., the weight update ω(n + 1) is 
updated according to the LMS learning rule. This programming scheme was previously used to 
cancel the offset voltage only [10], but not to program the offset voltage over a wide range of values. 

4.3. FPGA Implementation of the Programming Scheme 

The LMS algorithm can be implemented in many different ways. In [22], the LMS algorithm was 
implemented into a PIC microcontroller to program a memory cell by means of electron tunneling 
and injection. This scheme is highly clock-speed limited due to the microcontroller architecture. In 
[23], the LMS algorithm was implemented into an FPGA to obtain the TAP weights of a finite impulse 
response (FIR) filter, reducing the clock-speed limitation. Both programming schemes are quite 
complex to implement due to the high speed and high voltage signal conditioner used for the 
tunneling pulses. 

The presented programming scheme utilizes not only an FPGA for implementing the LMS 
algorithm so that the clock speed does not represent a serious limitation, but also electron injection 
and indirect programming to avoid high voltages needed for electron tunneling. We chose an FPGA 
to implement the LMS algorithm, because it presents advance features that are suitable for industrial 
applications [24].  

The LMS algorithm was actually implemented using a mixed-signal circuit. The analog part 
consists of an adder, a subtractor, and a low-offset error amplifier (A1), the digital part consists of an 
FPGA that contains the pulse generators, and the mixed-signal part consists of an 8-bit ADC. The 
LMS algorithm implemented into the FPGA is a modified version of the functional link artificial 
neural network presented in [25]. In Figure 6, the FPGA implementation of the LMS-algorithm can 
be seen. 
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Figure 6. The FPGA implementation of the LMS algorithm. The substracter, the adder, and the low-
offset error amplifier (A1) are used to obtain the signed error signal. The ADCs are used to digitize 
e(n) and x(n). The LMS algorithm is implemented into the FPGA. 

Equation (5) is implemented in the analog part (the subtractor, the adder and the low-offset error 
amplifier). These analog circuits form the error amplifier of Figure 5. In Figure 6, there are two ADCs, 
the first one is a single 8-bit ADC used to digitize the error signal, whereas the second one is a single 
7-bit ADC used to digitize the input signal x(n). Because x(n) is constant (2.5 V), the second ADC was 
not physically implemented, instead, the ADC was replaced by a digital constant value (the 
hexadecimal 0 × 7F). 

The digitized error signal is taken to the FPGA to be processed. The lower seven bits of the error 
signal are connected to the pulse generator. The pulse generator outputs a number of pulses that is 
equal to the magnitude of the error signal during a constant time interval (TPG). The pulse duration 
(TPON) is 100 μs, and the time interval TPG is always 25.6 ms. The greater the error, the greater the 
number of pulses at the output of the pulse generator, thus, increasing the injection current. 

The total low state time (TOFF) within the TPG interval can be obtained from Equation (6): 

( )OFF PG PST T e n T    (6) 

The adaptation rate (ξ) is consequently controlled by the pulse duration (TPON). On the other 
hand, the input signal is bitwised (XORed) according to the error signal sign in order to obtain the 
error magnitude. This technique for obtaining the error magnitude is used by the pulse generator too. 
The error magnitude is then used to pre-load a 7-bit downcounter to open a time window for the 
generator pulses. The MSB is used to obtain the error sign and select the injection output which will 
output the programming pulses. 

4.4. The POOA as A Voltage Comparator 

In [11], the Programmable Offset Operational Amplifier was used as a precision amplifier, 
reducing the input referred offset voltage down to 25 μV. In this work, the same POOA not only was 
used as a precision amplifier, but also as a Programmable Reference Voltage Comparator. The main 
idea was to use the current programming scheme to set an offset voltage different than zero. To 
achieve this, a d(n) ≠ 0 should be chosen. The value of the signal d(n) is obtained from Equation (5). 
Let us assume a hypothetical situation where a POOA has an offset voltage of −4 mV, the POOA is 
connected as indicated in Figure 5, the error voltage gain (AVerror) is equal to 100, and the desired offset 
voltage is +15 mV; d(n) is 2.485V according to Equation (4) and the error voltage is 4.4 V at the 
beginning of the programming process according to Equation (5).  

