
sensors

Article

Maritime Data Transfer Protocol (MDTP):
A Proposal for a Data Transmission Protocol in
Resource-Constrained Underwater Environments
Involving Cyber-Physical Systems

Jesús Rodríguez-Molina 1,*, Belén Martínez 2, Sonia Bilbao 2 and Tamara Martín-Wanton 3

1 Research Center on Software Technologies and Multimedia Systems for Sustainability
(Centro de Investigación en Tecnologías Software y Sistemas Multimedia Para la Sostenibilidad—CITSEM),
Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain

2 Tecnalia Research & Innovation, Parque Científico y Tecnológico de Bizkaia, C/Geldo, Edificio 700,
48160 Derio, Spain; belen.martinez@tecnalia.com (B.M.); sonia.bilbao@tecnalia.com (S.B.)

3 HI Iberia Ingeniería y Proyectos, Juan Hurtado de Mendoza 14, 28036 Madrid, Spain; tmartin@hi-iberia.es
* Correspondence: jesus.rodriguezm@upm.es; Tel.: +34-914-524-900 (ext. 20794)

Academic Editor: Yuh-Shyan Chen
Received: 28 February 2017; Accepted: 6 June 2017; Published: 8 June 2017

Abstract: The utilization of autonomous maritime vehicles is becoming widespread in operations that
are deemed too hazardous for humans to be directly involved in them. One of the ways to increase
the productivity of the tools used during missions is the deployment of several vehicles with the same
objective regarding data collection and transfer, both for the benefit of human staff and policy makers.
However, the interchange of data in such an environment poses major challenges, such as a low
bandwidth and the unreliability of the environment where transmissions take place. Furthermore,
the relevant information that must be sent, as well as the exact size that will allow understanding
it, is usually not clearly established, as standardization works are scarce in this domain. Under
these conditions, establishing a way to interchange information at the data level among autonomous
maritime vehicles becomes of critical importance since the needed information, along with the size
of the transferred data, will have to be defined. This manuscript puts forward the Maritime Data
Transfer Protocol, (MDTP) a way to interchange standardized pieces of information at the data
level for maritime autonomous maritime vehicles, as well as the procedures that are required for
information interchange.

Keywords: autonomous maritime vehicles; protocol; protocol data unit

1. Introduction

Cyber-Physical Systems (CPSs) are regarded as most useful due to the fact that they combine
the advantages of distributed systems, hardware developments and networked information. One of
the main issues that these developments present is the transmission of data between the different
entities taking part in the communications. Even though there is a collection of technologies proven
to be fully functional in regular environments, having a suitable protocol to interchange information
among nodes becomes way more challenging when constrained environments, such as underwater
and subsea environments, are providing the transmission medium.

1.1. Cooperating Autonomous Maritime Vehicles as a Cyber-Physical System

There are several ways to describe CPSs according to the existing literature. For Rajkumar et al. [1],
they are physical and engineered systems that operate in a way that their elements are controlled,

Sensors 2017, 17, 1330; doi:10.3390/s17061330 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17061330
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1330 2 of 31

monitored, coordinated and integrated by an underlying core of computing and communication
operations. According to [2], they imply a tight integration of physical, communication and
computation elements ranging from medical devices to transportation and energy systems. All in all,
although CPSs can be described in many different ways, they usually imply a collection of devices
distributed in a certain location that interact with the environment by means of software-based
commands that are sent and received with a minimal interaction from a human end user. This is
no exception regarding the integration of communications at the data level regarding maritime
robotics. This latter kind of devices can be better described as the usual vehicles manufactured
to perform over- and subsea operations. Several examples of them are: Autonomous Underwater
Vehicles (AUVs), Autonomous Surface Vehicles (ASVs), Unmanned Surface Vehicles (USVs) or a
Remote Operated Vehicles (ROVs). Some examples of the operations they will be involved in are
navigation in unknown underwater environments with simultaneous data gathering [3], river tracking
and navigation while observing as much as possible The International Regulations for Preventing
Collisions at Sea (COLREGs) [4], as components of distribution management systems with aerial
vehicles [5], and as hardware components for underwater sensors networks [6].

Having a myriad of these vehicles working cooperatively under a common mission for all of
them can be regarded as a CPS, where several physical elements are integrated in a deployment
where vehicles gather data and are controlled and/or monitored by an entity responsible for taking
decisions or designing the policies of that system. Unfortunately, a CPS with those features also
presents important challenges that must be addressed, both related to the maritime environment
(low bandwidth for data transmissions, unreliable channel for information exchanges, environment
with a high degree of unpredictable features such as seawater composition, underwater currents, etc.)
and to the distributed nature of the system (communications among heterogeneous hardware elements
deployed in a certain environment). Among other pieces of work, these challenges are stated in [7],
where it is mentioned how the movement added to the underwater nodes by submarine currents makes
underwater routing very unreliable, and [8], where it is explicitly claimed that “Underwater acoustic
communications are notoriously prone to interferences, disruption and unpredictable delays. Furthermore, the
available bandwidth is usually very limited and the latency is large”.

As in any other CPS, information must be transferred among the elements used to collect
information and interact with the application domain where those devices are included. This is
a mandatory feature for the kind of environment that is described in this manuscript because there are
several use cases where different types of information must be exchanged:

1. If an infrastructure that requires pillars or columns has been installed in the sea (for example, an
offshore windmill or an oil platform), maintenance operations can make use of a CPS composed
by several AUVs to monitor those pillars searching for cracks or other signs of structural fatigue
in a cheaper—and less dangerous for human lives—manner than if there were human divers
participating in the surveying operations.

2. In a similar way, should there be a need to explore any subsea, pipe-like structure
(telecommunication cables, underwater pipelines) it can be done in a more efficient manner
by deploying several underwater vehicles. In this way, they will be able to perform monitoring
activities on the pipe and share the information obtained from the vehicles in a way that services
can be composed from the data acquired.

3. Another practical example would imply using a set of underwater vehicles to supervise the
building of a subsea berm: having several vehicles deployed at once will reduce the time required
to scan all the subsea structure, and will allow a faster assessment of the construction works
performed in that location.

1.2. The Challenging Nature of Communications in Maritime Environments

Communication is the most critical process in underwater technology. It can be established
either by wired or wireless connections. Both methods have their own advantages and disadvantages,

Sensors 2017, 17, 1330 3 of 31

depending on the application. The current trend favors wireless communications as the most suitable
way to transfer information, especially when it comes to deal with environments like the one described
in this manuscript, where wired connections are either not practical or just impossible [9].

Unlike terrestrial-based applications, establishing underwater wireless communications is not a
straightforward process. When considering the underwater communications, the main concerns that
researchers consider involve the channel model (in this case, underwater), attenuation, transmission
distance, power consumption, Signal-to-Noise ratio, bit error, symbol interference, error coding,
modulation strategies, instrumentation and underwater interferences. Dealing with interferences for
underwater research is a complex task due to the dynamic nature of water, which makes it difficult to
plan communication links ahead.

As far as AUVs are concerned, issues of navigation and communications are often the most
difficult problems to address, as there are few options for transmitting messages underwater [2]. Unlike
radio links in terrestrial applications, challenges are quite different for underwater wave propagation.
Water itself becomes the main source for the signal interference, due to unpredictable changes in some
of the parameters that define most prominent features of seawater, like permittivity [10]. Indeed,
characteristics like water turbidity, temperature and water noise have an impact in acoustic wave
propagation [11]. In addition to that, common terrestrial phenomena like scattering, reflection or
refraction also happens in underwater application domains [12]. There are various ways to get
reflection in underwater environment, for example the signal can bounce off the sea floor and other
underwater geographic structures, including softer mediums such as the ocean surface and layers of
water separated by differences in temperature or density.

