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Abstract: Classification methods based on Gaussian Markov Measure Field Models and other
probabilistic approaches have to face the problem of construction of the likelihood. Typically, in these
methods, the likelihood is computed from 1D or 3D histograms. However, when the number of
information sources grows, as in the case of satellite images, the histogram construction becomes
more difficult due to the high dimensionality of the feature space. In this work, we propose a
generalization of Gaussian Markov Measure Field Models and provide a probabilistic segmentation
scheme, which fuses multiple information sources for image segmentation. In particular, we apply
the general model to classify types of crops in satellite images. The proposed method allows us
to combine several feature spaces. For this purpose, the method requires prior information for
building a 3D histogram for each considered feature space. Based on previous histograms, we can
compute the likelihood of each site of the image to belong to a class. The computed likelihoods are
the main input of the proposed algorithm and are combined in the proposed model using a contrast
criteria. Different feature spaces are analyzed, among them are 6 spectral bands from LANDSAT 5
TM, 3 principal components from PCA on 6 spectral bands and 3 principal components from PCA
applied on 10 vegetation indices. The proposed algorithm was applied to a real image and obtained
excellent results in comparison to different classification algorithms used in crop classification.

Keywords: probabilistic segmentation; remote sensing; likelihood; vegetation indices; histogram

1. Introduction

The segmentation process allows us to divide the image into significant parts according a certain
criterion. Clustering algorithms such as k-means, fuzzy c-means and the Iterative Self-Organizing
Data Analysis Technique (ISODATA) algorithm [1] have been used successfully for segmentation
problems, however these methods per se, do not consider the contextual information for a pixel, what
is necessary to obtain a good segmentation. A very effective approach for including the features of the
pixel neighborhood is the Bayesian estimation together with the Markov Random Field (MRF), [2–9].
With this approach, a label field is computed assuming that a dependence exists between all probability
distributions of the pixels belonging to the same neighborhood. This assumption is specified by
considering a Markovian priori distribution. Gauss Markov Measure Field (GMMF) [4] is one of
the models that combines Bayesian estimation with Markov Random Field and it is used in many
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classification tasks, [5–8,10–13]. One of the main difficulties for GMMF, as for all methods based on the
combination of Bayesian estimation and MRF for image segmentation, is the likelihood computation.
In the case of 1D or 3D feature spaces the likelihood can be computed based on the corresponding
normalized histograms. However, the computation of the likelihood becomes a very hard problem
when the number of features increases. In the case of crops classification for satellite images the
number of features is high, which is a limitation for the direct use of the GMMF [4]. On the other hand,
crops classification is a complex task due to the similarity of the spectral signatures among different
crops. Hence, the selection of the feature space, i.e., information sources, is a key step in this research,
so that we can use the GMMF as a classifier that allows us to incorporate contextual information and
to reach good classification results.