The ADC will output a positive digital value (e(n) > VC), so that the lower seven bits of the 
digitized error signal will not be bitwised to obtain the error magnitude. The pulses at the pulse 
generator output will be processed by a logical AND during the time window generated by the 
downcounter in order to obtain the injection pulses at the injection terminal Vinj1 (MSB = ‘1’), thus 
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increasing the tail current I1, and consequently, decreasing the POOA’s output voltage. The error 
voltage is reduced on each LMS-algorithm iteration until it becomes zero, when this happens, the 
POOA’s output voltage is equal to 2.485 V, which means that an offset voltage of +15 mV has been 
programmed. The total offset voltage deviation (Δσ) was +19 mV. The maximum offset voltage 
deviation that can be programmed depends on the ADC input range (IRADC) and the error amplifier’s 
gain (AVerror), e.g., for an ADC with an input range of 0V to 5 V and an error amplifier’s gain of 100, 
the maximum voltage deviation (Δσmax) is ±50 mV according to Equation (7). In Figure 7, a voltage 
comparator implemented by means of a POOA is shown: 

max
ADC

Verror

IR

A    (7) 

 

Figure 7. The POOA as a voltage comparator. To implement a voltage comparator, the POOA should 
be connected in an open loop topology and the inverted input (Vin−) should be taken to VC. The input 
referred offset voltage behaves as a DC power supply inserted into the Vin+ path, so that the 
comparator decision level depends on the offset voltage. 

5. Quantitative Analysis of the Flame Detection Sensor 

AC/DC Signal Behavior 

In order to understand the actual behavior of the flame detecting circuit, a quantitative analysis 
should be done by studying the AC and DC signal behavior. In Figure 8, a graphical description of 
the AC and DC behavior of the signal is presented. 

 
Figure 8. The AC and DC signal behavior of the flame detecting circuit. The AC signal is attenuated 
by the passive integrator circuit, whereas the DC signal follows an exponential behavior. The 
comparator’s decision level is VC1(dc)/2. The comparator’s decision level was chosen VC1(dc)/2 in order to 
reduce the noise margin. 
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Let us call VS(ac) the peak to peak AC voltage at the transformer’s output terminals (see Figure 2), 
VC1(ac) the peak to peak AC component voltage at C1 terminals, and VC1(dc) the DC voltage component 
produced by the rectification effect of the flame at C1 terminals. 

From Figure 2, when no flame is present at the rod, a pure 60 Hz AC signal is present at the 
input of the very low offset voltage follower. Since the input referred offset voltage (σ) of the voltage 
follower is many times lower (−26 μV) than VC1(ac) (few mili-volts), the signal is practically unaffected. 
The pure AC signal then feeds a passive integrator in order to attenuate the AC component and 
extract the DC component. In this case, the DC component is practically zero, so, a very small pure 
AC signal will be present at the input of the programmable reference comparator. The comparator is 
already programmed with a decision level greater than the peak voltage of the AC component at the 
passive integrator output, so, when no flame is present at the rod, the comparator will output a logical 
zero, that is, a voltage close to VSS. 

To the contrary, when a flame is present at the rod, the AC signal present at the input of the very 
low offset voltage follower contents a small DC component due to the rectification properties of the 
flame. Again, since the input referred offset voltage (σ) of the voltage follower is many times lower 
than VC1(ac), the signal is practically unaffected. Since the signal now contains a DC component, this 
appears at the passive integrator’s output. The DC component VC1(dc) at the input of the programmable 
offset comparator is higher than the comparators decision level, so, when the flame is present at the 
rod, a logical one, i.e., an output voltage close to 3.3 V (according to the output range of the POOA) 
will appear at the comparator’s output.  

When the flame is present at the rod, a small AC component will appear at the input of the 
programmable comparator due to the passive integrator effect, whereas the DC component will start 
from zero volts to a maximum voltage VC1(dc) that depends on the flame properties and rod position 
[8]. The DC component will increase its voltage according to the well-known capacitor charge 
equation (Figure 8).  

It is well know that a diode (in this case the flame) has an I/V behavior that is inherently non-
linear. Since the fundamental component of the actual signal is the greatest in amplitude, an 
approximation considering just this 60 Hz component was done. Thus, the peak to peak AC voltage 
at C1 terminals is obtained from (8): 

( ) 1 ( )
1( )

1 1 1 2
S ac C S ac

C ac
C

V X V
V

R X f 
 

 
  (8) 

where f is the line frequency and τ is the time constant that is equal to R1C1. The DC signal behavior 
is obtained from the capacitor charge equation, therefore the instantaneous voltage at C1 terminals 
yields: 

 1 1( )( ) 1 exp( /C C dcV t V t     (9) 