In the underwater area of knowledge there are three types of carrier waves that are most
commonly used in wireless communications: (a) electromagnetic waves, (b) optical waves and
(c) acoustic waves [13,14]. Using electromagnetic waves, the communication can be established
at a higher frequency and bandwidth, but there are limitations due to high absorption/attenuation,
which has a significant effect on the transmitted signal. A large antenna is also needed for this
type of communication, thus affecting the design complexity and cost. Optical waves also offer
high data rate transmission. Unfortunately, the signal is rapidly absorbed in water and suffers from
scattering effect [3–6], which affects data transmission accuracy. Acoustic is the most preferred signal
used as carrier by many applications because of its low absorption characteristics for underwater
communication. Even though the data transmission is slower compared to other carrier signal, low
absorption features enable the carrier to travel at longer range as less absorption is faced by the carrier.
Depending on the distance between endpoints of a data transmission, bandwidth can range from
2 kbits [15] to 87 kbits per second [16].

When ensuring effective underwater communication, the communication system design plays a
vital role. Factors such as transducer parameters (sensitivity, power consumption, noise immunity,
transduction mechanism, directivity, resolution) and properly matched impedance must be taken
into account during the process. Also, from the instrumentation system point of view, the size of
devices is one of the main concerns. Manufacturers from the electronics industry are competing to
produce a device with better performance and smaller size for the overall efficient system. For example,
even though AUVs are very different from one manufacturer to another one, they can range from
80 cm (Naiad, [17]) through 170 cm (Remus 100, [18]) to 2 m and 9 inches of diameter in case of
ECA’s A9 [19]. Thus, it becomes clear that many practical use cases require data interchanges among
vehicles deployed in a mission. Therefore, how information can be transferred from one underwater
vehicle to another becomes a topic of major importance in CPS based on autonomous maritime
vehicles. As it has been previously mentioned, there are several aspects that must be dealt with for the
successful transmission of data: the unreliability of the underwater environment, how constrained the
transmission medium is whenever any information has to be transmitted or the kind of information of
interest for the CPS have to be considered. All these aspects must be apprehended by any protocol
used for information exchanges at the data level for underwater environments. These characteristics

Sensors 2017, 17, 1330 4 of 31

are even more important for higher level of information transmissions, as there are challenges like the
format of the data to be transmitted, or how those pieces of information are going to be included in the
Protocol Data Units, that must be addressed by any protocol to be designed.

Overall, the challenges that must be faced by underwater communications at the data level can be
summarized as follows:

1. Scarce bandwidth. Transmissions at the data level often rely on information formats that are more
verbose than in other layers (XML files, SPARQL requests, JSON messages), so transmitting this
kind of information in a distributed system poses a significant challenge when information is
requested by any human handling a system where a significant amount of information has to
be used.

2. Low reliability. The means of transmission used for underwater communications are usually not
fully trustable, so protocols that tackle this issue to an extent in different ways (for example,
by adding redundancy, having small PDUs, etc.). Even by using acoustic waves, which is
regarded as the most effective way to transmit data underwater, reliability of the transmissions is
significantly lower than in a regular wireless transmission.

3. Varying conditions of the environment. Due to the inherent conditions of any maritime deployment
that is carried out in open waters, chemical characteristics of the medium (salt composition, water
pollution, etc.) as well as mechanical ones (subsea currents, periodic tides, etc.) the conditions
of the surroundings where a deployment is supposed to be done change frequently; this can
be a challenge for any system that is required to be stable, as these conditions will vary greatly
every day.

1.3. Paper Contributions and Structure

There are several unique contributions that this paper makes when compared to other works
available in the literature that has been studied by the authors of this proposal:

1. A protocol that has been specifically defined for underwater environments is put forward.
This has been done so by collecting information among the consortium members of the Smart
and Networking Underwater Robots in Cooperation Meshes (SWARMs) research project [20],
which have provided their feedback regarding the kind of information that must be transferred
among the different components of a CPS with autonomous maritime vehicles.

2. After the design was completed and deemed satisfactory, an implementation of that protocol was
carried out. This was done so as a way to test the reliability of the Protocol Data Units (PDUs)
that were previously designed, as well as the possibility to develop an actual piece of work based
on a regular programming language. Java has been used for such a purpose, although it was not
the only software resource that has been utilized.

3. The underlying implementation works that were performed made use of Data Distribution Service
(DDS) as a way to provide data interoperability among the different devices that can be integrated
by the same protocol. While DDS facilities imply several software developments that have been
already tested in constrained environments (such as a Data-Centric Publish/Subscribe—referred
to as DCPS—or a Real-Time Publish Subscribe—RTPS—wire protocol used for interoperability
among DDS solutions), the protocol that has been designed and implemented is completely new
and, to the best of the authors’ knowledge, there is not a development like this in any other
proposal with this kind of characteristics.

2. Related Works

The solutions that solve challenges resembling the ones described here have been considered.

Sensors 2017, 17, 1330 5 of 31

2.1. A Deadline-Constrained 802.11 MAC Protocol

Tian et al. put forward in their proposal what is conceived as a way to handle periodic
traffic expected to arrive within a timespan [21]. The authors put forward a deadline-constrained
Medium Access Control (MAC)-based scheme with Quality of Service (QoS) features that relies on
an intra-Access Categories (AC) with QoS differentiations to directly meet the deadlines imposed by
real-time communications. On the other hand, a contention-sensitive Binary Exponential Backoff (BEB)
algorithm has been added as a way to enhance backoff delay performance. According to the authors,
Network Simulation version 2 has been the simulator of choice for the performance verification.
There are two scenarios that have been prepared: one compares the performance of the chosen protocol
with another defined by the IEEE 802.11a (Enhanced Distributed Control Access, EDCA) with regards
to average delay and packet loss ratio; these tests prove that the MAC scheme conceived by the authors
behaves better than EDCA for constrained environments. The second scenario makes use of 20 nodes
gathered in two different kinds of groups with the same protocols as before; it is shown that when the
period of time used to measure a critical period of time falls below 17 ms, the proposal fares better
than EDCA, showing just a small delay and small packet losses.

As it will be seen in other proposals, the main issue is that this piece of work solves a problem
located at a lower level from a layered architecture point of view; 802.11 and MAC protocols are located
below the ones where data are transmitted as the fundamental PDU, so unfortunately, this solution is
not applicable for the problem that is put forward in this manuscript.

2.2. Constrained Application Protocol (CoAP)

This solution aims to create a generic web protocol that can be used in constrained
environments [22]. It partially relies on Representational State Transfer (REST) software style,
an architectural style developed by Fielding [23]). The message format provided has also some
prominent characteristics: to begin with, it offers a 4 byte header where several pieces of information
(an identifier for the message, a code, version number of CoAP, etc.) have been included. Secondly, a
token value is included right after the header of the message. Lastly, the payload encases the bulk of
the message that is transmitted. Data transmissions usually involve an upper layer used to handle the
queries and the responses sent from and to the applications; messaging is done to interact with lower
levels of communications.

All in all, this proposal offers several advantages that must be taken into account for any solution
used to transfer information at the data level for a specific environment, such as the PDU definition,
interchange and purposes. The main disadvantage of this development is that it is expected to be used
in environments that, while involving constrained resources, results more reliable that underwater
communications. In addition to that, it is likely to work with data received from a regular transport
layer, rather than the kind of frames received from acoustic modems, so its applicability for this kind
of application domain is limited. If compared to the solution presented in this manuscript, the header
of a CoAP message is still longer than the one in MDTP, so we manage to make a better use of the
resources available.