In [14] authors considered a pixel based image approach in order to segment 5 different land cover
types in Russia. The experimental work included the minimum euclidean distance, the box classifier,
Mahalanobis distance, the maximum likelihood classifier and clustering techniques. The feature space
was composed of blue, green and red bands. The best performance was achieved by the maximum
likelihood. Authors in [15] used three different vegetation indices: the Normalized Difference
Vegetation Index (NDVI) [16], the Green Normalized Difference Vegetation Index (GNDVI) [17], and
the Normalized Difference Red Edge Index (NDRE) [18] for crop classification in the region located
in Turkey. All indices were computed taking into consideration the spectral bands obtained from the
RapidEye satellite, which is the first high-resolution multispectral satellite system incorporating the
red-edge band which is sensitive to vegetation chlorophyll [15]. Four different feature spaces were
studied in the research in [15]: the first spectral space contains NDVI, GNDVI and NDRE indices, the
others three feature spectral spaces are composed of only two of the three indices included in the first
space. For crop classification, the support vector machine method [19] was used. The experimental
work in [15] demonstrated that the spectral index NDRE provided the highest contribution to the
support vector machine classifier and that the space composed of three spectral indices outperformed
the rest of studied feature spaces. The proposal in [20] used ASTER data and studied different
feature spaces in order to classify the sugarcane vegetation in Uttarkhand, India. The analyzed spaces
were: feature space determined by the three bands located in the VNIR (visible and near infrared)
region of the spectrum; and a combination between VNIR bands and NDVI transformation. The
classifier used in this work was the maximum likelihood method and achieved the highest classifier
precision using the combination of VNIR bands and NDVI index. The main drawback in [20] was
the similarity of spectral signatures among sugarcane vegetation classes. The methodology described
in [21] utilizes the green, red, near and short wave infrared bands from SPOT-5 satellite in order to
identify crops in Texas. With the SPOT-5 data, the authors studied the performance of 5 classifiers:
maximum euclidean distance, Mahalanobis distance, maximum likelihood, spectral angle mapper [22]
and SVM [19]. The experimental work proved that the SPOT-5 data in conjunction with maximum
likelihood and SVM allows to estimate crop areas. Researchers in [23] carried out a performance
analysis of the following supervised classifiers: maximum likelihood, parallelepiped and Mahalanobis
distance. As in [21] the feature space was built from SPOT-5 data. The goal of the research was the
identification of the different land classes in Barcelona, Spain. Maximum likelihood outperformed
other classifiers for almost all the objects present in the study image, however for water bodies the
Mahalanobis distance leaded to best accuracy results. The selection of the spectral bands and the right
classifier was a critical step [24–26]. Unlike the previous works, which are pixel-based, in [27] the
researchers elaborated an object based image algorithm. The purpose of the algorithm was to identify
13 crop types in California, USA. The spectral information was taken from ASTER satellite, during
three different growing-seasons periods. The proposal in [27] combines an object based approach
with the decision tree rules. The feature space is composed of several vegetation indices derived from
the visible, near and short waves bands, together with textural features extracted from the spectral
bands. The experimental work evidenced that the textural features improved the discrimination
among heterogeneous permanent crops. In this research also is emphasized the importance of NIR and
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SWIR bands for crop identification and it is studied the contribution of each feature to the classification
accuracy. All the reported works, either pixel based or object based approaches face the same challenges
in best discriminating a class: how do we select the appropriate feature space and how do we select
the right classifier?

This work is an extension of our conference paper [28] and we propose a supervised approach
for crop classification, in which multiple sources of information or features spaces can be combined,
including contextual information. To this end, we propose a generalization of the GMMF model
that allows us the combination of multiple sources of information and also considers the spatial or
contextual information.

The structure of this paper is as follows: Section 2 details about the previous works,
Section 3 explains the proposal, Section 4 is dedicated to the description and discussion of the
experimental work and finally Section 5 contains our conclusions.

2. Previous Works

In Ref. [29], a supervised algorithm for crop classification in satellite images was proposed.
The algorithm includes a segmentation step achieved through the GMMF model [4], in which the
computation of the likelihood is an important ingredient. Equation (1) represents the GMMF approach
proposed in [4].

p∗ = arg min
p ∑

r∈L
∑

k∈K
(pk(r)− vk(r))2 + λ ∑

s∈Nr

(pk(r)− pk(s))2, (1)

where vk(r) is the likelihood of pixel r to belong to the class k, λ > 0 is a regularization parameter, Nr

represents a set of neighboring pixels to the pixel r and p∗ is the estimated probability distribution
field, in this way p∗(r) allows us to classify the pixel r by maximizing p∗k (r) over k. The solution of the
optimization problem (1) can be obtained by the following Gauss-Seidel scheme:

pk(r) =
vk(r) + λ ∑s∈Nr pk(s)

1 + λ|Nr|
. (2)

The final segmentation is obtained by using ‘the winner takes it all’ strategy, i.e., given the vector
field p∗, Equation (1), the segmentation is computed with the following equation:

s(r) = arg max
k∈K

pk(r), ∀r ∈ L. (3)

Authors in [29] estimated the likelihood by means of 3D histograms in the feature space composed
of green, red and near infrared bands. It is well known that the information contained in these three
bands allows to recognize crop patterns, [30]. The histograms were computed based on expert information.

