
sensors

Article

On Line Service Composition in the Integrated
Clinical Environment for eHealth and
Medical Systems

Marisol García-Valls * and Imad Eddine Touahria

Department of Telematics Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain;
imad.touahria@gmail.com
* Correspondence: mvalls@it.uc3m.es; Tel.: +34-916-248-783

Academic Editor: Yuh-Shyan Chen
Received: 11 March 2017; Accepted: 6 June 2017; Published: 8 June 2017

Abstract: Medical and eHealth systems are progressively realized in the context of standardized
architectures that support safety and ease the integration of the heterogeneous (and often proprietary)
medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared
recently with the goal of becoming a common framework for defining the structure of the medical
applications as concerns the safe integration of medical devices and sensors. ICE is simply a high
level architecture that defines the functional blocks that should be part of a medical system to support
interoperability. As a result, the underlying communication backbone is broadly undefined as
concerns the enabling software technology (including the middleware) and associated algorithms that
meet the ICE requirements of the flexible integration of medical devices and services. Supporting the
on line composition of services in a medical system is also not part of ICE; however, supporting this
behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services
and medical equipment) on the fly. iLandis one of the few software technologies that supports on line
service composition and reconfiguration, ensuring time-bounded transitions across different service
orchestrations; it supports the design, deployment and on line reconfiguration of applications, which
this paper applies to service-based eHealth domains. This paper designs the integration between ICE
architecture and iLand middleware to enhance the capabilities of ICE with on line service composition
and the time-bounded reconfiguration of medical systems based on distributed services. A prototype
implementation of a service-based eHealth system for the remote monitoring of patients is described;
it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application
services. Results show that the temporal cost of the on line reconfiguration of the eHealth application
is bounded, achieving a low overhead resulting from the addition of ICE compliance.

Keywords: Integrated Clinical Environment; service composition; reconfiguration; eHealth; medical
system; middleware; patient monitoring; cyber-physical system; medical service; performance

1. Introduction

Medical devices operate with strict safety and security standards in a rather closed manner,
providing very restrictive interfaces. The reasons for this are, among others, their safety and security
requirements, besides the fact that they are typically patented devices. As dictated by the non-stop
technological evolution, medical systems have followed the path towards easing interoperability across
vendors to facilitate the development of more powerful functions derived from the integration of
heterogeneous services and equipment (servers, medical devices and sensors).

Traditionally, clinicians would continuously monitor and operate a number of devices separately.
Nevertheless, for developing modern and future medical systems, it is essential to achieve

Sensors 2017, 17, 1333; doi:10.3390/s17061333 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1333 2 of 22

interoperability among medical devices and software services. The evolution of software paradigms
and implementations, and their integration with most hardware platforms, has boosted the possibilities
of medical systems. Still, the medical devices that are closest to patient monitoring tend to be based on
special purpose hardware, being mostly closed systems; but this trend has started to be progressively
abandoned towards more interoperable standardized open approaches.

Given the critical nature of medical systems and applications, industry and suppliers have
gathered around medical specifications and design approaches for realizing the interoperability goal [1].
One of the most important frameworks for medical device interoperability has been defined by the
American Society for Testing and Materials (ASTM) producing the Integrated Clinical Environment
(ICE, F2671-2009) [2]) , also co-sponsored by the American Society for Anesthesiology (ASA).
The standard Open source Integrated Clinical Environment (OpenICE) [3] was developed by the
Medical Device Plug-and-Play (MDPnP) program, and it complies to the open standard ASTM F2761,
which regulates safety, security, reliability and performance of the equipment for a patient-centric
integrated clinical environment. OpenICE is a distributed software platform for supporting the
interconnection of network nodes such as medical devices, sensors, decision support systems or
electronic medical record systems. The actual realization of ICE is not tied to any specific technological
implementation. The reason for the undefinition of the underlying communication backbone of
ICE is that it is a standard for achieving patient safety, defining the requirements for biomedical
device integration at the point-of-care, with the goal of driving the definition of interoperability
standards toward safety. Therefore, it is realizable through different underlying middleware backbones.
Currently, real-world applications in the medical domain progressively adhere to the safety and
security requirements of ICE; examples are the electronic health record systems, such as [4] that
manages information security and on line collection of patient data.

The full realization of ICE needs to consider specific middleware technologies at different levels
to enable interoperation and distribution. Precisely, the required functions are data processing and
exchange formats’ definition, distribution infrastructure, flexible functional composition and transport
and network protocols. The realization of the ICE framework must include middleware technologies
at the levels of the bare infrastructure middleware and the enhanced middleware. Infrastructure
middleware provides the basic communication paradigm for distributed communication among
functional units that reside in different nodes (e.g., remote medical devices and/or server/client nodes
for patient record information exchange). Enhanced middleware provides additional logic tied to a
specific application domain related with either its business logic or with the behavioral requirements
of the application domain. Essentially, ICE is a standard for safety interoperability across nodes,
defining the roles of the different participant devices and how these should interact. Therefore, this
standard must be naturally supported by (i.e., integrated with) an underlying communication bus
(i.e., a distribution middleware) that provides communication functions among the participant devices;
the used middleware must adjust to the non-functional properties required by the medical domains
and in compliance with ICE safety requirements. This paper details the integration of ICE with a
specific middleware that enables flexible reconfiguration capabilities inside ICE.

Not all middleware technologies are suitable as communication backbones in healthcare systems.
For instance, in a centralized patient monitoring system that receives and displays the information
about patients in their rooms/apartments, a bad decision on the selection of a middleware technology
may yield latencies of over tens of seconds; also, the wrong selection may result in lack of support
for flexible on line service integration. This limits the potential of on line health monitoring
systems. There are different middleware possibilities to take the strong position as the communication
backbone for ICE. This is the case of DDS (Data Distribution System for real-time) [5] that has been
applied in OpenICE [3,6] as in a number of other distributed application environments [7]. DDS uses
UDP/IP for transport and network levels and implements different levels of reliable communication,
including Quality of Service (QoS) parameters for fine tuning the transmissions. Besides this and
other similar proposals, additional logic is needed on top of the bare communication middleware

Sensors 2017, 17, 1333 3 of 22

backbone to support the flexible integration of medical services by efficient service composition:
the enhanced middleware or application-specific middleware. iLand (iLand project—Reference
implementation: User Guide. Sourceforge. https://sourceforge.net/projects/iland-project/) [8] is a
communication middleware that provides additional logic for supporting service-based application
composition and reconfiguration. iLand executes those functions in a timely way by means of its service
composition and reconfiguration algorithms that employ graph theory. Therefore, integrating iLand
middleware into ICE will allow ICE-based application services to reconfigure on line by modifying the
number of services and/or connected devices and their interconnections. Additionally, iLand defines
an architecture of an enhanced middleware that is flexible enough to be implemented over different
bare communication middleware choices such as DDS, Ice (Internet Communication Engine), Corba,
Java RMI, etc.; its reference implementation is built over DDS.

Therefore, integrating ICE and iLand allows on line orchestration of service-based medical
applications. As an example, let us imagine a remote elderly patient monitoring scenario such as
described in [9]; there, it is illustrated how services can be composed on line using iLand by means of
adding new customized functions to the remote monitoring application (or by removing some services
that are no longer needed). This way, the monitoring application is tailored to the specific needs of
each patient. Let us imagine that, at the initial installation of the application, the essential services
that it contains are: glucose level measuring and blood pressure data readings. These services may
be extended by adding, on-the-fly, some additional service such as sensor-based activity detection
of the patient. The software services interface with the medical devices and sensors; for instance,
a blood pressure sensor can be connected through an embedded computer that runs the software
that controls the service. This software provides two basic operations in its interface: read_sample
and update_parameter. The first function allows collecting the information of the patient (diastolic
pressure, systolic pressure and heart rate); the second function allows configuring of the device, e.g.,
activation of the memory functions to store patient readings for a specific period, etc. Enabling on
line service addition or removal from the overall patient monitoring application would consist of
connecting (or removing) the software service from the overall application or not. This can be done
remotely by some specialized clinician. For example, if the clinician observes some anomaly in the
patient, s/he may activate the sensor-based activity detection for the patient to obtain information on
the behavioral pattern of the patient for that day and detect possible problems.

