
sensors

Article

Time-Frequency Analysis of Non-Stationary
Biological Signals with Sparse Linear Regression
Based Fourier Linear Combiner

Yubo Wang 1 and Kalyana C. Veluvolu 2,*
1 School of Life Science and Technology, Xidian University, ShannXi, Xi’an 710071, China;

ybwang@xidian.edu.cn
2 School of Electronics Engineering, Kungpook National University, Daegu 702-701, South Korea
* Correspondence: veluvolu@ee.knu.ac.kr; Tel.: +82-53-950-7232

Academic Editor: Wan-Young Chung
Received: 13 April 2017; Accepted: 22 May 2017; Published: 14 June 2017

Abstract: It is often difficult to analyze biological signals because of their nonlinear and non-stationary
characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing
the subtle changes in these signals that are often connected to an underlying phenomena. This paper
presents a new approach to analyze the time-varying characteristics of such signals by employing a
simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner
(BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal
model in order to reformulate the model to a sparse linear regression model. The coefficients of the
proposed model are then estimated by a convex optimization algorithm. The performance of the
proposed method was analyzed with benchmark test signals. An energy ratio metric is employed
to quantify the spectral performance and results show that the proposed method Sparse-BMFLC
has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier
transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore,
the proposed method provides an overall 6.22% in reconstruction error.

Keywords: time-frequency decomposition; truncated fourier series model; sparse linear regression;
`1 regularization; ADMM

1. Introduction

The recent advances in technology have paved the way for deployment of reliable biological
sensors in clinical practice. A wide variety of such sensors have been developed to measure biosignals
that reflect various underlying physiological phenomena. For example, gyroscope and accelerometers
are employed for pathological and physiological tremor signal measurement [1], accelerometers
are employed for cardiac mechanical vibrations monitoring [2], infrared sensors are employed for
respiration motion monitoring [3], and common electrodes are employed for brain and heart electrical
activity measurement [4,5]. In order to adequately interpret the signals and make useful observations,
a proper understanding of the involved phenomena and their influence on the signals is necessary.
However, most of the physiological signals are non-stationary due to the complex nature of the
biological systems. Very subtle changes in the time-frequency characteristics of these signals can
potentially correspond to an underlying condition. Therefore, analysis of biosignals require high
resolution time-frequency decomposition methods to effectively detect these subtle changes.

The frequency domain information of a signal is usually obtained by applying the well-known
Fourier transform. However, its strong assumption on the stationarity of the signal is often
violated by the signals that are collected from biological or biomedical systems. To handle the
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non-stationarity of such signals, time-frequency decomposition methods are usually employed for
obtaining time-frequency mapping of such signals [4–7]. The time-varying characteristics are thus
analyzed in both time and frequency domains. Commonly employed time-frequency decomposition
methods can be categorized into parametric and non-parametric depending on whether a signal model
is required [8]. Fourier transform and Wavelet transform based methods are the typical parametric
time-frequency decomposition methods, whereas the autoregressive model is the most popular choice
for parametric time-frequency decomposition [5,6]. For non-uniformly sampled data, the windowed
Lomb periodogram is usually employed [9,10].

If the signal is uniformly sampled, and its characteristics change slowly over time, we can safely
assume that the stationarity holds for a short time interval. The Fourier transform is then applied to
the portion of the signal, which is extracted from the original signal by multiplying it with a properly
selected window function. This procedure is known as STFT [11]. Although the global stationary
requirement of the signal is relaxed by assuming piecewise stationarity, the optimal window length is
often difficult to be determined.

In STFT, the temporal and spectral resolutions are proportional to each other. The product of
spectral resolution and temporal resolution is bounded by a fixed value [12]. If the window length is
fixed, a trade-off between temporal and spectral resolutions must be made. The imbalance between
spectral and temporal resolutions may cause a leakage effect in the obtained spectrogram [11,12].
Moreover, the window function needs to be tailored according to the frequency range of interest to
achieve the desired temporal and spectral resolution. The CWT solves this problem by decomposing
the signal into a basis of dilated and shifted version of a pre-defined mother wavelet [13]. By shrinking
the mother wavelet, CWT attains a better trade-off in temporal and spectral resolution as compared
to STFT.