Figure 1 represents the spectral signature of five crops studied in [28,29]. Observe the similarity of
the response among all crops. This fact explains the precision errors of the proposed algorithm in [29].
For addressing this problem the authors in [28] considered using two different feature spaces (sources
of information): the feature space composed of green, red and near infrared bands and the space
based on the three principal components of 10 vegetation indices [15,16,31–37]. From these two feature
spaces they constructed histograms, and from these histograms they estimated the corresponding
likelihood. Different from [29], authors in [28] introduced a modification in data term of the GMMF
approach in order to select at each pixel r the likelihood with the least entropy:

p∗ = arg min
p ∑

r∈L
∑

k∈K

2

∑
i=1

ωi(r)(pk(r)− vi
k(r))

2 + λ ∑
s∈Nr

(pk(r)− pk(s))2, (4)
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where vi(r) is the likelihood that comes from the i-th source and the weight function ωi(r) ∈ {0, 1} is
given by Equation (5)

ωi(r) =

{
1 if E(vi(r)) < E(v3−i(r))

0 otherwise,
(5)

i ∈ {1, 2} and E(·) is an entropy measure [38]. The authors in [28] used Gini impurity index, i.e.,

E( f ) = 1− f T f , (6)

such that 1T f = 1, f � 0.

Figure 1. Mean reflectance values for the TM432 bands for each vegetation type under study.

From Equation (5) it is understandable that only the likelihood that leads to a probability
distribution with a lowest entropy is included in the data term for the corresponding pixel, i.e.,
once the likelihoods for the two feature spaces are computed, the weight function (5) selects only
one likelihood for each pixel. The previous idea [28] contributed to diminish the misclassification in
the recognition of different crops. The inclusion of a new feature space improved the classification
process with respect to the results obtained in [29]. Note that in practice, the functional in (4) selects
only one feature space at each pixel. In this work we present an extension of our researches in [28,29]
and we propose a generalization of the GMMF model that allows us the fusion of multiple sources of
information for classification tasks. We evaluate the behavior of the proposal for crop recognition task
using satellite images, however the proposal can be applied to other classification problems.

3. The Proposal

The segmentation approach is composed of three stages: training, segmentation and validation.
In Figure 2 are illustrated the stages of the proposal. In the next sections we explain each stage.
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Figure 2. Stages of the proposed algorithm.

3.1. Training Stage

The training stage is based on histograms construction [28,29]. We assume that the information
about the classes has been provided by an expert, for example, by making scribbles on training images
for each class. Let us denote the normalized histogram as:

h(x; k) ∝ N(x; k), (7)

∑
x

h(x; k) = 1, ∀k ∈ K, (8)

whereK = {1, 2, · · · , K} and K is the number of classes, x corresponds to a feature vector. For example,
if one considers three spectral bands for satellite images; h(x; k) is a 3D histogram corresponding to the
class k. The computed histograms allows us to estimate the likelihood of pixels of an image to belong
to a class with respect to a feature space. This is an important step, because the computation of the
likelihood is a required element for Markov Measure Field segmentation models [5–7,28,29,39,40].

Authors in Ref. [28] considered the use of only two feature spaces, now we propose to use multiple
feature spaces or sources of information. Let us denote the number of feature spaces as N f . Then, we
build the normalized histograms h f (·, k) for each feature space f ∈ F = {1, 2, · · · , N f } and class
k ∈ K. Let us define the mapping function x f : L ⊂ Z2 → R| f | that allows us to extract for each site
r ∈ L of an image the feature vector x f (r) ∈ R| f | where | f | represents the size of the feature space f .
Therefore, h f (x f (r), k) can be interpreted as the probability of the feature vector x f (r) associated to
pixel r given the class k and the feature space f .