This paper describes the integration of on line composition capacities provided by iLand
middleware into the ICE framework to comply with medical application requirements. The goal
is to support on line flexible addition and/or removal of services to customize medical applications
on-the-fly for specific patients.

For this purpose, the paper presents the characteristics of the open source middleware technology
named iLand [8] that is later integrated within ICE. iLand is the result of a research project, and it
was applied to different systems related to healthcare. As a result, ICE is enriched with the capacity
to support flexible on line integration of medical services. Although security is a key characteristic
in medical systems, it is outside of the scope of this paper. Our contribution focuses strictly on the
flexible composition of the medical applications. Security aspects are included as part of ICE standard,
but it is not the objective of this contribution to elaborate on them, nor include mechanisms for patient
data collection and management.

The paper is structured as follows. Section 2 describes related work on middleware for medical
systems. Section 3 describes the ICE framework. Section 4 describes iLand, the enhanced middleware
proposal that supports decoupled timely on line service composition. Section 5 describes the integration
of iLand within the ICE framework. Section 6 provides an example of a distributed service-based
application distributed with iLand that performs remote patient monitoring in an elderly house;
it is adapted to ICE, and reconfiguration results are presented that show the feasibility of ICE-iLand
integration and the time-bounded reconfiguration. Section 7 concludes the work discussing the
integration implementation.

https://sourceforge.net/projects/iland-project/

Sensors 2017, 17, 1333 4 of 22

2. Background

Current and future medical systems are progressively interconnected in order to flexibly exchange
data among devices, departments and, most importantly, between patients and medical staff.
Middleware is a fundamental software layer that enables this, and it is practically at the heart of
almost every single distributed application nowadays. Middleware is characterized by abstracting
the low level details of the communication protocols and the hardware characteristics of devices to
programmers. This way, programmers can focus solely on the functional aspects of the application;
this has a positive impact on their productivity and the application maturity level.

Among the first middleware technologies one finds RPC (Remote Procedure Call). With the
years, this interaction scheme evolved towards the component-based distribution paradigm of
Corba [10] and object-oriented middleware, such as Java RMI [11], among others. Message-oriented
middleware also appeared on the scene like JMS (Java Messaging Service) [12]. Later, other paradigms
appeared such as services with Jini [13] and data-centric publish-subscribe [5,14], or later, stream
processing services [15,16]. Some middleware technologies support different communication patterns,
like Ice (Internet Communication Engine) [17], which offers both,remote method invocations and
asynchronous publish-subscribe through its version Ice Storm. The optimization of the design and
implementation of the middleware is also a key aspect of its usability in certain domains; for example,
in [18], a multicore-aware middleware is presented that exploits the characteristics of the underlying
hardware platform to prioritize the service to some specific remote entities. There are countless
designs of specialized middleware for individual application domains, such as the stock market [19],
transport [20], healthcare [21] or remote labs for education [7]. Middleware technology is in constant
progress to suit the needs of the emerging domains, such as real-time cloud computing [22].

Middleware is also key to healthcare systems for a number of reasons; just a few of them are:

• It acts as an interoperability provider, allowing information (patient records) to be
communicated/transferred and formatted to the specific needs of physicians.

• It provides major flexibility across departments, as they may be interested in different patient data,
which can be extracted as required from a global repository.

• It eases evolution to richer functionality in a short time such as hospitals and care centers in
general, as new functions can be developed as individually-developed decoupled services.

• It allows the connection of mobile devices to the hospital network cloud, making data available to
professionals anytime, anywhere.

• Patient engagement in their care could be increased as middleware can display their historic
records and current monitored data in an understandable way so that they can participate in their
healing process. The engagement of patients enabled by middleware requires that the middleware
provide them with answers in an efficient, timely and robust manner.

One of the most frequent uses of middleware in medical systems is the automatic handling of
patient records. Current practice often uses Health Information Systems (HIS) and Electronic Health
Records (EHR) in an informal manner with ad hoc protocols and interoperability solutions in order
to develop clinical systems. Typically, attention in these systems is paid at the pure application level
where healthcare enterprise systems are put together to deliver specific clinical solutions.

Aspects such as security and safety are essential in current solutions, especially when envisioning
medical cyber-physical systems, as a number of subsystems will coexist and interact through a
safety/security framework. Such a framework must provide rigorous design including on line
verification such as exposed in [23] and trustworthy compositional techniques to integrate devices,
cooperating autonomously and in a protected mode with health information systems. For this
purpose, new paradigms are appearing, such as MAP (Medical Application Platform) [1], which
is a safety-critical and security-critical real-time computing platform. The most widely-adopted
architectural solution nowadays is ICE (Integrated Clinical Environment) [2,24] led by the
CIMITMedical Device Plug-and-Play interoperability project and later standardized.

Sensors 2017, 17, 1333 5 of 22

The ICE approach defines important elements, such as the protocol stack for medical device
interoperability [2]. The lower layer of this stack is DPWS (Device Profile Web Services) in charge
of service discovery, interface description, messaging, event propagation and secure information
transmission. On top of this pure web service communication level, a streaming dual channel
transmission based on MDPWS is provided. The specific extensions for ICE devices are contained in
the Basic Integrated Clinical Environment Protocol Specification (BICEPS) layer, which is above the
MDPWS layer.

Below this DPWS, there is the indication of a specific technology, apart from the typical de
facto usage of HTTP/TCP or UDP. However, no reference to the basic communication middleware
technologies (e.g., DDS, JMS [12] or iLand [8] middleware for service oriented real-time applications,
etc.) is indicated. DPWS is bound to using SOAP protocols with messages in XML, yielding to heavy
communication latencies and parsing/unparsing times that may not be suitable to all domains.

Higher performance middleware alternatives to a pure DPWS backbone will yield more timely
interaction between remote nodes and devices, being more suitable for the inherent temporal
requirements of eHealth in contexts such as remote patient monitoring where timeliness can be
a critical aspect. Message parsing activities or heavy XML message transmission may yield delays in
a control loop that physically monitors the vital signs of a patient, causing errors in measurements.
A number of alternative solutions for efficient transmissions must be considered for the health domain
based on the specific temporal requirements of each application case.

Recently, a number of contributions on designing eHealth systems has appeared such as [25] that
introduces an IoT healthcare assisted leaving design or [26] that provides a process oriented design;
Ref. [27] that describes the real-time transmissions for telehealth applications; Ref. [28] that discusses
security aspects on eHealth; Ref. [29] that provides a framework for integration of medical systems
and distributed technology; in [30], a component model is described that allows developing medical
systems for ICE-compliant applications. However, none of these contributions focuses on provisioning
the ICE standard with reconfiguration and on line service composition facilities.

One of the reasons for this is that ICE specification does elaborate on the process to achieve flexible
service composition; moreover, on line device plug and play is only described at a high level and
restricted to standard data exchanges. There is no indication of the possibility of achieving real-time
service composition. Furthermore, once the application (or a set of services) is in operation, ICE is
silent on how to achieve time-bounded reconfigurations of the application due to, e.g., a change in a
service or the appearance of a new service that has to be connected to the application.