2.3. Advanced Message Queuing Protocol (AMQP)

Advanced Message Queuing Protocol (AMQP) is an open wire Internet protocol for business
messaging comprised of several layers [24]. The one located at the lowest level is used to interchange
binary information on a peer-to-peer basis, whereas the immediately higher one is used to send and
receive messages by using an abstract message format with specific standardized encoding. A higher
level layer is used to contain a peer-to-peer transport-like protocol and the highest one makes use of
either Transport Layer Security (TLS) or Simple Authentication and Security Layer (SASL) for security
purposes such as encryption and authentication. The messaging level makes use of a messaging
format, and another one is defined for transactions at a higher level. AMQP works in a way that it

Sensors 2017, 17, 1330 6 of 31

makes use of a communications broker to process all the requests that are performed. The broker
provides communications under a Publish/Subscribe paradigm: publishers will send topics to the
broker and they get organized in queues that are accessed by subscribers. There are several broker
implementations that have been developed, such as Apache Qpid [25] or RabbitMQ [26].

AMQP offers a very detailed set of PDUs for information transmission at the data level (rather
than being bits or packages). The main disadvantage of AMQP is that challenges like low bandwidth
or the unreliability of the transmission medium have not been specifically taken into account, so it
is not an advisable option to use in the context of this manuscript. Adding security at this level of
data transmission can also be a major challenge, since encrypting data tends to result in rather verbose
communications. Lastly, AMQP relies on some communication and transport protocols (such as TCP)
that cannot be guaranteed to be available in an underwater level.

2.4. Multiple Access with Collision Avoidance (MACA)-Based Power Control

Qian et al. put forward their idea of a MAC protocol for Underwater Wireless Sensor Networks
(UWSN) [27]. The authors describe a layered infrastructure where a physical, MAC/link, route,
transmission and application layers are suggested as the levels present in such an infrastructure.
The authors establish a classification to distinguish two different kinds of protocols (contention-based
and contention-free). One kind of contention-based MAC protocol that uses handshaking is MACA,
even though it is not adapted by default to underwater communications since it was not designed
for such an environment. Thus, the authors show a MACA-based power control protocol (referred to
as MACA-PC) in an underwater scenario with all the expectable interferences. Three concepts have
been defined: the transmission rage (fixes the range at which packages can be received and decoded),
the interference range (range at which nodes are capable of sending sender transmissions and can be
interfered) and the interference zone (range where nodes from a UWSN can sense a transmission but
cannot decode it). It was found out that MACA-PC offered a similar performance for a one-hop
scenario as the output provided by regular MACA (and better than the one providing just basic power
control, which is prone to have data collisions during transmissions) with a lower power consumption.
A multi-hop scenario presented the same results.

The solution that is presented by the authors of the paper solves many of the issues that are found
in underwater communications, but it cannot be applied to the application domain of this manuscript,
due to the fact that the ideas that are put forward here involve interoperability at a higher level, where
actual data rather than bits are transferred.

2.5. A power-Efficient Routing Protocol for Underwater Wireless Sensor Networks

Huang et al. put forward a protocol conceived to route information in the least energetically costly
possible way [28]. They suggest that a combination between acoustic communications and radio links
can be offered in order to offer a holistic solution for networked communications in a deployment.
The architecture that has been designed for the power efficient routing protocol consists of several
elements: firstly, it makes use of a forwarding node selector, which receives as an input transmission
distances, the angle between the nodes of the network (it has to be taken into account that this is a
3D network), and the remaining energy of the sensor itself. All these data are sent to a forwarding
tree mining mechanism that forwards the information as a packet that is transmitted to the sensor that
was previously selected in the network. The other main purpose of this module is to prevent wasting
power consumption due to fast spreading of packet forwarding procedures. Another development is
the potential adoption of a fuzzy logic inference system, which would make use of fuzzing/defuzzing
modules with an inference engine and a fuzzy rule base.

This solution puts forward an optimized scheme in order to transmit information among several
entities that are contained in the application domain. The main issue with this presented solution is
that it cannot be used for transmissions at the data level, since the protocol has been conceived for
routing and other network layer functionalities. As it happened before, the usability of this proposal

Sensors 2017, 17, 1330 7 of 31

in the application domain described in this manuscript is reduced, because it deals with problems that
are alien to the data transmissions done in any higher layer, and does not solve problems that may be
found at this level.

2.6. Message Queue Telemetry Transport (MQTT)

MQTT is a messaging protocol that was introduced by Stanford-Clark of IBM and Nipper at
Arcom (now Eurotech) in 1999 and standardized in 2013 by OASIS [29,30]. Each MQTT client can
be either a publisher that sends information to the broker at a specific topic or/and a subscriber that
receives automatic messages every time there is an update. MQTT utilizes the Transmission Control
Protocol (TCP) to provide stable communications. Despite this, it is designed to have low overhead
compared to other TCP-based application layer protocols [31]. To ensure security, MQTT brokers may
require username and password authentication, which is handled by a Transport Layer Security (TLS)
or Secure Sockets Layer (SSL); these are the same security protocols that ensure privacy for HTTP
transactions all over the Internet [32].

These characteristics can be mapped with success to environments where the sensors are likely to
be connected at least once in a while, and the lifecycle of the messages is managed by the protocol.
However, messages delivered to the network may or may not be eventually received in this kind of
environment, so an alternative using as a baseline for a more limited transport channel is needed.
In addition to that, this solution relies on standardized protocols that may or may not be available
during a mission involving underwater communications. Lastly, when compared to MQTT, CoAP is
more lightweight-oriented, as it utilizes UDP as the transport protocol.

2.7. MQTT-SN (Message Queue Telemetry Transport for Sensor Networks)

MQTT-SN [33] is a variation of the MQTT protocol aimed at embedded devices on non-TCP/IP
networks. The specifications provide three elements: connection semantics, routing, and endpoint.
It is adapted to the peculiarities of a wireless communication environment such as low bandwidth,
high link failures, short message length, etc. It is also optimized for the implementation on low-cost,
battery-operated devices with limited processing and storage resources. MQTT-SN is characterized by
the following differences: (a) the connection and messaging processes detail from the very outset of
communication the topic that will be available for the Publish/Subscribe manager, (b) the topic name
in the PUBLISH messages is replaced by a short, two-byte long “topic id”, (c) “Pre-defined” topic
identifiers and “short” topic names are introduced, for which no registration is required, (d) a discovery
procedure helps clients without a pre-configured server or gateway’s address to discover the actual
network address of an operating server or gateway, (e) the semantic meaning of a “clean session” is
extended to the Will feature (as stated in the connection process detailed above), i.e., not only client’s
subscriptions are persistent, but also Will topic and Will message and (f) a new offline keep-alive
procedure is defined for the support of sleeping clients.

All of these are useful characteristics in streamlining the process of Publish/Subscribe messaging,
which is a must in bandwidth constrained environments, so messaging for a Publish/Subscribe
paradigm has been taken into account while designing and implementing the main features of the
proposed protocol.

2.8. Embedded Binary HTTP (EBHTTP)

Embedded binary HTTP (EBHTTP) [34] is a binary-formatted, space-efficient, stateless encoding
of the standard HTTP/1.1 protocol. EBHTTP is primarily designed as the transportation of small
scale data between resource-constrained nodes, which follows a similar approach to CoAP. This
protocol is focused on reducing the overhead of HTTP while maintaining the same HTTP semantics
and communication paradigm. EBHTTP uses the UDP protocol instead of TCP. The basic EBHTTP
header consists of 2 bytes specifying the method and a control field; all other data are carried as
Type-Length-Value (TLV) encoded sections of the method. These may include a request URI, HTTP

Sensors 2017, 17, 1330 8 of 31

headers (either compressed or uncompressed), and body data. This encoding also allows multiple
EBHTTP messages to be packed into a single UDP datagram or TCP segment.