Apart from the non-parametric time-frequency decomposition methods such as STFT and CWT,
the time-frequency mapping of a signal can also be obtained by fitting a parametric model to the signal
and then transforming the estimated coefficients of the model into its corresponding time-frequency
plane. As shown in [14], the time-frequency mapping can be obtained from the estimated coefficients
of the autoregressive (AR) model. To account for the time-varying characteristics of the signal,
the AR coefficients are estimated through adaptive algorithms such as least mean square (LMS) and
recursive least mean square (RLS) [15]. With the assumption that the AR process is driven by the
Gaussian noise, the state-space form of the AR model can be formulated with the Kalman filter as the
optimal estimator [16]. The Kalman smoother is also employed for achieving better results in offline
analysis [15,17]. To further refine the estimation of the AR model, the expectation maximization
algorithm is employed for identification of the state transition matrix [17] and particle filter to
account for the non-Gaussian noise case [18]. The temporal resolution of AR based time-frequency
decomposition is guaranteed by the employed adaptive algorithm, whereas the spectral resolution is
strongly affected by the AR model order. As the commonly applied order selection methods rely on
the estimation error, the selected order is only optimal for either reconstruction or prediction and does
not offer better time-frequency mapping [14].

To mitigate the sensitivity of spectral resolution on model order, the frequency characteristics
of the signal need to be considered in the signal model. One such model is BMFLC [19,20]. The
BMFLC divides the frequency band of interest with a fixed frequency gap and adopts a truncated
Fourier series as the signal model. The estimated Fourier coefficients for each frequency component
can thus be used to form the time-frequency mapping of the signal. It was shown in [21] that the
BMFLC with adaptive filter algorithms, such as least-mean square and Kalman filter, was successful for
time-frequency decomposition of motion induced Electroencephalography (EEG) signal in real time.
The estimated time-frequency mapping can be fine-tuned with the help of a smoother procedure. The
comparison study in [21] also suggests that the BMFLC with Kalman smoother (BMFLC-KS) provides
better temporal and spectral resolutions than STFT.
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In the scenario where two frequency components lie closely to each other in spectral domain [22],
BMFLC requires a frequency gap that is at least equal to the distance between the two frequency
components to differentiate them [21]. However, the dimension of states in BMFLC increases with
the increased spectral resolution (i.e., smaller frequency gap), which further increases computational
complexity. Moreover, the high-dimensionality also causes the adaptive filter paired with BMFLC to
fail at providing an accurate time-frequency decomposition [21]. In this work, we address this problem
by incorporating sparse linear regression with BMFLC.

Recently the sparse linear regression model has found numerous applications in signal
processing [23–25]. The sparse linear regression uses `1 norm to regularize the regression coefficients.
It has been proven to generate a better signal model for non-stationary signals [26]. In [27], the sparse
linear regression model is used for estimating the frequency-hopping signal in communication
applications. In [28], the AR coefficients are expanded onto a redundant set of basis functions,
which simplifies the identification of time-varying AR coefficients into time-invariant case. Then, a
sparse-aware regression method [29] is employed to find the most informative one in the redundant
model in order to improve the overall estimation performance. Its application to phase retrieval of
sparse signal is shown in [30].

The large dimension of states in BMFLC caused by increased spectral resolution necessitates the
imposition of sparsity on the model of BMFLC under the assumption that only a few coefficients
change at any time instant. As BMFLC inherits linearity from the Fourier series, the BMFLC model can
thus be modeled in the form of sparse linear regression model. Similar to [22], the super-resolution can
be achieved by estimating the amplitude from a redundant set of frequencies.

In this work, we model the BMFLC in the form of a sparse linear model and impose `1 constraint
on the model coefficients. The convex optimization algorithm is then employed to estimate model
coefficients. The estimation accuracy of the model is compared with BMFLC Kalman smoother
(BMFLC-KS). The time-frequency decomposition performance of the proposed model is compared
with STFT, CWT and BMFLC-KS on four synthetic signals. An energy ratio metric is also employed to
demonstrate the effectiveness of the proposed model.

2. Methodology

In this section, we first review the existing BMFLC signal model. After the identification of the
sparsity in the model, the formulation of the proposed sparse-BMFLC is discussed in this section.
The model coefficients are then estimated with the alternating direction methods of the multiplier
(ADMM) method.