3. The Integrated Clinical Environment

ICE is a framework for medical device interoperability; as stated in [2], it is: “a medical system
designed to safely provide data acquisition, and integration and control of a heterogeneous combination
of medical devices and other equipment in a high-acuity patient environment [...] intended to enable
the creation of systems for innovation in patient safety, treatment efficacy, and workflow efficiency”.

At the heart of the ICE idea is that medical devices must provide a compatible model aiming
at interoperability (so-called ICE-compatible equipment) that is exposed through a specific interface,
namely the ICE equipment interface. Figure 1 presents a high level view of the functional elements or
blocks of the Integrated Clinical Environment.

Sensors 2017, 17, 1333 6 of 22

ICE Supervisor

ICE Network
Controller

External
Interface

Data
Logger

ICE Equipment
Interface

ICE Equipment
Interface

Medical
Device

Medical
Device

ICE Equipment
Interface

Other
Equipment

ICE Manager

ICE

Patient

Clinician/Operator

To
 o

th
er

 e
qu

ip
m

en
t

Figure 1. ICE functional elements (taken from ASTM Standard F2671-2009).

The device model is a representation of the capabilities of ICE compatible equipment that includes
the information needed to qualitatively and quantitatively describe, control and monitor its operation.
This includes the information exposed by the manufacturer through the equipment interface, as well
as the non-functional requirements according to ASTM.

The ICE network controller provides communication among ICE compatible equipment and
the rest of ICE using the device model. It is in charge of ensuring that the functional capabilities,
in accordance with the non-functional requirements in the device model, can be reliably delivered to
the supervisor. Furthermore, it must generate alarms if the required performance cannot be delivered.
An ICE network controller block manages a set of (or aggregation of) medical devices and side
equipment that must provide a specified functionality meeting certain non-functional requirements.
This block contains the necessary business logic according to the device model to provide the specified
functional capabilities, and detecting the possible generated alarms. The ICE supervisor is a platform
(both an equipment and the associated software) that provides a specific application logic (i.e., specific
algorithms, etc.) and an operator interface. It ensures that the specified functional capabilities are
provided according to the ICE network controller, also handling the alarms.

The ICE equipment interface is a part of an ICE-compatible equipment that provides the interface
to the ICE network controller. It is typically an interface between software processes; it is not intended
to be an interface between the operator and the compatible equipment.

The mission of the data logger function block is to support forensic data storage and logging
that enables the detection of incidents and abnormal situations in order to initiate mitigation actions;
meaningful events (operator actions, data readings, etc.) are recorded and stored and can later be
analyzed to identify abnormal situations such as erroneous usage of the ICE-compatible equipment
(medical devices and sensors), failure of the devices and/or of the supervisor or Ice network
controller failure.

These functional blocks can be either physically separate or they can be integrated into one or
more physical entities (i.e., servers, devices, etc.). The network controller is the interface where plug
and play occurs. The external interface is the interface of the ICE outside of the clinical environment.
According to the standard, this could be the facility backbone, public switched network or the Internet.
The data logger is used to record everything within the ICE for future forensic activities, i.e., incident
investigations and/or training scenarios.

Sensors 2017, 17, 1333 7 of 22

Overall, ICE provides a high-level architecture mostly containing functional blocks that need to
be realized by specific proposals. Such proposals must be concrete technological options containing
the distribution middleware software as a basic communication backbone connecting the different
medical services, with both basic communication services, as well as other enhanced logic. Most of the
ICE functional blocks are wrappers that refine the basic information model provided by the device
model of each equipment or device to be integrated. One of the key blocks of ICE as concerns the
interaction among medical devices and services is the network controller. This element is a point of
communication of a specific service or device to other services and/or devices in the medical system;
it is also a point of connection to the supervisor, which contains the application logic. The following
section describes a proposal of how to integrate a specific middleware technology with ICE to support
both basic decoupled communication services and enhanced logic for on-the-fly service composition.

4. iLand Middleware: On Line Service Composition and Timely Reconfiguration

This section presents an overview of iLand, a communication middleware that is enhanced with
additional intelligence to enable the time-bounded reconfiguration of distributed real-time systems
based on services. This section introduces the main terminology and concepts of iLand, presenting the
essential structure of the overall reconfiguration process.

4.1. Overview and Basic Terminology

iLand [8] is an open source middleware that has been applied in industrial prototypes, including
medical systems. It follows the classical principles of a layered middleware design; though
its architecture (shown in Figure 2) is independent of the underlying communication network
protocol, the reference implementation (iLAND project. Reference implementation. Sourceforge.
https://sourceforge.net/projects/iland-project/) of iLand uses a DDS backbone. iLand includes a
number of enhanced functions to support dynamically reconfigurable applications based on services:
light-weight services in the real-time version and web services in the soft and best effort version with
QoS guarantees.

Figure 2. iLand middleware architecture.

https://sourceforge.net/projects/iland-project/

Sensors 2017, 17, 1333 8 of 22

The middleware provides time-deterministic reconfiguration mechanisms (that are described
in [31,32]) and service-composition functions (explained in [33,34]). Such functionality can be used
in service-based applications for on line orchestration of services, supporting addition or removal
of services, as well as their replacement. iLand functionality is realized by two main layers: the
Core Functionality Layer (CFL) and the Communication Backbone and Resource Management Layer
(CBL). CBL contains the basic infrastructure components for decoupled communications and real-time
resource management, whereas CFL contains the enhanced functionality for service composition
and reconfiguration. CFL components are the Service Manager (SM) that enables applications
(or operators) to define and register services, i.e., self-contained stateless services; the Application
Manager (AM) to define the structure of larger applications made of service sets (input as a service
graph); and the Composition Logic (CL) containing time-deterministic service composition and
reconfiguration algorithms.

The following is the basic key terminology of iLand:

• Service: A self-contained piece of code with well-defined interfaces that communicates with other
services via message exchanges, as indicated in the Service-oriented Paradigm (SOA).

• Service implementation: It is a particular realization of a service. A given service can have different
implementations that differ from one another due to their particular coding of the service interface.
Two different implementations will require distinct computational resources, depending on the
quality of the produced results.

• Service composition: A process by which different services are combined and orchestrated to merge
as an application with global requirements such as the end to end response time. An example of
this could be the connection of an oximeter service with a blood pressure service that might yield
a basic daily health application for an in-house patient.

• Configuration: It is the set of software functions (i.e., services in iLand) that execute at a particular
instant. A configuration is achieved by a specific service composition process. A configuration is a
given set of service implementations.

• Reconfiguration: A transition from the current configuration to a new (i.e., target) configuration.
This reflects a change in the application functions. An example might be the addition of a third
temperature sensing service to the former basic daily health application.

• Time bounded reconfiguration: It is a reconfiguration process performed within a guaranteed
maximum amount of time, i.e., deadline. It includes a time-bounded service composition
algorithm [31].

• Real-time pruning and low-complexity reconfiguration: A reconfiguration process may involve
the exploration of all possible combinations of configurations that could yield a high-complexity
process. iLand designed a low-complexity reconfiguration process [33,35] where the initial space
of solutions is summarized as a representative subset of the original graph. Therefore, only
this subset is explored to check if any new tentative configuration meets the specification and
requirements of the system.

4.2. Service Composition and Reconfiguration

Figure 3 illustrates the reconfiguration process for distributed real-time applications that consists
of on line modifications of the structure and connection of services in a time-bounded manner.

Sensors 2017, 17, 1333 9 of 22

Complete(space(
of(solu.ons(

Current'Configura,on(

Timing(info(
(e2e(<(!me)(

Target'
configura,on(

?'?'RTPrune'
RT'test' Comp.'

ALG.'