Some of the most important weaknesses relay on the lack of reliability and in the processing
power required to encode the HTTP protocol. In fact, although the processing required to encode
the protocol would be less than what is required by a direct use of HTTP, it would be still expensive
due to the limited resources of a sensor. Furthermore, although they are bound on UDP, they do not
provide any reliability mechanism. Lastly, it is a protocol that has been conceived for the transmission
of information at the application layer, so its applicability for lower ones would be ineffective or plainly
impossible to perform.

2.9. Extensible Messaging and Presence Protocol (XMPP)

The Extensible Messaging and Presence Protocol (XMPP) [35] is a message-oriented protocol
for streaming eXtensible Markup Language (XML) elements with a real-time behavior. It is used
combined with other very popular applications like Google App Engine [36]. Secure authentication
(Simple Authentication and Security Layer or SASL) and encryption by means of Transport Layer
Security (TLS) have been built into the core of XMPP specifications. XMPP runs over TCP and provides
both Publish/Subscribe (asynchronous) and request/response (synchronous) messaging systems. It is
designed for near real-time communications and thus, it supports small message footprint and low
latency message exchange [37]. XMPP connects a client to a server using a stream of XML stanzas.
An XML stanza represents a piece of code that is divided into three components: message, presence,
and an iq pair (info/query). Message stanzas identify the source (from) and destination (to) addresses,
types, and IDs of XMPP entities that retrieve data.

XMPP has TLS/SSL security built in the core of the specification. However, it does not provide
QoS options that make it impractical for M2M communications, although XMPP supports the
Publish/Subscribe architecture that is more suitable for the IoT in contrast to CoAP request/response
approach. Furthermore, it is an already established protocol that is supported all over the Internet as a
plus when compared to the relatively new MQTT. However, XMPP uses eXtensible Markup Language
(XML) messages that create additional overhead due to unnecessary tags and require XML parsing.

2.10. Lightweight Machine-to-Machine Protocol

OMA Lightweight M2M (LWM2M) [38] is a protocol from the Open Mobile Alliance for M2M
or IoT device management. It is a communication protocol used between client software on a M2M
device and server software on a M2M management and service enablement platform. In order to
use the LWM2M protocol for remote management of M2M facilities it has four characteristics: (1) it
features an architectural design based on REST, which is usually appealing to software developers,
(2) defines a resource and data model that is extensible, (3) has been designed with performance and
the constraints of M2M devices in mind, and (4) it reuses and builds over an efficient secure data
transfer standard, since CoAP has been standardized by the Internet Engineering Taskforce (IETF) as a
variation of the Internet’s HTTP protocol (appropriate for data transfer to and from low-cost connected
IoT devices).

As it can be inferred, LWM2M provides several interfaces built on top of Constrained Application
Protocol (CoAP) to perform management of a wide range of remote embedded devices and connected
appliances in the Internet of Things application domain, with the objective of performing remote service
enablement and remote application management. LWM2M is targeted in particular at constrained
devices, e.g., devices with low-power microcontrollers (40 MHz), small amounts of Flash (100 KB) and
RAM (10 KB) or batteries expected to last for years over network variable availability [39].

2.11. Open Issues and Challenges

The solutions that have been described here show that interconnectivity challenges can be solved
with success in environments where experience and knowledge have already been accumulated and

Sensors 2017, 17, 1330 9 of 31

there are technological solutions that can be applied to them. However, there is still as significant
number of open issues and challenges that remain to be solved at mainly two different areas:

1. Lack of usability in the environment of the application domain. The solutions that have been
described previously work successfully in environments that, despite being constrained or present
important issues regarding computational capabilities, are usually no underwater environments
or imply autonomous maritime vehicles. Therefore, its optimization to the application domain
represented in the manuscript is likely to be suboptimal. What is more, there seems not to be
efforts to port those developments to this environment, as they were never targeted to be used
for autonomous maritime vehicles.

2. Lack of developments for data level transmissions. The solutions that have been described either focus
on the transmission of information in underwater conditions at a different (and usually lower)
layer, or when data level transmissions are taken into account, they are done at the application
layer, rather than having a software development for a distributed system that will contain the
information related to session and presentation levels.

3. Lack of data about what should be part of the information that is transferred from/to the entities that take
part in a communication. Whereas there is a high consensus about the different kinds of information
transferred in other constrained environments, such as Wireless Sensor Networks or the Internet
of Things, the establishment of accurate criteria that define the specific data that have to be used
in underwater transmissions (coordinates, vehicle speed, water temperature, composition, etc.) is
yet to be defined.

4. Lack of security options. The security infrastructure offered by the studied proposals is often
precarious or nonexistent. Usually, not even the option to send messages encrypted is available,
which poses a threat to the whole system, that might not be secure enough to have it used. A way
to guarantee secure data interchanges between ends of the communications must be guaranteed
by any new protocol designed for the purpose of interchanging information at the data level in
underwater environments.

The main advantages and disadvantages that have been found in each of them, as well as the
references where the bulk of the information has been gathered, have been summarized in Table 1.

Table 1. Summarized advantages and disadvantages of the studied proposals.

Name of the Proposal Advantages Disadvantages References

Deadline-Constrained
802.11 MAC

Accurate definition of
information transfers in the
transmission medium.

Works at a lower level (physical
and network access layers rather
than middleware or
data-based ones).

Tian, G., S. Camtepe, and
Y.C. Tian, A Deadline-Constrained
802.11 MAC Protocol With QoS
Differentiation for Soft Real-Time
Control [21].

Constrained
Application Protocol

PDU definition and interchange
are thoroughly described. It has
been designed for constrained
environments.

Conceived for the application
layer rather than a level below.

Internet Engineering Task Force
(IETF), The Constrained
Application Protocol, RFC 7252
(CoAP) [22].

Advanced Message
Queuing Protocol

Set of PDUs for information
transmission at the data level. It
has a broker for
Publish/Subscribe
communications.

Conceived for reliable
transmission mediums rather than
an underwater channel. Adding
security can be challenging.

AMQP consortium. AMQP 1.0
Becomes OASIS Standard [24].

MACA-based
power control

Reliable performance in
underwater environments where
bits are transmitted.

Focused on bit transmission,
rather than data level with higher
level information.

L. Qian, S. Zhang, M. Liu and
Q. Zhang. A MACA-based power
control MAC protocol for
Underwater Wireless Sensor
Networks [27].

Power-efficient
routing protocol

Optimized scheme for
bit transmission.

It is not a suitable solution for
transmissions at the data level.

Chenn-Jung Huang,
Yu-Wu Wang, Hsiu-Hui Liao,
Chin-Fa Lin, Kai-Wen Hu,
Tun-Yu Chang. A power-efficient
routing protocol for underwater
wireless sensor networks [28].

Sensors 2017, 17, 1330 10 of 31

Table 1. Cont.

Name of the Proposal Advantages Disadvantages References

Message Queue
Telemetry Transport

Solution suitable for
distributed systems.

This proposal has not been
conceived for underwater
environments.

MQTT consortium. MQTT
Version 3.1.1 [29]. Locke, D.,
Mq telemetry transport (mqtt) v3.1
protocol specification [30].

MQTT-SN Includes Publish/Subscribe
communications.

It has been developed for sensor
networks instead of underwater
environments.

Andy Stanford-Clark, H.L.T.,
MQTT For Sensor Networks
(MQTT-SN) Protocol
Specification [33].

Embedded binary HTTP Small-sized transmissions with a
similar approach to CoAP.

Solution conceived for the
application layer rather than
lower ones. Power demanded
may be too much for
constrained devices.