As shown in Figure 8, the comparator’s decision level is VC1(dc)/2 due to the reduction of noise 
margin. Let’s assume that a 60 Hz signal with a peak to peak voltage VC1(ac) lower than the 
comparator’s decision level VC1(dc)/2. At the moment the flame is present at the rod, the signal start to 
increase its DC component exponentially, when the DC component is equal to VA = VC1(dc)/2 − VC1(ac)/2, 
the positive peak of the signal reaches the comparator’s decision level, thus, a rectangular wave starts 
to appear at the comparator’s output. The rectangular wave continues appearing at the comparator’s 
output until the DC component VC1(t) is equal to VB = VC1(dc)/2 − VC1(ac)/2, i.e., the negative peak of the 
signal just leaves the comparator’s decision level. From Figure 8, the rectangular wave at the 
comparator’s output starts at time t1 and ends at time t2. 

The time interval in which the comparator’s output is pulsing is called stabilization time (tstb). 
From Figure 8, the stabilization time is t2 − t1. t1 and t2 are obtained using Equations (10) and (11). 
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   1( ) 1( )
1

1( )

/ 2 / 2
ln C dc C ac

C dc
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V

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 
 

  (10) 
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1
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Equation (12) shows that tstb depends mainly on the time constant, this is not true at all due to 
VC1(ac) depends on the time constant too. In Figure 9, the stabilization time vs the time constant is 
plotted for various DC voltages (VC1(dc)) and a VS(ac) voltage equals to 2.68 V (0.95 VRMS). The values of 
R1 and C1 are obtained from τ as seen ahead. 

 

Figure 9. Stabilization time vs time constant plot. The stabilization time reaches its maximum value 
when the time constant is equal to τ(min). For all values of τ lower than τ(min), the stabilization time 
results in an imaginary value, it means that an unstable state in which the system (flame detector 
sensor) outputs a rectangular wave always. For large τ values, the stabilization time remains 
practically constant.  

In order to prevent instability, the maximum value of VC1(ac) should be lower than VC1(dc), 
otherwise, a continuous rectangular signal will appear at the comparator’s output even when the 
flame is not present. To obtain the minimum time constant value, we substitute VC1(ac) by VC1(dc) in (8) 
and solve for τ. 

( ) 1( )
(min)

1( )2
S ac C dc

C dc

V V

fV





   (13) 
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As seen in Figure 9, the stabilization time increases dramatically when τ is near to τ(min). The 
maximum value of tstb is reached when τ equals τ(min). The stabilization time depends basically on 
the DC signal VC1(dc), therefore, tstb is reduced in practice, by moving the rod to a right angle [8]. 

As mention above, in order to reduce the noise margin, the comparator’s decision level should 
be select based on the minimum VC1(dc) voltage, in this case, 30 mV (obtained experimentally with the 
flame present). The optimal decision level is VC1(dc)/2, i.e., 15 mV. Thus a POAA with an offset voltage 
of +15 mV should be programmed. The values of R1 and C1 were obtained from (8) given a VS(ac) = 2.68 
V and f = 60 Hz. It was obtained: R1 = 100 kΩ and C1 = 5.6 μF. 

6. Sensor Test 

6.1. The LMS Programming Scheme Performance  

In this paper, two POOAs were programmed by means of the proposed LMS programming 
scheme. The first POOA was programmed for offset removal; whereas the second one was 
programmed with a target offset voltage equals to +15 mV. In Figure 10a, the amplified offset voltage 
of both POOAs while the programming system is running is shown. The error amplifier’s gain is 1000 
for POOA1 and 100 for POOA2.  

 
(a) (b) 

Figure 10. Test results of the programming performance. (a) The amplified offset voltage of both 
POOAs while the programming system is running. The error amplifier’s gain is 1000 for POOA1 and 
100 for POOA2; (b) The LMS-algorithm error signal behavior. 

The offset voltage is obtained by dividing the amplified offset voltage (σ) by the error amplifier’s 
gain (AVerror). The initial offset voltage of POOA1 was −890 μV and the final offset voltage was −26 μV, 
whereas the initial offset voltage of POOA2 was −4.53 mV and the final offset voltage was +15 mV. In 
Figure 10(b), the error voltage of the LMS programming system is shown. The error signal is obtained 
from (5); when the term (y(n) − d(n)) converges to zero, the error amplifier outputs a value equals to 
VC. The adaptation rates are 1.9 and 3.8 for POOA1 and POOA2, respectively. 