Solu.ons(that(pass(
the(temporal(verifica.on(

Control'Manager'Logic(

Figure 3. Reconfiguration process coordinated by the control manager entity of iLand.
Different modeling tools aid the off line fine-tuning of the system.

Distributed real-time systems can be reconfigured with iLand middleware ensuring the timeliness
of the transition from the current configuration to a new one. The reconfiguration logic is contained
inside the control manager component. Configurations are expressed as service graphs with end to end
timing properties, and a set of restrictions are imposed to achieve time-bounded transitions on line:

• Off line exploration of the space of solutions: Prior to execution, the system design is fine-tuned
for efficiency and timeliness. Two tools, generalized BTEA for timely service composition [31] and
Real-Time Prune (explained in [33,35]) for complexity reduction, are used for the assessment of
whether the timing behavior of the reconfiguration is valid for the specific designed application.

• Reliable communications: The communication time between distributed services assumes that the
underlying communication transport is reliable and there is a real-time network with guaranteed
message scheduling.

• Centralized verification of the configurations: The iLand reference implementation includes a
single verification entity that has the view of the whole system (see Figure 4). The verification of
an application is essential for the cyber-physical domain to prove that the configurations satisfy
the requirements at all times. iLand includes a temporal verification component that applies
utilization-based schedulability analysis to check the temporal behavior of the applications.

• Centralized reconfiguration coordination: There is a single entity that coordinates the
reconfiguration process, mandating over the execution of the reconfiguration phases that are
required for the transition between the current and the target configurations.

• Emergency configuration: As a mechanism to achieve fault tolerance, iLand has a back-up
configuration that satisfies the system specification at all times. In the event that the reconfiguration
process does not find a target configuration that satisfies the system specification, the emergency
configuration is applied.

The interface between the application level (including an operator) and iLAND is at the level
of the application/service manager and communication manager components. Applications or
an operator can register services and configure specific applications with the App/Service
manager; the communication among services is supported by the functions of the communication
manager component.

Sensors 2017, 17, 1333 10 of 22

Composition
Logic

Verification
Logic

iLand
Functional Blocks

Service

[Reconfig.]
Control
Mngr.

App/Service
Manager

Comm.
Mngr.

Service

QoS Comm.
Mngr.

Figure 4. Enhanced core functionality layer with explicit illustration of the verification component.

4.3. iLand Ease of Use and Application Development

The experiences gained with iLand have shown that the middleware is easy to deploy and also
facilitates the design and execution of applications. For applications designed as decoupled stateless
services, the middleware provides a plug and play approach for application reconfiguration and
service orchestration, i.e., new services may be added, and running services can be deleted or replaced.
The design of the application is indicated in the form of a configuration file or using a front-end tool.

Following, the path to having an application up and running on iLand middleware is explained:

• The initial step is to model the application as a Service-Oriented Architecture (SOA). Services must
provide the interface specified by iLand API (iLand project—Reference implementation: User
Guide. Sourceforge. https://sourceforge.net/projects/iland-project/). In the interface, a service
specifies a functional part and the non-functional part [36]. The main non-functional parameters
relate to the time requirements. Once in execution, dynamic modifications of the application
will be supported (i.e., reconfiguration). This means that an application will be able to either
replace, stop or launch a given service, therefore modifying its service graph. Moreover, this
reconfiguration is supported in a timely manner, i.e., an upper bound for the reconfiguration time
is guaranteed.

• Physically locate each service at a given remote node in the network. Both connections through
Internet protocols and custom real-time network communications are supported.

• Each physical node in an iLand network will have to install the iLand middleware libraries.
Different profiles are available for iLand middleware: star (with full functionality), planet (for
nodes without the reconfiguration coordination modules) and satellite (for nodes with limited
capabilities in the iLand connected services; these correspond to physical sensors, and their
functions are to sample data from the physical system (e.g., patients, environment, etc.) and
forward them to a planet or star configuration and also to receive commands from a planet node).

• The star configuration supports the design of the specific application SOA in both a configuration
file or with a model-driven tool front-end. Furthermore, it allows launching the services.
Once services are in execution, these are automatically connected as specified.

• A list of reconfiguration events can also be specified in the configuration file. Apart from these,
the logic of the services also allows detecting reconfiguration triggers (e.g., a value of some
biometric parameter is beyond the specified threshold so a different biometric service must also
be activated, and an alarm should be signaled in the control center).

https://sourceforge.net/projects/iland-project/

Sensors 2017, 17, 1333 11 of 22

Once in execution (and upon the triggering of the reconfiguration events), iLand automatically
handles the system structure and makes timely transitions from the current configuration to the new
one. iLand implements a constant monitoring activity to detect situations requiring a reconfiguration
of the system. This logic has proven to be efficient with little overhead, as well as the reconfiguration
logic that performs a previous selection of the target system configuration.

5. On Line Service Composition in ICE

Based on the previously presented ICE and iLand architecture, this section presents their
integration. As a result of the integration, ICE embeds additional logic to: (1) support flexible
communication among the software services and the medical devices and to (2) provide reconfiguration
capabilities to applications for on line integration (or removal) of services.

ICE is simply a generic architecture to design medical devices and services that can be easily
interconnected. However, it only defines the general view of the basic components to interconnect
devices among themselves and with a clinician or operator. Consequently, ICE does require the
integration of specific software technology designs to: (1) enable flexible communications among
devices; and (2) additional logic for improved behavior, such as the on line composition of services.

By integrating iLand into ICE, the capacities of the latter are increased by offering flexible on line
service plug and play; as iLand supports on line application definition based on service graphs with
end-to-end time requirements. This is a clear improvement for the ICE architecture as applications can
be defined and modified on line by operators according to the specific changing patient needs.

The iLand architecture is based on the classical definition of middleware architecture [37],
later revisited for cyber-physical systems in the Oma-cy architecture [38]. In these, there is a clear
layered view based on basic operating system services, infrastructure middleware, distribution
middleware and application-specific middleware. To comply with the high-level abstract architecture
definition of ICE, the integration is provided following the architectural presentation of ICE, i.e.,
showing the functional blocks, as illustrated in Figure 1.

5.1. Reconfiguration Logic Principles

Following, it is indicated how the interaction between ICE and iLand occurs for the on line
service registry and application reconfiguration. In this case, there is an application running made
of two devices or services that are connected as a directed graph of the form Device1 → Device2.
This application needs to be modified by adding a new service (Device3) that is not yet registered in
the system.

Figure 5 presents the interaction between the different actors in the new context. iLand supports
that operators request the registry of a new service that is activated in the system, but also it supports
that a service automatically initiates this request. If an operator wishes to launch a new application,
the operator will first enter the concrete service graph with specific interconnections among services.
A request to register a service (new_service_register) can then be granted. However, requests to run
a new application (or to reconfigure an existing one) have to be checked for feasibility and correctness.
The verification logic of iLand is run to make sure that the new application execution will comply
with the requirements expressed in the invocation to new_app_run and that the rest of the already
running services will not suffer interference. If the requested new application is feasible, then the
control manager component of iLand will execute the reconfiguration protocol and ensure a timely
transition to the new configuration.

Sensors 2017, 17, 1333 12 of 22

new_service_register

App is
feasible

iLAND
App/Service

Mngr

Verification
logic

Operator Dev3

Registered

Registered
new_app_run

iLAND
Rest of

Components

new_app_feasibility

new_app_registered

new_app_registered

App is not
feasible new_app_fail

new_app_fail

Figure 5. ICE-iLand device and operator interaction for service registry and creation of a
new application.