Tolle, G., Embedded Binary HTTP
(EBHTTP) [34].

Extensible Messaging
and Presence Protocol

Enables security.
Follows a CoAP approach.

Lack of Quality of Service
capabilities. XML might be
troublesome for underwater
data transmissions.

Saint-Andre P (technical
representative of the Internet
Engineering Task Force,
Extensible messaging and presence
protocol (xmpp) [35].

Lightweight M2M Management of a wide range of
embedded systems.

It is built on top of CoAP, so it is
unsuitable for underwater
data transmissions.

Tian L. OMA device
management working group
(OMA DM WG), Lightweight
m2m (oma lwm2m) [38].

3. Description of the Maritime Data Transfer Protocol

The proposal that has been designed for data transfer in autonomous maritime vehicles is aimed
to address all the open issues previously described by means of the following features:

1. The information that has been included is relevant and consistent with the needs of the partners
and companies that are involved in the SWARMs project. Considering that the list of participants
in the project ranges from autonomous maritime vehicle vendors to underwater acoustic modem
manufacturers, it is believed by the authors of this manuscript that it fits quite accurately the
requirements for information interchange. Specifically, feedback received from the network layer
has been pivotal in order to tackle the issue of a constrained, unreliable transmission medium.

2. Data level transmissions. Unlike other protocols or decentralized data transmission proposals,
information exchange has been conceived to be performed at the data level, so that it will be fully
and easily ported to the autonomous maritime vehicles that are used in the project.

3. Underwater adaptation. The protocol has been designed from scratch for data transmissions
in a maritime (and more specifically, underwater) environment. Again, the feedback provided
by the partners of the SWARMs project has been of major importance in order to include all the
relevant data in the PDUs. Therefore, they have been tailored in terms of types and fields used to
contain the parameters of interest in a distributed system or a CPS with a significant component
of autonomous maritime vehicles.

If the previous proposals are taken into account, there are several actions that have been carried
out when developing MDTP in order to solve the challenges that have been previously presented.
These actions have been summarized in Table 2.

It is due to all these reasons that the protocol has been named Maritime Data Transfer Protocol.
Aside from the actions that have been taken by the developers of this protocol, there are several other
advantages that can be offered due to the tools that have been used, such as time and space decoupling
(due to the usage of DDS for this functionality, which allows publishers to connect whenever they are
able to do so in case they become momentarily out of the deployment, as it is likely to happen from
time to time in submarine environments), automatic discovery of nodes, quality of service guaranteed
by default or optional security support. All the procedures undertaken that justify the PDUs design
have been included.

Sensors 2017, 17, 1330 11 of 31

Table 2. Actions taken by MDTP.

Name of the Proposal Disadvantages Action Taken in MDTP to Deal with the Disadvantage

Deadline-Constrained 802.11 MAC Works at a lower level (physical and network access
layers rather than middleware or data-based ones).

MDTP is used at the data level for data-based
information transfers.

Constrained Application Protocol Conceived for the application layer rather than a
level below.

Used at the data level (as PDUs used by a middleware solution)
rather than one level above (application) or levels below
(transport, network).

Advanced Message Queuing Protocol
Conceived for reliable transmission mediums rather
than an underwater channel. Adding security can
be challenging.

Designed for underwater transmissions (the ones deemed as
more difficult) from scratch. Security is also offered as an option.

MACA-based power control Focused on bit transmission, rather than data level with
higher level information.

Used at the data level (as PDUs used by a middleware solution)
rather than one level above (application) or levels below
(transport, network).

Power-efficient routing protocol It is not a suitable solution for transmissions at the
data level.

Used at the data level (as PDUs used by a middleware solution)
rather than one level above (application) or levels below
(transport, network).

Message Queue Telemetry Transport This proposal has not been conceived for
underwater environments.

Designed for underwater transmissions (constrains and
unreliability of the transmission medium are taken into account).

MQTT-SN It has been developed for sensor networks instead of
underwater environments.

Designed for underwater transmissions (constrains and
unreliability of the transmission medium are taken into account).

Embedded binary HTTP

Solution conceived for the application layer rather than
lower ones. Power demanded may be too much for
constrained devices. It relies on a layered protocol
architecture likely not to be present in an
underwater environment.

MDPT can be used on top of regular IP networks or separately
over underwater, acoustic-based deployments.

Extensible Messaging and
Presence Protocol

Lack of Quality of Service capabilities. XML might be
troublesome for underwater data transmissions.

Non-verbose format is used for data transmissions. QoS is
guaranteed by its inclusion of MDTP in a DDS development.

Lightweight M2M It is built on top of CoAP, so it is unsuitable for
underwater data transmissions.

Designed for underwater transmissions (constrains and
unreliability of the transmission medium are taken into account).

Sensors 2017, 17, 1330 12 of 31

3.1. Modelling Considerations

When operating with all the other elements from a mission in open sea, the protocol will be used
among all the elements scattered in a certain area. It must be mentioned that MDTP has been conceived
in cooperation with a software architecture that will be used in order to transfer information from the
autonomous maritime vehicles to the actual middleware. By middleware, it is meant a software layer
that is deployed in distributed systems or CPSs with the aim of abstracting the underlying hardware
heterogeneity and complexity and providing the higher, more application layer-based elements,
with a collection of facilities that are usually accessed via Application Programming Interface. Also,
middleware can be enhanced by encasing several services within itself, ranging from device registration
to security or semantic capabilities [40]. A most important characteristic is that the communications
are made possible by the interaction with the autonomous maritime vehicles performing operations
with an element containing a larger proportion of software components of the distributed middleware
architecture, which is located in what is referred to as the Command and Control Station (CCS), as it
has been depicted in Figure 1. Here, it can be seen how the overall structure of the system has been
conceived: on the one hand, the CCS contains the bulk of the middleware components and all the
services that can be deemed as high level (due to the fact that they are the closest to the applications
and are used to access them), at the core (which contains the most prominent functionalities) and low
level (mostly focused on hardware abstraction). On the other hand, the autonomous maritime vehicles
will have their own share of middleware components, used to adapt the heterogeneous hardware
to the resulting common system. In order to transfer the information between each of the parties,
though, a protocol must be used at the data level whenever transmissions are done either Over-the-Air
with regular wireless communications or via underwater acoustic network. Interestingly enough,
the SWARMs project aims at unifying both networks, so using different protocols for data transmission
can be counterproductive whenever information is shared between the autonomous maritime vehicles
and the CCS. It is those communications where MDTP is used. Therefore, the figure also shows where
the most prominent elements of the deployment that has been conceived will be running, as different
pieces of hardware are required to have software components installed, which will be communicating
to each other by means of MDTP.

Sensors 2017, 17, 1330 12 of 31

3.1. Modelling Considerations

When operating with all the other elements from a mission in open sea, the protocol will be
used among all the elements scattered in a certain area. It must be mentioned that MDTP has been
conceived in cooperation with a software architecture that will be used in order to transfer
information from the autonomous maritime vehicles to the actual middleware. By middleware, it is
meant a software layer that is deployed in distributed systems or CPSs with the aim of abstracting
the underlying hardware heterogeneity and complexity and providing the higher, more application
layer-based elements, with a collection of facilities that are usually accessed via Application
Programming Interface. Also, middleware can be enhanced by encasing several services within
itself, ranging from device registration to security or semantic capabilities [40]. A most important
characteristic is that the communications are made possible by the interaction with the autonomous
maritime vehicles performing operations with an element containing a larger proportion of software
components of the distributed middleware architecture, which is located in what is referred to as the
Command and Control Station (CCS), as it has been depicted in Figure 1. Here, it can be seen how
the overall structure of the system has been conceived: on the one hand, the CCS contains the bulk of
the middleware components and all the services that can be deemed as high level (due to the fact
that they are the closest to the applications and are used to access them), at the core (which contains
the most prominent functionalities) and low level (mostly focused on hardware abstraction). On the
other hand, the autonomous maritime vehicles will have their own share of middleware
components, used to adapt the heterogeneous hardware to the resulting common system. In order to
transfer the information between each of the parties, though, a protocol must be used at the data
level whenever transmissions are done either Over-the-Air with regular wireless communications or
via underwater acoustic network. Interestingly enough, the SWARMs project aims at unifying both
networks, so using different protocols for data transmission can be counterproductive whenever
information is shared between the autonomous maritime vehicles and the CCS. It is those
communications where MDTP is used. Therefore, the figure also shows where the most prominent
elements of the deployment that has been conceived will be running, as different pieces of hardware
are required to have software components installed, which will be communicating to each other by
means of MDTP.