2.1. Model of Sparse-BMFLC

The band-limited multiple Fourier linear combiner (BMFLC) divides the frequency band of
interest, [ f1, fM], into M divisions with a fixed frequency gap ∆ f and estimates the signal amplitude
according to the formation of the Fourier series [4,21]. The signal model can be described as

yn =
M

∑
i=1

an,i sin(2π fin) + bn,i cos(2π fin), i = 1, 2, . . . , M,

where yn is the signal at time instant n, where n ∈ [1, 2, · · · , N]. N is the total number of samples of the
signal to be analyzed. an,i and bn,i are the Fourier coefficients corresponding to the frequency fi. Note
that, unlike the traditional Fourier series, which is defined in the complex domain, the BMFLC uses
trigonometric functions and therefore is only defined in real space Rd. The time-frequency mapping
of BMFLC is obtained by estimating the coefficients at each time instant via Kalman filter or Kalman
smoother [21].

The dimension d of the BMFLC is defined as the number of coefficients to be estimated and is
given as 2( f1− fM)/∆ f = 2M. As we increase the spectral resolution, which is equivalent to reduction
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in the frequency gap ∆ f , d increases with the rate of 1/∆ f . In [21], the optimal frequency gap is
selected based on the application requirements. For example, the motion induced EEG signal requires
amplitude estimation in the frequency range of 7 Hz to 14 Hz, which results in a 28 dimension state for
BMFLC. If ∆ f is chosen to be 0.1 Hz, then the dimension increases to 140. Despite the high estimation
accuracy, the obtained time-frequency mapping was not accurate [21].

If we assume that there are N samples of data, the BMFLC model can be re-formulated
as follows. First, we denote wn = [sin(2π f1n), · · · , sin(2π fMn), cos(2π f1n), · · · , cos(2π fMn)],
xn = [an,1, · · · , an,M, bn,1, · · · , bn,M] and Y = [y1, y2, · · · , yN ]. Then, W and X are given as:

(N−1)d︷ ︸︸ ︷
W =


w1 0 0 · · · 0
0 w2 0 · · · 0
... · · ·

...
0 0 0 · · · wN

 ,
(1)

X = [x1, x2, · · · , xN ]
T , (2)

where the superscript T denotes the matrix transpose. By construction, X is the time-frequency
mapping of the signal. The BMFLC in Equation (1) can be re-written in the linear regression form as:

Y = WX + V, (3)

where V follows a multidimensional Gaussian distribution N (0, Σ). There are two types of sparsity
that can be identified in Equation (3). With a very small frequency gap ∆ f , only a few frequency
components are non-zero at any time instant. Therefore, the vector X is sparse. Furthermore, it is
unlikely that the majority of states varies dynamically over time and more likely that sparsity also
exists during the transition between two consecutive instances—i.e., xn,i − xn−1,i is also sparse. Thus,
Equation (3) forms a sparse linear regression model.

The solution of Equation (3) depends on the structure of matrix W. As given in Equation (1),
the matrix W has the dimension of N × Nd. If more frequency components are required, d can be very
large, which leads to Nd � N. Therefore, a unique solution for X does not exist. The sparse linear
model is ill-posed. Nonetheless, it is always possible to find a solution that satisfies the previously
identified sparsity constraints. The sparsity in a vector is usually measured by the `0 norm. Thus, the
solution for Equation (3) can be found by solving the following optimization problem:

X∗ = arg min
X

[
1
2‖Y−WX‖2

2 + λ1‖X‖0 + λ2‖CX‖0

]
, (4)

where C can be defined similar to [26] as C = [c0, c1, · · · , c(N−1)(d−1)]
T , c0 =

[−1,

d−1︷ ︸︸ ︷
0, · · · , 0, 1,

(N−1)(d−1)︷ ︸︸ ︷
0, · · · , 0 ], where the subscript of cm indicates right shifting c0 by m ∈

[1, (N − 1)(d − 1)] positions. Therefore, the sparsity in xn,i − xn−1,i now lies in the matrix
product CX. Furthermore, ‖ · ‖2 and ‖ · ‖0 denote the `2 and `0 norm of a vector, respectively. It is
clear that the first term on the right-hand side of the equation is the least square error of the regression
model. The second and the third terms are used to regularize the solution towards sparsity [31]. As the
`0 norm of a vector is not differentiable, it is difficult to apply any optimization algorithm to find the
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solution of such models. The `1 norm is instead used for algorithmic purpose [26]. The `1 regularized
Equation (4) also named as the fused lasso regression [32] is given by:

X∗ = arg min
X

[
1
2‖Y−WX‖2

2 + λ1‖X‖1 + λ2‖CX‖1

]
, (5)

where the positive scalars λ1 and λ2 in Equation (5) are employed to balance the sparsity between X
and CX, respectively. As shown in [26], the values of λ1 and λ2 affect the estimation significantly. The
general guidance for tuning these two parameters can be found in [27].