3.2. Segmentation Stage through Multiples Sources and Probabilistic Approach

Here we assume that we have already trained our algorithm, i.e., we know the histograms h f (·, k)
for each feature space f and for class k.

The segmentation procedure is as follows:

1. For a given image, we compute the feature spaces provided by the mapping x f (r), ∀r ∈ L,
f ∈ F .

2. Then, the likelihood is assigned according to the following equation

v f
k (r) ∝ h f (x f (r); k) (9)

such that ∑k∈K v f
k (r) = 1, ∀r ∈ L, f ∈ F . The likelihood is obtained by normalizing h f (x f (r); k)

with respect to the classes.
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3. Here we propose a robust GMMF approach that generalizes the proposal in [28] including
more feature spaces and with weight functions in both the data and regularization terms.
Equations (10)–(12) indicate the modifications.

p∗ = arg min
p ∑

r∈L
∑

k∈K
∑
f∈F

ω f (r)(pk(r)− v f
k (r))

2 + λ ∑
s∈Nr

ωrs(pk(r)− pk(s))2, (10)

ω f (r) =
ωs

f (r)

∑ f∈F ωs
f (r)

(11)

ωs
f (r) =

µ

µ + U f (r)
(12)

where U f (r) ∈ [0, 1] is an uncertainty measure of the information source f at pixel r, for example,
the measure of entropy (5) used in [28]; λ > 0 is the regularization parameter, µ > 0 controls the
relative importance of the likelihood for different sources. When µ is very large, the contribution
of the likelihood for all sources tends to be the same and when it is close to zero, the functional
in (10) tends to select the likelihood corresponding to the lowest uncertainty, i.e., this tends to the
solution proposed in [28] when using the entropy as uncertainty measure. The weight ωrs ∈ [0, 1]
function allows to control the edges between classes, here we use

ωrs =
µ

µ + ‖u(r)− u(s)‖2
2

(13)

uk(r)
de f
= ∑

f∈F
ω f (r)v

f
k (r) (14)

such that ωrs ≈ 1 if the sites r, s very probably belong to the same class and ωrs ≈ 0 otherwise.
The solution of the optimization problem (10) yields the following Gauss-Seidel scheme:

pk(r) =
uk(r) + λ ∑s∈Nr ωrs pk(s)

1 + λ ∑s∈Nr ωrs
. (15)

which is similar to the Gauss-Seidel scheme (2), but now the term uk(r), Equation (14), is a
mixture term that allows us to combine or fuse different likelihoods. In addition, the above
formula also includes function weights to control the edges between classes. Note that, the first
term in the numerator of the Equation (15) is a convex linear combination of likelihoods derived
from different sources. Feature spaces with lower uncertainty have a greater ω f (r) and therefore
they have a greater contribution to the data term in Equation (10).

3.3. Validation

For validation purposes we use the measure of agreement Cohen’s kappa [41], the precision
by class and the overall accuracy, see Section 4.4 for details. These comparison measures use the
information derived from the confusion matrix [42,43]. This matrix is built through the manual
segmentation given by an expert (ground truth) and the results obtained by the algorithms.

4. Experiments and Discussion

In this section we describe the experimental work and analyze the results obtained by our proposal
when applied to crop classification task in satellite images.
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4.1. Study Area

The study area is located in western Mexico at coordinates Lat. 20◦39′58′ ′ N, Long. 103◦21′7′ ′ W,
with an altitude of 1550 m above sea level, in the Atemajac Valley [44]. We study five types of vegetation
located in this region, see Table 1.

Table 1. Vegetation types used for the study.

Class Vegetation Name

C1 Irrigation agriculture
C2 Temporary agriculture
C3 Forest
C4 Scrub
C5 Pastureland

4.2. Data Sources

Data used in the experimental work are from Landsat-5 Thematic Mapper (TM) satellite imagery.
The spectral band information for this satellite appears in Table 2.