Figure 1. Distribution of middleware. MDTP is used over the acoustic and wireless network.

Figure 1. Distribution of middleware. MDTP is used over the acoustic and wireless network.

Sensors 2017, 17, 1330 13 of 31

The PDUs that have been designed for this protocol will make use of data interchange.
The particular ideas that were taken into account to design the protocol were as follows:

1. Information of the entity that started the communication must be sent. The system running
in the SWARMs project relies on the interchange of information at the data level among two
different entities: the autonomous maritime vehicles and the equipment where all the other
middleware elements have been included, which is referred to as the CCS. Depending on whether
the vehicle or the middleware are publishing information or are subscribed to receive it, different
PDUs must be used and different data will be included. Note that using protocols to measure
flow information using TCP/IP layered architectures, such as IPFIX [41], would not be useful in
this environment, due to the fact that a significant amount of communications will not rely on
a regular IP infrastructure.

2. Communication channel. The message can be transmitted either overwater or underwater, using
an IP or an acoustic communication channel which highly influences the speed and amount
of bytes that can be efficiently delivered from the sender to the receiver. The most evident
consequence to deal with is that the PDUs that are more verbose will be sent via the IP network.
Even though it cannot be cabled by any means, any network relying on already established
standards for wireless communications will work in an easier way than at the acoustic level.

3. Periodicity of the message. There will be messages that will be sent periodically as in any other
distributed system or CPS. Commonly, these ones will be related to periodic heartbeats or keep
alive notifications used to communicate both the autonomous maritime vehicles with each other,
along with the CCS.

4. Purpose of the message. Depending on the nature of the information contained in the message
(data requests, GPS coordinates, etc.) the messages that are used will be interchanged depending
on what has been requested and the availability of information.

Consequently, a taxonomy that classifies the messages that have been created according to the
entity that sends them (that is, either the autonomous maritime vehicle or the CCS) has been created
as a way to provide a better grasp of the messages that are used.

3.2. Taxonomy of Messages

The messages sent by a vehicle have been grouped under four categories:

1. Status information is published periodically and usually corresponds to proprioceptive data, i.e.,
data about the vehicle itself, such as its estimated position or speed.

2. A report is a collection of data about the vehicle or its environment (exteroceptive data) aggregated
to answer to some request received by the vehicle. A report can be of several types depending
of the incoming request. A report will always have a reference to the request message which
triggered its processing.

3. An event is a message sent by the vehicle to inform other entities involved in the mission that
something relevant occurred which should be taken into consideration. Events can be either
alarms or detections. Alarms result from detection by the Fault Management system of a failure or
an anomaly in the behaviour of one or more components or subsystems of the vehicle, e.g., a loss
of battery level, an increase of the internal temperature, the detection of a leak, etc. An alarm is
therefore always related to proprioceptive onboard capabilities. On the other hand, a detection
results from the observation of the environment of the vehicle either directly by a sensor (altimeter
for instance) or through some processing.

4. A query can be defined as a request sent by the vehicle to other entities participating in a data
interchange during a maritime mission (such as the CCS or another autonomous maritime vehicle)
in order to obtain certain information of interest (e.g., request for an update of the position of
other vehicles involved in the mission) or asking for some processing which cannot be done
onboard. A query will be processed through the middleware and will result (with a certain delay)
in an answer message.

Sensors 2017, 17, 1330 14 of 31

On the other hand, messages sent by the CCS can be of three different kinds: request, notification
and answer.

1. A request is an inquiry message that once interpreted by the vehicle will result in a report. There
are two types of inquiries depending on whether they are about the mission or about status data.
A mission request results in the assignment to the vehicle of a goal, a high level task or a plan to
be executed. Attribution of goals or high level tasks require that the vehicle has onboard planning
capabilities. A status request usually asks about an update on some kind of proprioceptive data
such as remaining autonomy or estimated position.

2. A notification is a message to inform the vehicle that some new relevant information is available.
Notifications may or may not require an action by the vehicle. Therefore, they do not imply an
answer and could be even ignored by the vehicle. In order to receive a notification, it is mandatory
that the vehicle previously subscribes to this kind of information as the middleware that is being
used follows a publish/subscription paradigm. Once a notification is received, the vehicle may
need to send and explicit query to retrieve associated content. For instance, if notified that there
is an updated seabed map available, the vehicle would need to surface, send a query to receive it
via radio frequency communications, analyze it and replan the mission if necessary.

3. An answer is a message sent in response to a query emitted by a vehicle. Answers will always
have a reference to the query message which triggered its processing.

Thus, there are several possible directions when information involving requests and responses is
interchanged among the different devices deployed in a mission: either they are sent from the vehicle
to the CCS, from the vehicle to another vehicle and from the CCS to the vehicle itself. Considering
these aspects, the taxonomy that has been created for the PDUs in MDTP distinguishes two different
kinds of main groups has been represented in Figure 2. The structure that has been followed to create
it is related to the two kinds of possible actions that can be taken to transmit and receive a message in
a system where all the parties are deployed. In any given situation, messages will be either sent by
an autonomous maritime vehicle that is present or by the CCS. When they are sent from the vehicles,
they are always related to either a mission or any parameter related to it, such as information about
the status of mission where the vehicle is currently involved, a report on the data that is requested,
any event that may affect the mission or the vehicle behaviour or a query that the vehicle may have to
perform in order to better fulfill a mission. On the contrary, if the message is sent by the CCS they will
consist of requests that are done to the robots that have been deployed during the mission,a notification
that has to be sent to them in order to modify their behaviour, and an answer that has to be sent to
them as a result of a requests that they previously sent. In the end, it can be seen how activities that
involving requests and answers for those requests (for messages sent by the middleware) and activities
related to notifications about the status of the vehicles (for messages sent from the vehicles).

Sensors 2017, 17, 1330 14 of 31

On the other hand, messages sent by the CCS can be of three different kinds: request,
notification and answer.

1. A request is an inquiry message that once interpreted by the vehicle will result in a report.
There are two types of inquiries depending on whether they are about the mission or about
status data. A mission request results in the assignment to the vehicle of a goal, a high level task
or a plan to be executed. Attribution of goals or high level tasks require that the vehicle has
onboard planning capabilities. A status request usually asks about an update on some kind of
proprioceptive data such as remaining autonomy or estimated position.

2. A notification is a message to inform the vehicle that some new relevant information is
available. Notifications may or may not require an action by the vehicle. Therefore, they do not
imply an answer and could be even ignored by the vehicle. In order to receive a notification, it is
mandatory that the vehicle previously subscribes to this kind of information as the middleware
that is being used follows a publish/subscription paradigm. Once a notification is received, the
vehicle may need to send and explicit query to retrieve associated content. For instance, if
notified that there is an updated seabed map available, the vehicle would need to surface, send
a query to receive it via radio frequency communications, analyze it and replan the mission if
necessary.