2.2. ADMM Solution for Sparse-BMFLC

Equation (5) is a convex optimization on X, which can be solved by various algorithms. However,
the computational load increases as the dimension of W grows. It is shown in [33] that the
alternating direction methods of multiplier (ADMM) algorithm can be easily extended to a distribution
computation scheme. Thus, it makes the algorithm well suited to application scenarios where
computational speed is the major concern.

We follow the procedure in [27] for ADMM to solve the fused lasso problem in Equation (5).
We first define the auxiliary variables z and u. Then, Equation (5) can be transformed into a constraint
optimization problem given as follows:

[X∗, z∗, u∗] = arg min
X,z,u

[
1
2‖Y−WX‖2

2 + λ1‖z‖1 + λ2‖u‖1

]
,

subject to z = X, u = CX.
(6)

The Lagrange function is employed to account for the constraints in Equation (6). Assigning
Lagrange multiplier (ε, µ) for the equality constraints, we can obtain the following Lagrange equation:

L(X, z, u, ε, µ) =
1
2
‖Y−WX‖2

2 + λ1‖z‖1 + λ2‖u‖1 + ε(X− z)

+ µ(CX− u) +
q
2
(‖X− z‖2

2 + (‖CX− u‖2
2).

(7)

The ADMM finds the solution for Equation (7) by first assigning an initial condition for
z0, u0, ε0, µ0 and picks any positive number for q, and then solves Xi recursively as:

Xi = arg min
X

L(X, zi−1, ui−1, εi−1, µi−1). (8)

Using the estimated Xi, the updated rule for zi, ui is obtained similarly. Finally, the ADMM
identifies the solution for Equation (7) by using the following set of recursive equations:

Xi = (WTW + qCTC + qINd)
−1 (9)

(WTY− εi−1 − CTµi−1 + qzi−1 + qCTui−1),

zi = shrink(Xi +
εi−1

q
,

λ1

q
), (10)

ui = shrink(CXi +
µi−1

q
,

λ2

q
), (11)

εi = εi−1 + q(Xi − zi), (12)

µi = µi−1 + q(CXi − ui), (13)
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where INd denotes an identity matrix with dimension of Nd. The shrinkage operator employed in
Equations (10) and (11) is defined as:

ei
k = shrink(xi

k +
ηi−1

k
q

,
λ

q
)

=


0, if xi

k +
ηi−1

k
q = 0,

xi
k+q−1ηi−1

k
|xi

k+q−1ηi−1
k |

max(|xi
k +

ηi−1
k
q | −

λ
q , 0), otherwise,

where |a| is the absolute value, and ei
k denotes the kth dimension of the vector e in ith iteration. Note

that the shrinkage operator is applicable to all dimensions of the vector. Also notice that, as the matrix
inversion in Equation (9) does not change over iterations, we can pre-calculate and store its value to
reduce the computational complexity of the ADMM algorithm. For detailed derivation of ADMM,
please refer to [27,33,34].

2.3. Time-Frequency Decomposition from Sparse-BMFLC

As the model of BMFLC breaks the Fourier coefficients of a frequency component into its
corresponding sine and cosine parts and estimates their amplitudes separately, the following
formulation is employed for time-frequency decomposition of the signal:

P(t, f ) =


√

a∗21,1+b∗21,1
2 · · ·

√
a∗2n,1+b∗2n,1

2
...

...√
a∗21,M+b∗21,M

2 · · ·
√

a∗2n,M+b∗2n,M
2

 , (14)

where a∗n,i and b∗n,i denote the amplitude estimation of the frequency fi at time instant n. Its value is
extracted from the solution X∗.