5.2. Integration

There are two ways to perform this integration. A first approach is to include specific iLand
components that provide on line service composition as functional blocks. This option is, however,
invasive with respect to the ICE architecture, and it would require modifications to the standard
high-level definition of ICE. A second approach is to preserve the independence of ICE functional
blocks, including only an additional block that contains the minimum iLand services that guarantee
the time-bounded service communication, composition and reconfiguration. This second approach is
adopted as it minimizes invasion and coupling among ICE and iLand while providing the benefits
of both. The integration of the reconfiguration logic does not affect the medical devices’ operation.
Medical devices are connected to the distributed medical system through a gateway: the ICE equipment
interface. This interface interacts with the ICE network controller that is the entry point to the
ICE manager part, in the sphere of: the supervisor, the external interface and the data logger.
iLand is located in the ICE manager part, and it only interacts with the ICE supervisor and with
the external interface.

Figure 6 presents the integration. Only the basic components of iLand layers (Core Functionality
Layer (CFL) and Communications Backbone and resource management Layer (CBL)) are presented in
the integration architecture. These are provided in a compact iLand module that contains:

• Communication Manager (Comm. Mngr): It includes the main infrastructure middleware
functions that provides real-time communications (through a custom protocol stack) or QoS
communication (through standard transport protocols). If the underlying communication
backbone supports QoS parameters (such as CORBAor, even more, DDS), iLand offers the
possibility of setting such parameters.

• One or more medical device can be managed under the same ICE supervisor to provide
a specific functionality. These medical devices can be provided to other applications as
services, e.g., oximeter data reads provided as a software service to a nurse control center set.
Therefore, the ICE supervisor needs to integrate some additional logic to keep the structure of
applications and services interconnection; this is enabled by the application/service manager
component. In iLand CFL, there are two separate components for managing applications and
services. The Service Manager (SM) allows registering and eliminating individual services in the
system, specifying their functional and non-functional properties and interfaces. The Application
Manager (AM) component supports the definition of applications that are made of aggregations
of services and that have global functional and non-functional properties; these are specified as

Sensors 2017, 17, 1333 13 of 22

service graphs. For simplicity, the interfaces to these two components are provided in a unified
way in this integration of iLand-ICE.

• For supporting on line composition of the services, ICE needs to integrate both the service composition
logic (composition logic component) to provide on line medical services integration, as well as the
logic that coordinates the actual selection of services ((Reconfig.) control manager component).

ICE Supervisor

ICE Network Controller External
Interface

Data
Logger

ICE Equipment
Interface(s)

. . .

Medical
Device(s)

ICE Manager
ICE

Patient

iLAND

[Reconfig.]
Control Mngr.

Application/ Service
Mngr.

Composition
Logic

Comm.Mngr.

Clinician/Operator

Figure 6. Extending ICE for supporting on line flexible service composition and reconfiguration:
iLand-ICE integration.

Vendors guarantee device interoperability by providing a standard interface for each device: the
ICE equipment interface. Compatibility across the functions of different devices is provided at the
application level, within the ICE supervisor that is in charge of collecting, analyzing and displaying
the data from devices either individually or in an integrated way; this will depend on the specific logic
of the application that is running, e.g., the ICE supervisor may be executing an application that simply
displays the different data collected by the medical devices that monitor the patient vital conditions;
or it may also display inferred data derived from the cross-processing of the monitored data.

6. An Example of Services Integration in a Medical Environment

This section presents a monitoring system for an elderly house that is based on an initial
implementation on iLand middleware. In this section, it is explained how it has been adapted
to the Integrated Clinical Environment (ICE) to enhance its interoperability with devices following the
ICE architecture.

In this specific example, patients may be in severe physical conditions; therefore, they need to be
monitored in real time. They are located in a centralized building (elderly house), and each patient has
an individual room specially configured according to the patient’s health requirements. This means
that the devices and sensors across rooms are different and, also for a specific patient, these devices
can vary over time according to the person’s needs. Figure 7 presents the general overview of the
system. Patient’s individual spaces are equipped with specialized medical equipment integrated in
the room. Sensors (that are intermediated by means of embedded computers like Raspberry Pi [39])
perform vital sign sampling (e.g., oximeter and pulse meter); once sensor data are captured, these data

Sensors 2017, 17, 1333 14 of 22

are processed, logged and transmitted to a supervisor node in the same building with the continuous
presence of clinicians.

ICE - iLand star!

Clinitian Supervisor!

ICE - iLand
planet!

ICE - iLand
planet! Patient!

Patient!

Figure 7. Elderly house real-time monitoring system.

Each room has a service patient manager (or room manager) and a set of medical sensors to
monitor the patient health conditions. The room manager is a front-end monitoring and decision
making system that performs basic analysis of the patient’s monitored data. The medical equipment
subsystem is simulated, and the gathered data are synthetically generated to test monitoring algorithms
with physical parameters analysis. The room manager is an embedded system with a basic interface,
integrated with the room. The clinician supervisor server (or control center) is equipped with iLand
middleware and a database connection.

Time requirements are specified in this system as there are different criticality levels, some being
highly critical. The periodicity of the medical patient monitoring samples range from 1 s to 1 min,
according to the patient health conditions. Data logs to the control center are stored in 1-s periods.
For any detected alarm, the patient manager must trigger the clinical supervisor within a specified
deadline in the range of 500 ms to 1 s.

Different reconfiguration scenarios are possible. Reconfigurations are triggered by the occurrence
of some specific events (reconfiguration triggers), and they start a process to perform a new service
composition in the system. The occurrence of a reconfiguration trigger may be the arrival of a new
patient; room adaptation according to patient health conditions; and alarm event detection (due to, e.g.,
a sensor detecting values higher than a safe threshold for a specific patient’s vital sign). Therefore, it is
evidenced that a reconfiguration trigger requires a modification in the set of services that are active in
the system at the moment that it occurs.

Figure 8 shows a medical application example. Applications are structured as a set of services;
for this reason, applications are also referred to as SOA, which are a set of services that cooperate
and exchange information and events to perform a common goal. The example application has the
following services:

• data collection services (S1 and S2) that operate two sensors that sample two corresponding vital
signs from a patient;

• data analysis service (S3) that performs initial processing of the collected samples creating basic
data logs with the measured data from the monitored patient;

• log sending service (S4) that forwards the logs to the appropriate location in the system for storage.

Sensors 2017, 17, 1333 15 of 22

S1!

S2!

S3! S4!

Figure 8. Initial scenario for a medical service-based application.

Figure 9 shows the structure of the application as a result of a reconfiguration trigger to add new
equipment to the room. A new sensor will be added to monitor some specific vital sign of the patient.
This implies adding three additional services:

• read new room configuration service (S5) that parses the configuration file created by the clinician
(on site or remotely);

• device control service (S6) that is service that effectively connects the new device or sensor as part
of the service set;

• collect data service (S7) that captures the data sampled by the new sensor.

S1!

S2!

S3! S4!

S7!S6!S5!

Figure 9. New structure of the service -based application after the reconfiguration trigger that yields a
new service composition (the new services are indicated with dashed lines).

Let us now introduce an example medical application for remote patient monitoring. The site
where each patient is located is configured ad hoc for the patient; this includes instantiating the
required services to operate the sensors, collect sampled data, store them and transmit them to the
clinician site. For each patient room, two service-based applications are instantiated (see Figure 10):
(i) data analysis; and (ii) patient monitoring. The set of services for the application data analysis is
made of the following services (for the case of two medical sensors):

data
collection!

data
collection!

data
analysis!

send log! collect log! store log!

Figure 10. Data collection services: patient data collection, log creation and store log.

• data collection services obtain the data sampled by the medical sensors; each sensor has an
individual service that collects its sampled data;

• data analysis fuses the data and reasons about the profile of the patient in order to determine the
current health conditions of the patient and commits the result to the local storage;

• data logs format the sampled data and the obtained health status of the patient and send them to
the clinical supervisor;

• transfer logs execute at the clinical supervisor side by retrieving the logs sent by the room managers
and forwards them to a storage server;

• store logs store the monitored data of the patients in persistent storage.