Table 2. Spectral bands of the Landsat-5 TM Sensor.

TM Bands Wavelength (µ) Features

TM1 0.45–0.52 B (Blue)
TM2 0.52–0.60 G (Green)
TM3 0.63–0.69 R (Red)
TM4 0.76–0.90 near infrared
TM5 1.55–1.75 mid-infrared
TM6 10.4–12.50 thermal infrared
TM7 2.08–2.35 mid-infrared

The studied image has resolution of 30 m and 28 radiometric resolution and corresponds to
1 March 2011. Data was delivered in level 1T, in which geometric correction was applied [45].

The image was obtained through the USGS Global Visualization Viewer site [46]. For error
analysis, the image was manually segmented by experts Oliva et al. [28]. The studied image and the
ground truth appear in Figure 3.

(a) (b)

Figure 3. (a) Studied image; (b) ground truth given by an expert.
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4.3. Studied Feature Spaces

Three feature spaces were analyzed in our work:

1. Space 1: it is composed of information from TM2, TM3 and TM4 bands due to it is well
known [30] that these three bands contain relevant data for crop detection. The selected bands
are preprocessed through a bilateral filter [47].

2. Space 2: it contains the first three principal components from the PCA applied on 10 vegetation
indices, see Table 3. Such indices are based on mathematical operations on spectral bands
and they allow to enhance the information related to vegetation. In order to compute the
indices we calculate the reflectance values, ρ, corresponding to the acquired images, using the
algorithms in [48], see also the procedures given in [49–52]. The included indices appear in
Table 3. Symbols ρr, ρg, ρb and ρNIR denote the reflectance values for the red, blue, green and
infrared bands respectively. We followed the recommendation given in [35], and set L = 0.5 to
compute the SAVI and SARVI expressions. For SARVI we considered γ = 1 as authors in [34].

Table 3. Explored Vegetation indices. In the equations below ρr, ρg, ρb and ρNIR denote the reflectance
values for the red, blue, green and infrared bands respectively and ρrb = ρr − γ(ρb − ρr).

Name VI Formula References

MSR
ρNIR

ρr
−1√

ρNIR
ρr

+1
[31]

CI ρNIR
ρg
− 1 [32]

midrule NDVI ρNIR−ρr
ρNIR+ρr

[15]

GNDVI ρNIR−ρg
ρNIR+ρg

[16]

EVI 2.5
[

ρNIR−ρr
1+ρNIR+6ρr−7.5(ρb)

]
[33]

SARVI (1+L)(ρNIR−ρrb)
(ρNIR+Rrb+L) [34]

RDVI ρNIR−ρr√
ρNIR+ρr

[31]

SAVI (1+L)(ρNIR−ρr)
ρNIR+ρr+L [35]

MSAVI 1
2

[
(2ρNIR + 1−

√
(2ρNIR + 1)2 − 8(ρNIR − ρr))

]
[36]

WDRVI α×ρNIR−ρr
α×ρNIR+ρr

[37]

3. Space 3: this space contains three principal components from PCA applied on the spectral bands
TM1, TM2, TM3, TM4, TM5 and TM7, see Table 2. Although TM2, TM3 and TM4 bands more
accurately describes information related to vegetation [30], in this investigation PCA on all six
mentioned bands is applied in order to include information from other spectral regions.

4.4. Comparison Measures

The comparison measures, for validation purposes, are based on the confusion matrix C which is
used in multi-class classification problems [42,43] to assess the performance of algorithms. Here, we
assume that the rows of the confusion matrix correspond to the actual classes (the “ground truth”)
and the columns correspond to the predicted classes. Then, the entry Cij of the confusion matrix C
represents the number of data of the class i that are predicted in class j. The performance measure
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we used for comparing the algorithms are: the overall accuracy, the precision for each class j and the
Cohen’s kappa, i.e.,

Overall accuracy =
∑K

j=1 Cjj

∑K
i=1 ∑K

j=1 Cij
, (16)

Precisionj =
Cjj

∑K
i=1 Cij

, (17)

Kappa =
po − pe

1− pe
, (18)

where

po = Overall accuracy,

pe = aTb,

aj =
∑K

i=1 Cij

∑K
i=1 ∑K

j=1 Cij
,

bi =
∑K

j=1 Cij

∑K
i=1 ∑K

j=1 Cij
.