3. Results

In this section, the performance of the developed sparse-BMFLC is evaluated with benchmark
test signals. To analyze and quantify the performance of the time-frequency decomposition of the
proposed sparse-BMFLC, it is compared to well known methods such as STFT and CWT.

3.1. Synthetic Signal

We select the following standard test signals to test the spectral and temporal resolutions:

S1(t) =

{
2|t|0.5 sin(2π8t) + 4|t|0.5 sin(2π10t); 0 < t ≤ 3,
4|t|0.25 sin(2π6t) + 2|t|0.25 sin(2π12t); 3 < t ≤ 6,

S2(t) =

 2 sin(2π8t) + 4 sin(2π10t);
0 < t ≤ 2,
4 < t ≤ 6,

0, otherwise,

S3(t) = sin(2πt f (t)); 0 < t ≤ 6,

where f (t) = 5/3t + 5 indicates a linear frequency sweep that starts from 5 Hz at t = 0 and ends at
10 Hz at t = 6 s. The sudden change that occurs at 3 s in S1(t) tests the frequency tracking performance.
The amplitude modulation together with the two closer frequency components tests both the temporal
and spectral resolutions. The amplitude of the signal S2(t) is set to zero in the middle section of the
signal. The sudden change in amplitude poses a challenge, especially for the adaptive filter algorithms
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to adapt to true time-frequency mapping of the signal. As the BMFLC requires a proper setting of
∆ f to obtain optimal spectral resolution, the following chirp signal is employed to study the effect of
frequency mismatch in the signal. To highlight the performance compared to the best existing BMFLC
based method, BMFLC-KS [21] is also included for comparison in this section.

3.2. Parameter Selection

For the study, the parameters chosen for all methods are: f1 = 1 Hz, fM = 15 Hz and ∆ f = 0.5 Hz.
The parameters λ1 and λ2 in sparse-BMFLC are difficult to select and tune. Based on the parameter
selection guidelines provided in [27], the maximum theoretical value for both parameters are estimated.
Then, λ1 = 0.01λmax

1 and λ2 = 0.05λmax
2 are selected empirically for their optimal performance.

For BMFLC-KS, the diagonal elements of the state transition covariance matrix are all chosen to be
0.001 and the variance of measurement is set to 0.01. In STFT, the Gaussian window function is
employed to obtain the optimal temporal and spectral resolutions. The window length is set to match
the desired frequency resolution. For CWT, the Morlet mother wavelet with center frequency of 1.5 Hz
is selected.

3.3. Estimation Performance of Sparse-BMFLC

After obtaining the optimal solution X∗, one can obtain the amplitude estimate of the signal
according to Equation (3). The original signals together with their corresponding reconstruction errors
are shown in Figure 1. Results show that the proposed method can accurately estimate the modulated
amplitude in S1(t) and sudden amplitude changes in S2(t) as shown in Figure 1. In the presence of
frequency mismatch, the performance slightly decreases.
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Figure 1. Estimation performance of sparse-BMFLC for all three synthesized signal S1(t), S2(t) and
S3(t). The true signal together with the estimated signal and corresponding error are shown.

The overall estimation performance of sparse-BMFLC is quantified with percentage RMS error,
that is defined as:

RMS% =
RMS(Y− Ŷ)

RMS(Y)
× 100, (15)

where RMS(Y) =
√

∑N
i=1 y2

i /N, i indicates the number of samples and Ŷ is the estimated signal.
We also included the results of BMFLC-KS for comparison purposes. The results are tabulated
in Table 1. The mean reconstruction error is 2.71% and 6.22% for BMFLC-KS and Sparse-BMFLC,
respectively. Both methods can reconstruct the original signal with less than 10% error, which confirms
the ability of the BMFLC based model in modeling the signal. Similar to Figure 1, the error for
the sparse-BMFLC depends on the signals. We noticed that the performance of the sparse-BMFLC
depends on the complexity of the signal. As shown in the second row of Table 1, the lowest estimation
error was obtained in S1(t), which contained two frequency components, whereas the highest error
occurred when applied to the chirp signal S3(t). It can be noticed that the Sparse-BMFLC has a large
reconstruction error for all three synthetic signals. This is due to the fact that the optimal solution of
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Sparse-BMFLC is obtained when both `1 and `2 norms are minimized. Hence, the obtained solution
differs from the one obtained when only `2 norm of reconstruction error is minimized. Therefore, it is
expected for Sparse-BMFLC to have a larger reconstruction error as compared to BMFLC-KS, which
only minimizes the `2 norm. The effect of estimation accuracy on the time-frequency decomposition
will be discussed in the following section.