Sensors 2017, 17, 1333 16 of 22

The set of services of the patient monitorization application (see Figure 11) are: (i) read database
to retrieve stored logs from the data base; (ii) supervision that analyses the logs (patient data) on the
control center to determine the patient health conditions; and (iii) local supervision is run by the room
manager and performs on-site local results analysis.

data
collection!

data
collection!

data
analysis!

send log! collect log! store log!

local
monitoring!

monitoring! retrieve
DB logs!

video!
analysis!

data
collection!

Patient manager! Clinician Supervisor!

Figure 11. Physical service deployment, including a reconfiguration scenario for the activation of
video monitoring.

An additional SOA performs log data display to medical staff in the control center. The log data
display SOA has two services: read DB (for interfacing to the database) and display for handling data
formatting and display.

This design allows handling each room individually while preserving continuous operation
through a single end point for control. As an example, upon arrival of a new patient, it is possible
to instantiate the two SOAs needed for data collection and supervision/monitoring in this room to
configure them without affecting the rest of the system. Likewise, reconfiguration only concerns the
data collection SOA of a single room and not the whole system. Figure 11 shows the relation between
the mentioned SOAs.

6.1. Prototype Execution with ICE-iLand

A similar scenario to the one proposed above was originally implemented with bare iLand [9].
Here, it is adapted to become an ICE-aware medical system; it has been derived naturally as will be
explained in what follows. The mapping between the service-based application provided by iLand
and the ICE architecture will now be presented.

Figure 12 presents the basic ideas behind the integration of a service-based iLand application with
ICE. The main ideas in this integration are the following:

• Preserving the service-based design, as it supports decoupled application development and
enhances system flexibility; for this purpose, all services must be registered in the iLand component
that will keep the overall view of the medical application (i.e., the list of all existing services and
the application graph).

• Mapping all functional blocks of ICE to the specific services that are present in the example;
the service-based design and iLand low-complexity architecture provides a natural way to perform
this mapping.

Sensors 2017, 17, 1333 17 of 22

ICE Supervisor

ICE Network Controller External
Interface

Data
Logger

ICE Equipment
Interface(s)

. . .

Medical
Device(s)

ICE Manager
ICE

Patient

iLAND

[Reconfig.]
Control Mngr.

Application/ Service
Mngr.

Composition
Logic

Comm.Mngr.

Clinician/Operator
Application graph

Registry of all services
Reconfiguration control

Service composition

Services for
patient data

communication

Services
with

application
logic

Services for
patient data

collection
and system
monitoring

data

Figure 12. Key integration points for iLand-enabled applications and ICE.

Following, the specific mappings between the elderly house application design based on services
and ICE architecture are presented:

• Each sensor in the example is a medical device that runs an ICE equipment interface according
to its specified device model. These devices perform autonomous sampling of patient data
that is restricted to data sensing and reading simulations that provide the monitored data at a
predefined frequency.

• Data collection services are the software interface of the sensors. Measure data services obtain the
patient monitored data by the sensors via the ICE equipment interface. Sensors are exported as
services in the iLand application; this way, each sensor can be accessed individually and connected
on line to build a specific application. Therefore, iLand services are simply wrappers to the
sensors’ functionality.

• Collect log and retrieve DB logs are services that correspond to the ICE data logger functional block;
again, they only require providing wrappers to the data logger functionality. The services data are
exported to the data logger via an interface to guarantee abstraction independence between the
services implementation and the functional ICE blocks. In this way, the iLand application structure
information, the reconfiguration logic and registry/deletion of services is kept independent from
the ICE functional blocks.

• Services read new room configuration and device control control each of the services implemented
for sampling data (i.e., measuring data from patients). Every time a new device or sensor is
installed, these services are uploaded to make it usable in the iLand system.

• The room manager module contains a number of services that are mapped to the ICE supervisor.
This service is, precisely, the local monitoring. Again, this iLand service is exported to the
ICE supervisor via an interface to guarantee abstraction independence between the services
implementation and the functional ICE blocks.

• Send log service is mapped to the ICE external interface that provides communication to other
devices that are, in this case, used for sending the patient data to another system, such as a
server, etc.

Sensors 2017, 17, 1333 18 of 22

6.2. Implementation Results

This section presents the practical implementation of this example. Initially, the implementation
over iLand is presented; later, the example is ported to comply with the ICE architectural framework.
This section shows the feasibility of integrating an iLand-enabled distributed service-oriented medical
application that supports reconfiguration into an ICE architecture, providing experimental results that
show the reconfiguration time achieved with iLand for the timely delivery of alarms.

Firstly, a real-time situation is presented with low latency requirements. It is considered that
during the normal operation of the system (i.e., when the patient vital data are being monitored),
an alarm may occur. The reasons for this may be the detection of abnormal sensed values that would
require immediate signaling.

iLand supports a number of underlying communication backbones using both Internet transports
and/or custom real-time network protocols. In this situation, the underlying communication protocol
needs to be highly reliable and timely; data cannot be lost nor suffer unbounded delays. For this
system, iLand middleware was adapted to time-triggered communication, which enables real-time
schedulability analysis in the verification component. The time-triggered protocol [40] was analyzed
to ensure that it provides sufficient flexibility for asynchronous event transmission over Ethernet, like
alarms. The usual approach is to fix periodic time slots for alarm events. iLand middleware was ported
to run a time-triggered protocol with scheduled time-slots that guarantees real-time asynchronous
traffic transmission such as alarms.

The goal of this initial experiment is to measure the reconfiguration time as the time to forward an
alarm to the room manager and to the clinician terminal when an alarm has been detected during the
normal operation of the system. Results are shown in Table 1 for different ECs or elementary cycles,
precisely for 10-ms and 50-ms ECs for the time-triggered communication. Stability is evidenced in
the resulting times, showing efficiency and real-time transmission deadline preservation for all cases.
The example shows that the middleware provides stable response times and guarantees an upper
bound on the alarm handling.

Table 1. Alarm handling time (ms).

EC Average Handling Time Maximum Handling Time

10 1.086 1.098
50 5.368 5.402

In the following experiment, a reconfiguration use case is provided as the result of a new service
being registered in the system (similarly to the example shown in Figure 11). Two situations are
explored: (1) the on line registration of a new medical device, an oximeter sensor, that is configured
for a specific patient; and (2) the detection of an alarm that requires launching an already registered
service that is currently inactive. The goal of this new setting is to shown that these situations are
handled in the ICE-compliant iLand-based distributed service application, guaranteeing a bounded
reconfiguration time and without interfering with the system operation.

Table 2 summarizes the results obtained for the first situation. Overhead cost caused by the
adaptation to ICE (compared to [8]) is less than 9.4% for the worst case time and around 4.93% for the
average case.

Table 2. On-line service registration time (ms).

iLand ICE-iLand Overhead (%)

Max. 9.578 10.521 9.4
Min. 6.530 7.024 7.57
Avg. 7.753 8.082 4.93

Sensors 2017, 17, 1333 19 of 22

For the second situation, experiments were carried out to obtain the reconfiguration time,
i.e., the time taken by the system to launch the video surveillance service since the instant that the
alarm is detected. Experiments were conducted over 1000 reconfiguration events.