The overall accuracy (16) is the number of correct classifications divided by the total number of
classified data. The precision (17) is a measure of the accuracy of a specific class j. Thus, the precision
is the ratio between the number of correctly predicted data of the class j divided by the total number
of classified data in the class j. Cohen’s kappa (18) is a statistical measure of inter-rater agreement
or inter-annotator agreement for 2 raters [41]. Cohen’s kappa measures the agreement between two
raters who each classify N items into K mutually exclusive categories, see Table 4 for the interpretation
of the values of Kappa index [53]. In Ref. [53] the reader can find more details about the measure of
agreement Kappa.

Table 4. Interpretation of Cohen’s kappa measure.

Cohen’s Kappa Interpretation

<0 Poor agreement
0.00–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–1.00 Almost perfect agreement

4.5. Results and Discussion

We carried out several experiments where we combined the feature spaces described in the
Section 4.3. Table 5 gives a brief description about all possible feature space combinations. Column 1
indicates the number of combination and column 2 specifies the feature spaces included in the combination.

We conducted 11 experiments with real data described in Section 4.2. The first three experiments
considered only one feature space with the standard GMMF algorithm [29]. The next four experiments
were performed using the lowest entropy model [28], see Equations (4) and (5) and the space
combinations 4–7 given in Table 5. The last four experiments also used the combinations 4–7, and
the segmentation process was conducted using the fusion sources model proposed in this work,
see Equations (10)–(12).
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Table 5. All possible combinations of feature spaces.

N. Combination Feature Space Combination

1 Space 1
2 Space 2
3 Space 3
4 Space 1 + Space 2
5 Space 1 + Space 3
6 Space 2 + Space 3
7 Space 1 + Space 2 + Space 3

Tables 6–8 summarize the numerical results of all 11 experiments. These tables present the
numerical information about the classification of 5 different crops, see Table 1, the precision of
classification for each class, the overall accuracy and Kappa coefficient. We note that the results
of the first row of Tables 6 and 7 differ from those presented in Ref. [28,29]. This is due to, in this
results, we only consider sites in the image that correspond to crops in the five categories of interest,
i.e., only pixels in the region of interest.

Table 6 shows the results obtained using the standard GMMF algorithm with different features
spaces [29,54]. Experiments 1–3 consider the information from Space 1, Space 2 and Space 3 respectively,
see Table 5. Note that best result is obtained when using the first three principal components based on all
spectral bands, except the TM6 band (Experiment 3). Note also that, the first three principal components
using the 10 spectral indexes (Experiment 2) achieved a similar performance to the one obtained with
the typical combination of TM2, TM3 and TM4 bands (Experiment 1). This means that for the crop
classification using GMMF, the amount of information is relevant.

Table 6. Numerical results of experiments using the GMMF model with only one feature space.

Experiment
Precision

Overall Accuracy Cohen’s Kappa
C1 C2 C3 C4 C5

1 0.86 0.83 0.89 0.85 0.63 0.8331 0.7520
2 0.84 0.81 0.89 0.87 0.62 0.8324 0.7528
3 0.83 0.82 0.91 0.89 0.65 0.8506 0.7801

Table 7 summarizes numerical results for the experiments in which we considered the lowest
entropy model [28], see Equations (4) and (5). Experiment 4 combines the Space 1 and the Space 2,
Experiment 5 takes into account the Space 1 and the Space 3, Experiment 6 includes Space 2 and
Space 3 and Experiment 7 uses all studied spaces. Observe that the combination of different feature
spaces together with the lowest entropy model allowed to improve the precision of crop recognition
in general, and hence the overall accuracy and Kappa index increased. Table 7 also confirms that not
only the information from TM2, TM3 and TM4 (Space 1) is relevant from crop recognition, but also the
information derived from other bands.