Table 1. Reconstruction error for BMFLC based methods.

Methods S1(t) S2(t) S3(t)

BMFLC-KS 2.12% 3.01% 3.00%

Sparse-BMFLC 5.12% 3.95% 9.59%

3.4. Time-Frequency Decomposition of the Synthesized Signal

The time-frequency decomposition of S1(t) for all methods is shown in Figure 2. S1(t) has a
frequency transition that occurs at 3 s. As BMFLC-KS relies on the estimation obtained from the
Kalman filter, it also inherits the disadvantages of the adaptive filter with regards to the delay in
settling to its steady-state. As shown in Figure 2(a2), the BMFLC-KS took approximately 1 s to settle to
the new frequency components. As expected, the estimated amplitude of the time-frequency mapping
was blurred in both directions at the frequency transition.
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Figure 2. Time-frequency mapping for S1(t). (a1–a4) are the time-frequency mapping obtained from
sparse-BMFLC, BMFLC-KS, STFT and CWT, respectively. The corresponding spectra shown in (b1–b4)
are obtained by averaging the time-frequency mapping over time.

Sparse-BMFLC, STFT and CWT can detect the sudden frequency changes without any lag.
However, the amplitude estimation from sparse-BMFLC is superior as compared to STFT and CWT.
From Figure 2(a1), we can observe that sparse-BMFLC tracks the modulated amplitude accurately as
indicated by the gradual color intensity change during the initial stage. The flat average spectrum that
is shown in Figure 2(b1) further demonstrates the superior performance of sparse-BMFLC compared
to other methods.

Although STFT and CWT can identify the dominant frequency components in the signal as shown
in Figure 2(a3,a4), the leakage effect in amplitude estimation is also evident as shown in Figure 2(b3,b4).
STFT shows several frequency components between 5 Hz to 12.5 Hz, although there are only four
frequency components present in the signal. The flat average spectrum shown in Figure 2(b4) further
shows that CWT underestimated the two frequency components. The performance of CWT highly
depends on the selected mother wavelet and the parameters selected for the mother wavelet. The
insufficiency in tracking the dynamic changes of CWT can partially be attributed to the fixed parameters
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in the CWT implementation. In contrast, the BMFLC-based model only requires the knowledge of
signal frequency band to be known a priori.

The time-frequency mapping of S2(t) obtained for all algorithms are shown in Figure 3.
The middle section of S2(t) is set to zero to test the temporal resolution of the algorithms. The zeros in
the signal also mimic the scenario where partial data is missing. Among all, the BMFLC-KS does not
fare well as shown in Figure 3(a2), whereas sparse-BMFLC provides the best performance Figure 3(a2).
One can notice that BMFLC-KS fails to correctly estimate the signal amplitude when the amplitude is
zero. The spectral leakage effect of STFT is clearly visible in Figure 3(a3) as the amplitude spreads to
the whole time-frequency plane when the signal amplitude suddenly vanishes. It is interesting to note
that the results obtained from CWT has good temporal resolution as shown in Figure 3(a4). Compared
to the results of CWT obtained for S1(t), we can note that the parameter selection for Morlet mother
wavelet emphasizes more the temporal resolution rather than the spectral resolution. From the average
spectra shown in Figure 3(b1–b4), compared to the rest, sparse-BMFLC has the best performance
in suppressing the leakage effect. The sharp peaks found in Figure 3(b1) are well in line with the
frequency components that are present in S2(t).
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Figure 3. Time-frequency mapping for S2(t). (a1–a4) are the time-frequency mapping plots obtained
for sparse-BMFLC, BMFLC-KS, STFT and CWT, respectively. The corresponding spectra shown in
(b1–b4) are obtained by averaging the time-frequency mapping over time.