3. An answer is a message sent in response to a query emitted by a vehicle. Answers will always
have a reference to the query message which triggered its processing.

Thus, there are several possible directions when information involving requests and responses
is interchanged among the different devices deployed in a mission: either they are sent from the
vehicle to the CCS, from the vehicle to another vehicle and from the CCS to the vehicle itself.
Considering these aspects, the taxonomy that has been created for the PDUs in MDTP distinguishes
two different kinds of main groups has been represented in Figure 2. The structure that has been
followed to create it is related to the two kinds of possible actions that can be taken to transmit and
receive a message in a system where all the parties are deployed. In any given situation, messages
will be either sent by an autonomous maritime vehicle that is present or by the CCS. When they are
sent from the vehicles, they are always related to either a mission or any parameter related to it, such
as information about the status of mission where the vehicle is currently involved, a report on the
data that is requested, any event that may affect the mission or the vehicle behaviour or a query that
the vehicle may have to perform in order to better fulfill a mission. On the contrary, if the message is
sent by the CCS they will consist of requests that are done to the robots that have been deployed
during the mission, a notification that has to be sent to them in order to modify their behaviour, and
an answer that has to be sent to them as a result of a requests that they previously sent. In the end, it
can be seen how activities that involving requests and answers for those requests (for messages sent
by the middleware) and activities related to notifications about the status of the vehicles (for
messages sent from the vehicles).

Figure 2. Taxonomy for the PDUs in MDTP. Figure 2. Taxonomy for the PDUs in MDTP.

Sensors 2017, 17, 1330 15 of 31

3.3. Messages from the Maritime Data Transfer Protocol

The middleware follows the Data Distribution Service (DDS) specification which supports
Data-Centric Publish-Subscribe (DCPS) in real-time systems. DDS is a middleware protocol standard
for data-centric integration that features extensive fine control of real-time QoS parameters. MDTP
relays on the Object Management Group (OMG) standard referred to as DDS Interoperability–Real
Time Publish Subscribe wire-protocol (DDSI-RTPS) [42] for implementation works, as it guarantees
interoperability with the three main DDS solution providers, i.e., Twin Oaks CoreDX DDS [43],
OpenSpliceDDS (PrismTech, Stirling, UK, [44]) and RTI Connext DDS [45]. According to DDSI-RTPS,
a message has a header and one to several possible submessages. The header contains information
about the RTPS protocol, the vendor and the Globally Unique Identifier (GUID). Each of the
submessages has it own submessage header with an id that identifies the type of submessage, and
one to several submessage elements. In a communication between the middleware and a vehicle each
message PDU will contain three submessages (as represented in Figures 3 and 4): a submessage with
information about the timestamp (INFO_TS), a submessage with the data we want to transmit (DATA)
and a submessage to inform that there is data available in the writer (HEARTBEAT).

Sensors 2017, 17, 1330 15 of 31

3.3. Messages from the Maritime Data Transfer Protocol

The middleware follows the Data Distribution Service (DDS) specification which supports
Data-Centric Publish-Subscribe (DCPS) in real-time systems. DDS is a middleware protocol
standard for data-centric integration that features extensive fine control of real-time QoS parameters.
MDTP relays on the Object Management Group (OMG) standard referred to as DDS Interoperability
–Real Time Publish Subscribe wire-protocol (DDSI-RTPS) [42] for implementation works, as it
guarantees interoperability with the three main DDS solution providers, i.e., Twin Oaks CoreDX
DDS [43], OpenSpliceDDS (PrismTech, Stirling, UK, [44]) and RTI Connext DDS [45]. According to
DDSI-RTPS, a message has a header and one to several possible submessages. The header contains
information about the RTPS protocol, the vendor and the Globally Unique Identifier (GUID). Each of
the submessages has it own submessage header with an id that identifies the type of submessage,
and one to several submessage elements. In a communication between the middleware and a vehicle
each message PDU will contain three submessages (as represented in Figures 3 and 4): a submessage
with information about the timestamp (INFO_TS), a submessage with the data we want to transmit
(DATA) and a submessage to inform that there is data available in the writer (HEARTBEAT).

Figure 3. Message PDU with Open Splice DDS Community version.

Figure 4. Message PDU with Twin Oaks CoreDX DDS.

Depending on the vendor, there are differences in the size of the message PDUs. A default PDU
with a serialized data of 63 bytes has a size of 138 bytes with Open Splice DDS Community version
(OSPL) whereas with Twin Oaks CoreDX DDS, it has a size of 106 bytes. The main difference is that
OSPL uses 40 bytes for default QoS specification whereas TwinOaks includes a generic vendor
submessage of size 8 bytes. The Serialized Data section of the PDU contains the information to be
transmitted between the endpoints of the communication, namely the middleware and AUVs. In our
scenario, there are two possible communication channels: an acoustic channel (provided by acoustic

Figure 3. Message PDU with Open Splice DDS Community version.

Sensors 2017, 17, 1330 15 of 31

3.3. Messages from the Maritime Data Transfer Protocol

The middleware follows the Data Distribution Service (DDS) specification which supports
Data-Centric Publish-Subscribe (DCPS) in real-time systems. DDS is a middleware protocol
standard for data-centric integration that features extensive fine control of real-time QoS parameters.
MDTP relays on the Object Management Group (OMG) standard referred to as DDS Interoperability
–Real Time Publish Subscribe wire-protocol (DDSI-RTPS) [42] for implementation works, as it
guarantees interoperability with the three main DDS solution providers, i.e., Twin Oaks CoreDX
DDS [43], OpenSpliceDDS (PrismTech, Stirling, UK, [44]) and RTI Connext DDS [45]. According to
DDSI-RTPS, a message has a header and one to several possible submessages. The header contains
information about the RTPS protocol, the vendor and the Globally Unique Identifier (GUID). Each of
the submessages has it own submessage header with an id that identifies the type of submessage,
and one to several submessage elements. In a communication between the middleware and a vehicle
each message PDU will contain three submessages (as represented in Figures 3 and 4): a submessage
with information about the timestamp (INFO_TS), a submessage with the data we want to transmit
(DATA) and a submessage to inform that there is data available in the writer (HEARTBEAT).

Figure 3. Message PDU with Open Splice DDS Community version.

Figure 4. Message PDU with Twin Oaks CoreDX DDS.

Depending on the vendor, there are differences in the size of the message PDUs. A default PDU
with a serialized data of 63 bytes has a size of 138 bytes with Open Splice DDS Community version
(OSPL) whereas with Twin Oaks CoreDX DDS, it has a size of 106 bytes. The main difference is that
OSPL uses 40 bytes for default QoS specification whereas TwinOaks includes a generic vendor
submessage of size 8 bytes. The Serialized Data section of the PDU contains the information to be
transmitted between the endpoints of the communication, namely the middleware and AUVs. In our
scenario, there are two possible communication channels: an acoustic channel (provided by acoustic

Figure 4. Message PDU with Twin Oaks CoreDX DDS.

Depending on the vendor, there are differences in the size of the message PDUs. A default PDU
with a serialized data of 63 bytes has a size of 138 bytes with Open Splice DDS Community version
(OSPL) whereas with Twin Oaks CoreDX DDS, it has a size of 106 bytes. The main difference is

Sensors 2017, 17, 1330 16 of 31

that OSPL uses 40 bytes for default QoS specification whereas TwinOaks includes a generic vendor
submessage of size 8 bytes. The Serialized Data section of the PDU contains the information to be
transmitted between the endpoints of the communication, namely the middleware and AUVs. In our
scenario, there are two possible communication channels: an acoustic channel (provided by acoustic
modems manufactured by Evologics), to be used when AUVs are underwater, and an IP channel
or high bandwidth radio link (e.g., WiFi), to be used when AUVs are at the surface level. Being the
bandwidth for acoustic communications very limited, as it has already been explained, the type of
information expected to be exchanged between the middleware and AUVs when they are underwater
has been analyzed, in order to minimized the size of the PDUs to be transmitted.