Table 8 shows the numerical results of the experiments 8–11. These four experiments considered
the same feature space combination as in the experiments 4–7 in Table 7, but using the fusion
sources model (10)–(12). Note that the Experiment 9 achieved the best performance. This experiment
considered the combination of Space 1 and Space 3.

Although the results of the experiments in Table 8 are similar in comparison with the results
obtained by means of lowest entropy model, see Table 7, they have a better performance than those
obtained by lowest entropy model. In general, the new proposal obtained the best performance
compared with our previous conference papers. Furthermore, the study of feature spaces performed
in this work also allowed us to improve the performance of our previous work.
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Table 7. Numerical results of segmentation experiments using the modified GMMF with minimum
entropy criteria.

Experiment
Precision

Overall Accuracy Cohen’s Kappa
C1 C2 C3 C4 C5

4 0.86 0.83 0.92 0.87 0.67 0.8472 0.7726
5 0.89 0.84 0.94 0.88 0.70 0.8624 0.7955
6 0.85 0.83 0.91 0.89 0.64 0.8485 0.7770
7 0.87 0.84 0.93 0.88 0.67 0.8588 0.7904

Table 8. Numerical results of experiments with the GMMF model of fusion of different sources with µ = 1.

Experiment
Precision

Overall Accuracy Cohen’s Kappa
C1 C2 C3 C4 C5

8 0.88 0.83 0.92 0.87 0.67 0.8497 0.7767
9 0.90 0.84 0.94 0.89 0.71 0.8649 0.7993

10 0.88 0.82 0.91 0.89 0.66 0.8517 0.7812
11 0.90 0.83 0.93 0.89 0.69 0.8600 0.7923

Our experimental work corroborated that the vegetation indices enhance the vegetation information,
and they are able to distinguish between vegetation and non-vegetation. However, for the classification
task, they are not sufficient as an information source to discriminate different types of crops.

Though more information sources we have a greater computation time, for this task we suggest
using more feature spaces in order to improve the accuracy of the classification process. For that reason
the proposal described in Section 3.2 considers a fusion of multiples feature spaces.

In this work we used feature spaces generated from the pixel information and different spectral
bands, however the proposal is more general and it allows to include other feature spaces and not only
punctual information, but also local information derived from different image modalities. The study
of local information and the fusion of different image modalities is a part of our future work.

On the other hand, Table 9 shows a comparative analysis of different classification methods that
have been widely used in the context of crop classification problems. In the experiment we use the real
image described in Section 4.2. Here we compare different algorithms implemented in the software
MultiSpec, funded by NASA, that is available online [55]. MultiSpec is a freeware multispectral image
analysis software developed at Purdue University and the latest release date is on March 2017. In this
experiment, we include the following methods: Minimum Euclidean Distance (MED) [56], Maximum
Likelihood Classifier (ML) [57], Fisher Linear Likelihood (FLL) [58] and (ESS) [59,60] because they
reached the best performance results. We also include two versions of the one vs all multiclass SVM
method, the linear and the non-linear Radial Basis Function alternatives, using the winner-takes-all
strategy. In this case, we use the matlab built-in function for SVM. In the comparison study we
also consider the original version of the probabilistic segmentation approach described in [28,29].
Additionally, for a fair comparison, we include the performance analysis of these algorithms using
the best results reached in the feature space study in this work, see Tables 6 and 7, denoted as MICAI
2014∗ and MICAI 2015∗ in Table 9. Finally, we include the results achieved by our proposal based
on the fusion of information sources. Note that for our proposal, and in general for probabilistic
segmentation approaches, the natural feature space is the space of probabilistic distributions or the
likelihood space, unlike others methods under study where the natural space is the original image.
A detailed comparison study of feature spaces and classification methods for crop classification is
a very interesting task, however, this is out of the scope of the present research and we leave it for
future work.
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Table 9. Numerical results of different classification methods. MICAI 2014∗ and MICAI 2015∗ denote
the best results of the proposals in [28,29] under the feature space study conducted in this work.