To demonstrate the robustness of the proposed method, a chirp signal that contains frequency
components that are not modelled by BMFLC is employed to analyze the case of frequency mismatch.
The magenta line in Figure 4 indicates the true frequency sweeping pattern. It is clear from the results
that all methods show amplitude estimates to the frequency components around the magenta line as
shown in Figure 4(a1–a4). As the sparse-BMFLC employed the `1 norm to ensure that less number of
coefficients are non-zero, and the changes in its amplitude estimates are expected to be in a block-wise
manner as shown in Figure 4(a1). The BMFLC-KS, STFT and CWT show a blurred area around the
true frequency as shown in Figure 4(a2–a4), respectively. CWT provides better performance as shown
by the smallest deviation between the estimated frequency and the true frequency.
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Figure 4. Time-frequency mapping for S3(t). (a1–a4) are the time-frequency mapping obtained from
sparse-BMFLC, BMFLC-KS, STFT and CWT, respectively.

Furthermore, to quantify the performance of time-frequency decomposition of various algorithms,
an energy ratio metric is employed. The energy ratio measures the amplitude discrepancy between
the estimated time-frequency mapping and the amplitude of the true frequency components that
are present in the signal. Recalling that the time-frequency mapping of a signal is defined as P(t, f ),
the energy ratio metric can be defined as

R =
1
N

t=N

∑
t=1

(∑ f j∈ f ∗ P(t, fi)

∑i=M
i=1 P(t, fi)

)
, (16)

where f ∗ is the set of true frequency components that are present in the signal, M and N are the number
of total frequency components in the model and total number of samples of the signal, respectively.
If the detected frequency components match the true frequency components in the signal, the value of
the energy ratio metric equals 1, while a total mismatch produces a value of 0. Note that this metric
can only be applied in a scenario where the true frequency components are known. Hence, we have
excluded S3(t) in this analysis. The results obtained for energy ratio metric are tabulated in Table 2.
The energy ratio again confirms the superiority of sparse-BMFLC in time-frequency decomposition.
The BMFLC-KS performs better than STFT and CWT. The CWT outperforms STFT on all signals.
The leakage effect of STFT is the reason for its sub-par performance.

Table 2. Performance analysis of all methods: Energy ratio perspective.

Synthetic Signal BMFLC-KS Sparse-BMFLC CWT STFT

S1(t) 0.7328 0.9972 0.5961 0.4151

S2(t) 0.5596 0.9981 0.4819 0.3492

To demonstrate the stability of Sparse-BMFLC under noisy conditions, the synthetic signals S1(t)
and S2(t) with additive Gaussian noise were employed. The amount of Gaussian noise was determined

by the signal-to-noise ratio (SNR), which is defined as SNR =
δSignal
δNoise

, where δ denotes the variance of a
signal. We varied SNR from 0.01 to 0.2 with a step size of 0.01. At each SNR level, Gaussian noise with
variance equals δNoise = δSignal ∗ SNR was added to the original signal. Time-frequency decomposition
of the noise contaminated signal was obtained by using Sparse-BMFLC and BMFLC-KS, respectively.
With 100 realizations of Gaussian noise at each SNR level, the mean and standard deviation of energy
ratio for both BMFLC based algorithms were estimated, and it was shown in Figure 5.



Sensors 2017, 17, 1386 11 of 14

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1

SNR (%)

E
n

e
rg

y
 R

a
ti

o

Sparse-BMFLCBMFLC-KS

(a)

0 0.05 0.1 0.15 0.2

0.4

0.6

0.8

1

SNR (%)

(b)

Figure 5. Performance of Sparse-BMFLC and BMFLC-KS under different signal-to-noise ratio levels.
(a) S1(t); (b) S2(t).

Overall, the mean energy ratio of Sparse-BMFLC and BMFLC-KS decreases with increase
in SNR level for both synthetic signals. As shown in Figure 5a,b, the proposed Sparse-BMFLC
outperforms the BMFLC-KS in mean energy ratio over all SNR levels for both signals. The results
indicate that the sparsity constraint employed in Sparse-BMFLC could help in providing an accurate
time-frequency decomposition as compared to BMFLC-KS, and the proposed Sparse-BMFLC also
has good robustness to noise contamination. However, as each realization of Gaussian noise distorts
the frequency components of the original signal differently, it further causes the optimal solution of
Sparse-BMFLC to vary in each run, which results in the larger standard deviation that is observed
Figure 5a,b. As in the case of BMFLC-KS, the Gaussian noise can be canceled by the employed Kalman
smoother; therefore, the optimal solutions of BMFLC-KS are similar at each run. Nonetheless, the
performance of time-frequency decomposition is still superior when Sparse-BMFLC is employed.
The difference in standard deviation only reflects the effects of optimization algorithms for solving
BMFLC-based models.