In this scenario, the distributed application contains services to monitor patient data
(data collection), to obtain patient data logs (data analysis) and remote video surveillance of the
patient (video analysis). The reconfiguration is triggered when an alarm is detected. The figure shows
the time to start the video surveillance service that is physically linked to an IP camera connected
to its controlling node via an Ethernet interface. A UDP transport is used for iLand over DDS. It is
shown that the worst case reconfiguration time never exceeds 10.521 ms for this ICE-compliant
iLand-based service system. The overhead for an ICE application that is able to perform on line
service composition is only 4.93% for the average case and 9.4% for the worst case. Therefore, it is
shown that the implementation is consistent with the expectations: (1) the integration continues to
preserve time-bounded reconfiguration, and (2) the overhead incurred by the integration with ICE
is measurable.

7. Conclusions

This paper has presented a contribution for supporting dynamic reconfiguration in ICE.
The approach is based on the usage of iLand middleware that provides time-bounded reconfiguration
of distributed applications based on the service-oriented paradigm. This approach is supported by the
proven flexibility of iLand in different real application domains, including medical environments.

The paper has presented the characteristics of the Integrated Clinical Environment, indicating
its gaps with reference to the specific technologies and middleware for enabling decoupled
communication and on line flexibility for service deployment. iLand middleware has been presented as
a choice for the flexible development of distributed systems based on medical services. This integration
of iLand in ICE has been done for two fundamental reasons, which are explained as follows.

On the one hand, the current trend to provide technologies that enable flexible and interoperable
services requires that contributions meet the safety guarantees that are fundamental in the medical
domains. The latter is the main purpose and goal of the Integrated Clinical Environment.

On the other hand, ICE is an abstract architecture that defines general functional blocks to define
safety-compliant architectures for medical systems. However, the initial definition of ICE focuses
on medical device interoperability, and it is silent about functional reconfigurations. The latter is
precisely covered by iLand middleware. The interaction paradigm of iLand is a decoupled one,
therefore supporting decoupled integration of services that can be either local in the same node or
distributed among different nodes in different network segments. iLand middleware has a modular
architecture enabling easy porting to different underlying communication middleware technologies;
these range from the most conventional and de facto standards, such as DDS, Corba, RMI, Ada DSA,
or lower level networking protocols operating at the medium access layer such as time-triggered ones.
The reconfiguration logic of iLand is based, on the one hand, on graph algorithms for representing
applications and the relation among their constituent services; on the other hand, it is based on search
techniques that target timely decision making and a set of steps to guarantee the reconfiguration of a
whole system based on services.

Therefore, there is a benefit in integrating both worlds so that service-oriented applications with
real-time guarantees can be provided in a way that is compliant with ICE.

The paper has provided the mappings between the services of a medical application based on
iLand and the ICE architecture. The fact that iLand uses a decoupled service-oriented interaction
scheme is an advantage for its integration within ICE. The paper has shown the mapping of the
different services that are registered in the iLand middleware to the different functional blocks of
ICE. A specific example application has been implemented for the remote monitoring of elderly
patients, showing the timeliness of the middleware, and the bounded reconfiguration times achieved

Sensors 2017, 17, 1333 20 of 22

in two different reconfiguration situations: on line addition of new sensors and on line activation of
existing services.

Reconfigurations are guaranteed to be completed in bounded time: the modification of a service
(replacing a specific implementation) or an SOA (replacement of the service graph) is achieved
within the specified deadline, showing the time measurements performed for the elderly house case;
time measures confirm the real-time operation of the system and the stability of the reconfiguration
logic within an ICE-enabled framework.

Acknowledgments: This research was partly supported by iLand (EU ARTEMIS-1-00026) granted by the
ARTEMIS JUand the Spanish Ministry of Industry, Commerce and Tourism. It has also been partly funded
by the REM4VSS(TIN2011-28339) project grant of the Spanish Ministry of Economy and Competitiveness and
by Universidad Carlos III de Madrid. The authors would also like to mention the large development team of
the iLand reference implementation that performed an outstanding role to achieve a software proven also on
commercial applications, and they thank them for their valuable efforts and work.

Author Contributions: M.G.-V. conceived of the paper idea, described the ICE standard and the iLand middleware.
Furthermore, M.G.-V. designed the integration of ICE and iLand, performing the design work and elaborated the
enhanced functionalities that are obtained with the integration. Furthermore, M.G.-V conceived of and performed
the experiments, as well as the analysis of the data. I.E.T. contributed to the design of the integration and the
baseline of one of the technologies, participating partly to performing the experiments.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

ICE Integrated Clinical Environment
MDPnP Medical Device Plug and Play
OpenICE Open implementation of ICE
BICEPS Basic Integrated Clinical Environment Protocol Specification
HIS Health Information Systems
EHR Electronic Health Record
DPWS Device Profile Web Services
MAP Medical Application Platforms
DDS Data Distribution Service
JMS Java Messaging Service
RMI Remote Method Invocation
SOA Service-Oriented Architecture
BTEA Bounded Time Execution Algorithm
RTPrune Real-Time Prune
QoS Quality of Service
CFL Core Functionality Layer
CBL Communication Backbone and resource management Layer
CL Control Logic
SM Service Manager
AM Application Manager
SOAP Simple Object Access Protocol

References

1. Hatcliff, J.; King, A.; Lee, I.; MacDonald, A.; Fernando, A.; Robkin, M.; Vasserman, E.; Wininger, S.;
Goldman, J.M. Rationale and architecture principles for medical appliction platforms. In Proceedings of the
3rd IEEE/ACM Conference on Cyber-Physical Systems (ICCPS), Beijing, China, 17–19 April 2012.

2. ASTM International. ASTM F2761—Medical Devices and Medical Systems—Essential Safety Requirements
for Equipment Comprising the Patient-Centric Integrated Clinical Environment (ICE). 2009. Available online:
http://www.astm.org/Standards/F2761.htm (accessed on 20 January 2017).

http://www.astm.org/Standards/F2761.htm

Sensors 2017, 17, 1333 21 of 22

3. Plourde, J.; Arney, D.; Goldman, J. M. OpenICE: An open, interoperable platform for medical cyber-physical
systems. In Proceedings of the 2014 ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), Berlin, Germany, 14–17 April 2014; p. 221.

4. Ice Health Systems. Electronic Health Record, v5.18.1.0; Available online: http://icehealthsystems.com
(accessed on 20 January 2017)

5. Object Management Group. A Data Distribution Service for Real-time Systems Version 1.4. Available online:
http://www.omg.org/spec/DDS/ (accessed on 10 April 2017).

6. Goldman, J.M. Medical Devices and Medical Systems-Essential Safety Requirements for Equipment Comprising
the Patient-Centric Integrated Clinical Environment (ICE)-Part 1: General Requirements and Conceptual Model;
ASTM International: West Conshohocken, PA, USA, 2008.

7. García-Valls, M.; Basanta Val, P. Usage of DDS data-centric paradigm for remote monitoring and
control laboratories. IEEE Trans. Ind. Inform. 2013, 9, 567–574.

8. García-Valls, M.; Lopez, I.R.; Villar, L.F. iLand: An enhanced middleware for real-time reconfiguration of
service oriented distributed real-time systems. IEEE Trans. Ind. Inform. 2013, 9, 228–236.

9. García-Valls, M.; Herrasti, N.; Jouvray, C.; Armentia, A. Flexible and timely on-line integration of medical
services using iLand middleware. ACM Sigbed Rev. 2017, 14, 53–60 .

10. Object Management Group: The Common Object Request Broker. Architecture and Specification, Version 3.3.
Available online: http://www.omg.org/spec/CORBA/3.3 (accessed on 10 November 2012).

11. Sun Microsystems: JavaTM Remote Method Invocation API. Available online: http://docs.oracle.com/
javase/7/docs/technotes/guides/rmi/ (accessed on 10 March 2016).