Method Feature Space C1 C2 C3 C4 C5 Overall Accuracy Kappa

MED [61] Landsat-5 TM 0.82 0.73 0.54 0.80 0.29 0.6244 0.4781
ML [62] Landsat-5 TM 0.65 0.73 0.72 0.76 0.40 0.6928 0.5558
FLL [63] Landsat-5 TM 0.88 0.74 0.71 0.75 0.46 0.7105 0.5743
ESS [60] Landsat-5 TM 0.76 0.70 0.80 0.74 0.56 0.7257 0.5811
SVM linear Landsat-5 TM 0.77 0.74 0.96 0.73 0.19 0.7498 0.6071
SVM rbf Landsat-5 TM 0.79 0.83 0.90 0.90 0.66 0.8536 0.7859
MICAI 2014 [29] Space 1 0.86 0.83 0.89 0.85 0.63 0.8331 0.7520
MICAI 2014∗ Space 3 0.83 0.82 0.91 0.89 0.65 0.8506 0.7801
MICAI 2015 [28] Spaces 1 & 2 0.86 0.83 0.92 0.87 0.67 0.8472 0.7726
MICAI 2015∗ Spaces 1 & 3 0.89 0.84 0.94 0.88 0.70 0.8624 0.7955
Proposal Spaces 1 & 3 0.90 0.84 0.94 0.89 0.71 0.8649 0.7993

Based on the comparison results in Table 9, we note that our proposal, in general, outperforms
the remainder analyzed methods. The precision, overall accuracy and the Kappa index attained a
better performance with respect to our previous conference papers [28,29]. Observe, that the non-linear
SVM version with Radial Basis Function leaded to the best classification for class C4, however the
best classification for the rest classes was reached by our proposal. On the the hand, the analysis of
the feature spaces developed in this work, also allowed to improve the results of the probabilistic
methods in [28,29]. The method MICAI 2014∗ corresponds to the GMMF algorithm [29] using the
Space 3 studied here. Note that the overall accuracy and Kappa coefficient increased in comparison
to the Space 1 used in the original paper in Ref. [29]. Similarly, MICAI 2015∗ refers to the proposal
in [28] using the feature space combination Space 1 and Space 3. Note that performance measures of
classification also increased.

For illustrative purposes, the classification maps of the three most accurate methods given in
Table 9 are shown in Figure 4.

(a) (b) (c)

Figure 4. Classification maps of the three most accurate methods given in Table 9: (a) non-linear SVM
version with Radial Basis Function; (b) MICAI 2015∗ and (c) Our proposal.

5. Conclusions

The selection of the feature space is a challenge for any image classification task. Our proposal
provides a framework in which different information sources are combined taking into account the
entropy of the their probability distribution. To this end, we propose a generalization of the Gauss
Markov Measure Field model, in which both, data and regularization terms contain a weight function,
that allows to combine different feature spaces, in a such way that information sources with lowest
entropy probability distribution have a greater contribution in the classification process. The proposal
considers the punctual and contextual spatial information. The weight function of the second term
allows us to control the edges between classes obtaining a robust potential based on the likelihoods.
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The performance of the proposed approach is evaluated in satellite images for classifying different
crops. Although we focused on classification problems in satellite images, the proposal can be used
for any image classification task, in which it is necessary to combine several feature spaces, this is
a potential research in the future. We also studied different spaces and all possible combinations.
The achieved precision indices: overall accuracy and Kappa coefficient demonstrated the good behavior
of our approach. Experiments with real images show that the proposed algorithm obtains excellent
results compared with algorithms used in the context of satellite image for crop classification. Finally, an
interesting problem that emerges from this work is to carry out a detailed comparison study of different
features spaces and classification methods for crop classification. We leave this study for future work.
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