3.5. Time-Frequency Decomposition of Respiratory Motion Signal

As a case study, we have tested the proposed Sparse-BMFLC and BMFLC-KS for obtaining
time-frequency decomposition of the respiratory motion signal. Respiratory rate (RR) estimated
from respiratory motion signal varies under different physiological conditions such as sleep [35],
exercise [36] and anesthesia [37]. An accurate track of RR changes in time-frequency domain is
required and can provide insight into functioning of the automatic nervous system [38,39].

A respiratory motion signal of 30 s duration during normal breathing conditions was selected
for testing the proposed Sparse-BMFLC and BMFLC-KS. The data was collected with optical sensors
placed on the subject’s chest and recorded by infrared cameras. For a detailed experiment procedure,
please refer to [40]. The raw respiratory motion signal is shown in Figure 6a.

To quantify the performance of different algorithms, the RR and its corresponding frequency were
estimated. To do so, we first identified the peak position of a given respiratory circle marked with a
red arrow as shown in Figure 6a. The RR was defined as the time duration between two consecutive
peaks, and its corresponding frequency was calculated by taking the reciprocal of RR. The obtained
frequency estimation for each respiratory circle was then superimposed on the time-frequency maps
obtained from both Sparse-BMFLC and BMFLC-KS as shown Figure 6b,c. It is evident that the RR
and its corresponding frequency estimation varies slightly for each respiratory circle. Comparing the
time-frequency map obtained from Sparse-BMFLC and BMFLC-KS, it is clear that Sparse-BMFLC can
accurately track the changes in RR, whereas the time-frequency map obtained with BMFLC-KS was
blur. This result further demonstrates the superiority of Sparse-BMFLC in obtaining time-frequency
decomposition as compared to BMFLC-KS.
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Figure 6. Time-frequency decomposition of respiratory motion signal. (a) raw respiratory motion signal;
(b) time-frequency mapping obtained from Sparse-BMFLC; (c) time-frequency mapping obtained
from BMFLC-KS.

4. Discussion

Although, by construction, the performance of BMFLC based methods depends on the prior
knowledge of the frequency characteristics of the signal, and the results obtained with the chirp signal
show that the proposed model was able to tolerate the discrepancy to a certain extent and provide a
reasonable time-frequency mapping. However, as our results suggest, if the frequency mismatch is
suspected in the signal, BMFLC-KS should be employed instead of sparse-BMFLC.

The proposed sparse-BMFLC relies on the optimization algorithm to estimate the amplitude and
the frequency in the model. However, the sparse-BMFLC can provide better temporal and spectral
resolution than the other methods in comparison, the proposed method is computationally more
expensive as compared to other existing methods. In comparison, STFT and CWT do not require much
computational power for estimation of a large number of frequency components. Hence, the proposed
method is more suitable for band-limited signals when more detailed and accurate time-frequency
decomposition is required for analysis.

5. Conclusions

In this paper, a truncated Fourier linear combiner model was re-formulated in the form of sparse
linear regression. Results show that the coefficients of sparse-BMFLC estimated with the ADMM
algorithm can be used to reconstruct the original signal with a high degree of accuracy. The frequency
tracking study also showed that the sparse-BMFLC can successfully track the signal with amplitude
modulation. Furthermore, the proposed method outperforms BMFLC-KS, STFT and CWT in temporal
and spectral resolutions of the time-frequency mapping. With the energy ratio metric, the overall
time-frequency decomposition performance for all methods was quantified. The results show that
proposed sparse-BMFLC has a high level of accuracy in both time and frequency domains. Furthermore,
the energy ratio also clearly demonstrates the absence of leakage effect in the proposed method, which
can be found in the traditional methods such as STFT and CWT. With the noise contaminated signals,
we showed that the proposed Sparse-BMFLC has good robustness to noise over a wide range of SNRs.
The benefits of employing sparsity constraints were also highlighted by the superior performance of
the proposed method for all SNR levels. With a case study on respiratory motion signal, we have
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illustrated that the Sparse-BMFLC can identify the subtle changes in the spectrum. It further highlights
the suitability of the approach for biological/biomedical applications.
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