As it is shown in Figures 10a,b, the LMS algorithm has an asymptotic behavior, enabling a fast 
an accurate programming. This behavior is well described in theory in [26]. Table 2 summarizes the 
experimental results of the LMS-algorithm programming processes for POOA1 and POOA2. 
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Table 2. Summary of LMS programming processes. 

Parameter POOA1 POOA2
Initial offset voltage −890 μV −4.53 mV 
Final offset voltage −26 μV +14.97 mV 

Expected offset voltage 0 V +15 mV 
Initial error voltage 3.39 V 4.453 V 
Final error voltage 2.526 V 2.503 V 

Number of iterations 35 28 
Adaptation rate 1.9 3.8 

LMS clok frequency 5 kHz 5 kHz 
Programming accuracy - 99.8% 

Total programming time 1 0.896 s 0.716 s 
1 Not considering the erasing time (tunneling). 

6.2. Testing the Sensor  

The flame detection sensor was tested by turning on and turning off the flame. The time domain 
plot of the flame detector´s output when the flame is turned on is shown in Figure 11a. The 
stabilization time was around 100 ms. In Figure 11b, the time domain plot of the flame detector’s 
output when the flame was turned off is shown. The stabilization time was 60 ms. The logical zero 
was represented with an output voltage of 0.55 V, whereas the logical one was represented with an 
output voltage of 3.3 V. From Figure 11a,b, the flame was turned on and turned off at the time 0 (zero) 
respectively.  

In theory, a stabilization time around 0.5 ms was expected, however, a shorter stabilization time 
was measured in practice; this is because the test probe was positioned in an optimized angle when 
the measurements were made.  

 
(a) (b) 

Figure 11. The flame detection sensor working. (a) The flame detector output signal when the flame 
is turned on. The stabilization time is around 100 ms; (b). The flame detector output signal when the 
flame is turned off. The stabilization time is around 60 ms.  

In Figure 12, the entire sensor system is presented. It is clearly shown the CHIP with the POOAs, 
the DC power supply and voltage references, the AC source to feed the flame, the off-chip passive 
integrator, and the board terminals to the rod and burner. 
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Figure 12. Picture of the entire flame detection sensor. The main parts of the system are clearly shown. 

The proposed flame detection sensor is mainly used for industrial applications; it means that the 
sensor should work properly at various temperatures. In Table 3, the experimental results of the offset 
voltages of POOA1 and POOA2 after programming are shown. The offset voltage is the most critical 
parameter of the POOA to assure proper functionality of the sensor.  

Table 3. Experimental results of the offset voltage of POOA1 and POOA2 at various temperatures. 

Temperature POOA1 POOA2
10 °C +25 μV +15.02 mV 
27 °C −26 μV +14.97 mV 
35 °C −111 μV +14.88 mV 
50 °C −164 μV +14.83 mV 

The experimental results of Table 3 show a maximum offset voltage deviation of −164 μV for 
POOA1 and −170 μV for POOA2 with respect to the theoretical values of 0V and +15 mV. Considering 
the effect of the offset voltage deviation of both POOA1 and POOA2, it is obtained a total offset 
voltage deviation of −334 μV, that is, the 2.2% of the programmed reference of the voltage 
comparator.  

7. Conclusions 

In this paper, a flame detection sensor based on the measurement of the electrical characteristics 
of the flame was presented. To achieve this, two programmable offset operational amplifiers 
(POOAs) were used. The POOAs were programmed using a reliable and robust LMS-algorithm 
programming scheme. The programming scheme can be employed as a good alternative to factory 
set the proposed sensor, avoiding the mechanical trimmers used in traditional flame detectors. The 
presented flame detection sensor is suitable not only for large industrial heaters, but also for low 
voltage flame detection applications such as home electronic boilers, where the power supply is a  
3 V battery. The experimental results show some improvements compared with previous published 
works, for instance: 

1. The AC voltage needed to feed the flame is considerably lower than the one used in commercial 
flame detectors. 

2. The proposed flame detection sensor is trimmer-less, thus, increasing its reliability. 
3. The proposed design is field-programmable. 
4. The offset voltage deviation due to the temperature variation is negligible in terms of 

functionality. 

Although the presented work yields satisfactory results, future work is needed to improve 
accuracy and reliability. The accuracy of the programming circuit can be increased by improving the 
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ADCs resolution, whereas the reliability of the flame detector can be increased by using an AC 
current source instead of an AC voltage source as suggested in [9].  
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