12. Deakin, N. Java Community Process—JSR 343: JavaTM Message Service 2.0; Oracle: Redwood City, CA,
USA, 2013.

13. Apache Software Foundation. JiniTM Network Technologies Specification. Apache River v2.2.0. 2013.
Available online: https://river.apache.org/doc/spec-index.html (accessed on 20 January 2015).

14. Information Technology Task Force (ITTF), ISO/IEC. OASIS AMQP1.0—Advanced Message Queuing
Protocol (AMQP), v1.0 Specification; ISO/IEC 19464: 2014. Available online: http://docs.oasis-open.org/
amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html (accessed on 20 January 2017)

15. Stephens, R. A survey of stream processing. Acta Inform. 1997, 34, 491–541.
16. Su, X.; Swart, G.; Goetz, B.; Oliver, B.; Sandoz, P. Changing engines in midstream: A Java stream

computational model for big data processing. Proc. VLDB Endow. 2014, 7, 1343–1354.
17. ZeroC Inc. The Internet Communications Engine v 3.6. 2016. Available online: http://www.zeroc.com/ice.

html (accessed on 20 January 2017).
18. García-Valls, M.; Calva-Urrego, C. Improving service time with a multicore aware middleware.

In Proceedings of the 32nd ACM/SIGAPP Symposium on Applied Computing (SAC), Marrakech, Morocco,
3–7 April 2017.

19. Oliveira, J.; Pereira, J. Experience with a middleware infrastructure for service oriented financial applications.
In Proceedings of the 28th ACM Symposium on Applied Computing (SAC), Coimbra, Portugal, 18–22
March 2013; pp. 479–484.

20. Martins, R.; Lopes, L.; Silva, F.; Narasimhan, P. Stheno, a real-time fault-tolerant P2P middleware platform
for light-train systems. In Proceedings of the 28th ACM Symposium on Applied Computing (SAC),
Coimbra, Portugal, 18–22 March 2013.

21. Arney, D.; Plourde, J.; Schrenker, R.; Mattegunta, P.; Whitehead, S.F.; Goldman, J.M. Design Pillars for Medical
Cyber-Physical System Middleware. In Medical Cyber Physical Systems—Medical Device Interoperability, Safety,
and Security Assurance (MCPS 2014); Dagstuhl Publishing: Dagstuhl, Germany, 2014.

22. García Valls, M.; Cucinotta, T.; Lu, C. Challenges in real-time virtualization and predictable cloud computing.
J. Syst. Archit. 2014, 60, 736–740.

23. Bersani, M.M.; García-Valls, M. On-line verification in cyber physical systems: Practical bounds for
meaningful temporal costs. J. Softw. Evol. Process 2017, doi: 10.1002/smr.1880

24. Gregorczyk, D.; Fischer, S.; Busshaus, T.; Slichting, S.; Pölhsen, S. An Architecture for Distributed Systems of
Medical Devices in High Acuity Environments; A Proposal for Standards Adoption, 11073/HL7 Standards
Week; Drager: Lubeck, Germany, 2014.

http://icehealthsystems.com
http://www.omg.org/spec/DDS/
http://www.omg.org/spec/CORBA/3.3
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/
https://river.apache.org/doc/spec-index.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://www.zeroc.com/ice.html
http://www.zeroc.com/ice.html

Sensors 2017, 17, 1333 22 of 22

25. Corno, F.; De Russis, L.; Roffarello, A.M. A Healthcare Support System for Assisted Living Facilities: An IoT
Solution. In Proceedings of the of 40th IEEE Annual Computer Software and Applications Conference
(COMPSAC), Atlanta, GA, USA, 10–14 June 2016; pp. 344–352.

26. Beyer, M.; Kuhn, K.A.; Meiler, C.; Jablonski, S.; Lenz, R. Towards a flexible, process-oriented IT architecture
for an integrated healthcare network. In Proceedings of the 2004 ACM symposium on Applied computing,
Nicosia, Cyprus, 14–17 March 2004; pp. 264–271.

27. Wang, J.; Qiu, M.; Guo, B. Enabling real-time information service on telehealth system over cloud-based big
data platform. J. Syst. Archit. 2017, 72, 69–79, doi:10.1016/j.sysarc.2016.05.003.

28. Wang, J.; Abid, H.; Lee, S.; Shu, L.; Xia, F. A Secured Health Care Application Architecture for
Cyber-Physical Systems. Control Eng. Appl. Inform. 2011, 13, 101–108.

29. Gregorczyk, D.; Fischer, S.; Busshaus, T.; Schlichting, S.; Pöhlsen, S. An Approach to Integrate Distributed
Systems of Medical Devices in High Acuity Environments. In Proceedings of the 5th Workshop on Medical
Cyber-Physical Systems, OpenAccess Series in Informatics (OASIcs), Berlin, Germany, 14–17 April 2014;
pp. 15–27.

30. Touahria, I.E.; García-Valls, M.; Khababa, A. An ICE compliant component model for medical
systems development. In Proceedings of the 41st IEEE Conference on Computers, Software, and Applications
(COMPSAC), Turin, Italy, 4–8 July 2017.

31. García-Valls, M.; Basanta-Val, P. A real-time perspective of service composition: Key concepts and
some contributions. J. Syst. Archit. Embed. Syst. Des. 2013, 59, 1414–1423.

32. García-Valls, M.; Basanta-Val, P. Comparative analysis of two different middleware approaches for
reconfiguration of distributed real-time systems. J. Syst. Archit. Embed. Syst. Des. 2014, 60, 221–233.

33. García-Valls, M.; Uriol-Resuela, P.; Ibánez-Vázquez, F.; Basanta-Val, P. Low complexity reconfiguration for
data-intensive service-oriented applications. Future Gener. Comput. Syst. 2014, 37, 191–200.

34. García-Valls, M.; Alonso, A.; de la Puente, J.A. A Dual-Band Priority Assignment Algorithm for QoS
Resource Management. Future Gener. Comput. Syst. 2012, 28, 902–912.

35. García-Valls, M.; Basanta-Val, P.; Estévez-Ayres, I. Real-time reconfiguration in multimedia
embedded systems. IEEE Trans. Consum. Electron. 2011, 57, 1280–1287.

36. García Valls, M.; Basanta-Val, P.; Marcos, M.; Estévez, E. A bi-dimensional QoS model for SOA and
real-time middleware. Comput. Syst. Sci. Eng. 2014, 29, 315–326.

37. Schantz, R.; Schmidt, D.; Masters, M.W.; Cross, J.K.; Martin, L.; Sharp, D.C.; Dipalma, L.P. Towards Adaptive
and Reflective Middleware for Network-Centric Combat Systems; Wiley & Sons: Hoboken, NJ, USA, 2002.

38. García Valls, M.; Baldoni, R. Adaptive middleware design for CPS: Considerations on the OS, resource
managers, and the network run-time. In Proceedings of the 14th Workshop on Adaptive and Reflective
Middleware (ARM), Vancouver, BC, Canada, 7–11 December 2015.

39. García-Valls, M.; Ampuero-Calleja, J.; Ferreira, L.L. Integration of Data Distribution Service and Raspberry
Pi. In Proceedings of the 12th International Conference on Green, Pervasive and Cloud Computing (GPC),
Cetara, Italy, 11–14 May 2017.

40. Kopetz, H.; Bauer, G. The time-triggered architecture. Proc. IEEE 2003, 91, 112–126.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	The Integrated Clinical Environment
	iLand Middleware: On Line Service Composition and Timely Reconfiguration
	Overview and Basic Terminology
	Service Composition and Reconfiguration
	iLand Ease of Use and Application Development

	On Line Service Composition in ICE
	Reconfiguration Logic Principles
	Integration

	An Example of Services Integration in a Medical Environment
	Prototype Execution with ICE-iLand
	Implementation Results

	Conclusions