Several different kinds of data have been define with the purpose of transferring data according
to the needs of a mission, or the tasks it is subdivided in. These different types are as follows:

1. Environment data. These are the data that are related to the surroundings of the location where
the autonomous maritime vehicles are deployed.

2. Status: The pieces of information collected from here are about the vehicle that has been deployed.
They complement the environment data because status data offer the information that was
omitted by them.

3. Situational information: The data deal with the location and movements of the autonomous
maritime vehicle that is deployed, such as location, turning parameters or vehicle speed.

4. Other information: These data contain all the information about other features of a deployment,
like the algorithm that has been used for positioning.

The information of interest susceptible to be exchanged has been summarized in Table 3:

Table 3. Information to exchange when AUVs are underwater.

Data Units Size Data Type Range of Values

Environment data

Water temperature Celsius 8 bits Byte −3.75–60.5 ◦C

Water salinity Parts per million 16 bits Unsigned short 0–65534 ppm

Sound Velocity m/s 32 bits Float 0.0–9999.999 m/s

Turbidity Parts per million 16 bits Unsigned short 0–65534 ppm

Pollution (H2S) Parts per million 16 bits Unsigned short 0–65534 ppm

Currents cm/s 8 bits Unsigned byte 0–254 cm/s

Bathymetry–underwater maps
(sonar) m 32 bits Float 0.0–9999.999 m

Status

Vehicle battery % 8 bits Unsigned byte 0.0–100.0%

Temporal reference s 16 bits Unsigned byte 0–65534 s

Sensor status Bit identifier +
bit mode

8 bits (5 bits +
3 bits) Unsigned short 0–31 sensors,

0–8 modes

Vehicle event/alarm Event or alarm
code 4 bits Byte 0000–1110 (15 different

events/alarms)

Situational information

Latitude Degrees 64 bits Float −90–90

Longitude Degrees 64 bits Float −180 to 180

Coordinates
(Inertial/USBL/DVL) cm/s 8 bits Unsigned byte 0–254 cm/s

Working depth m 32 bits Float 0–4095.875 m

Sensors 2017, 17, 1330 17 of 31

Table 3. Cont.

Euler Angles (Pitch) Degrees 32 bits Float 0.000–360.000◦

Euler Angles (Roll) Degrees 32 bits Float 0.000–360.000◦

Euler Angles (Yaw) Degrees 32 bits Float 0.000–360.000◦

Distance to seabed m 16 bits Unsigned short 0–4095.875 m

Azimuth Degrees 32 bits Float 0.000–360.000◦

Vehicle speed m/s 32 bits Float 0.0–127.99609375 m/s

Bearing Rad 32 bits Float [−π, π]

Gain 32 bits Float

Altitude m 8 bits Float

GSM m/s 32 bits Float

X m 32 bits Float

Y m 32 bits Float

Target Yaw Degrees 32 bits Float 0.000–360.000◦

Target depth m 16 bits Unsigned short 0–4095.875 m

Others

Algorithm Identifier 8 bits Octet

Other types of data bigger in size, like missions, should be transmitted when the AUVs are on
the surface so as to use an IP channel with no bandwidth limitations. By missions, it is meant the set
of operations that are carried out cooperatively by the autonomous maritime vehicles deployed in
order to achieve a complex goal Taking into account the bandwidth restrictions of underwater acoustic
communications (low bandwidth, unreliable medium of transmission, difficulties to maintain the
nodes in a fixed position, etc.) and the suitability of the time and space decoupling abilities of DDS in
those cases, the authors of this manuscript have defined messages for MDTP based on DDS which rely
on the previously presented taxonomy of messages (see Section 3.2), and cover all possible scenarios
presented by the vehicle providers collaborating in the SWARMs research project (e.g., periodic reports
from vehicles, task execution requests, etc.) This protocol enhances the state of the art by providing a
definition of the content that should be included in the SerializedData parameter of a DDS submessage
of type Data (as shown in Figure 5). The size of the data to exchange through this protocol has been
carefully design to adjust to the limited bandwidth of acoustic modems (e.g., an effective bitrate of
less than 2 kbps is quite common) to avoid the excessive fragmentation of PDUs in transmissions.
This definition is proposed as a standard representation of the information that can be exchanged
between the middleware and vehicles in offshore maritime missions. We have defined a size of 63 bytes
for this content, comprising a 24 bits header and 480 bits payload:

1. Vehicle ID (4 bits): vehicle identifier of the robot originator or receptor of the message. It has been
included in Tables 4 and 5 as VID.

2. Type (4 bits): PDU type. We consider 7 different kinds of PDUs according to the taxonomy of
messages defined. Three of them represent the different message types the middleware can send
to a vehicle: requests, notifications and answers. The other four represent the message types that
vehicles can send to the middleware: periodic status information, reports, events and queries.

3. Subtype (8 bits): PDU subtype. These bits are used to further define the kind of PDU that is sent
within the 7 PDU types that have been defined previously.

4. Sequence Operation (8 bits): randomly generated number used to relate petitions and responses.
5. Data (480 bits): 60 bytes available to transfer data. Depending on the message type and subtype,

some of these data bytes may be empty. The timestamp associated to this data will be provided
by the INFO_TS submessage of the DDS message.

Sensors 2017, 17, 1330 18 of 31

Sensors 2017, 17, 1330 17 of 31

Other types of data bigger in size, like missions, should be transmitted when the AUVs are on
the surface so as to use an IP channel with no bandwidth limitations. By missions, it is meant the set
of operations that are carried out cooperatively by the autonomous maritime vehicles deployed in
order to achieve a complex goal Taking into account the bandwidth restrictions of underwater
acoustic communications (low bandwidth, unreliable medium of transmission, difficulties to
maintain the nodes in a fixed position, etc.) and the suitability of the time and space decoupling
abilities of DDS in those cases, the authors of this manuscript have defined messages for MDTP
based on DDS which rely on the previously presented taxonomy of messages (see Section 3.2), and
cover all possible scenarios presented by the vehicle providers collaborating in the SWARMs
research project (e.g., periodic reports from vehicles, task execution requests, etc.) This protocol
enhances the state of the art by providing a definition of the content that should be included in the
SerializedData parameter of a DDS submessage of type Data (as shown in Figure 5). The size of the
data to exchange through this protocol has been carefully design to adjust to the limited bandwidth
of acoustic modems (e.g., an effective bitrate of less than 2 kbps is quite common) to avoid the
excessive fragmentation of PDUs in transmissions. This definition is proposed as a standard
representation of the information that can be exchanged between the middleware and vehicles in
offshore maritime missions. We have defined a size of 63 bytes for this content, comprising a 24 bits
header and 480 bits payload:

1. Vehicle ID (4 bits): vehicle identifier of the robot originator or receptor of the message. It has been
included in Tables 4 and 5 as VID.

2. Type (4 bits): PDU type. We consider 7 different kinds of PDUs according to the taxonomy of
messages defined. Three of them represent the different message types the middleware can
send to a vehicle: requests, notifications and answers. The other four represent the message
types that vehicles can send to the middleware: periodic status information, reports, events and
queries.

3. Subtype (8 bits): PDU subtype. These bits are used to further define the kind of PDU that is sent
within the 7 PDU types that have been defined previously.

4. Sequence Operation (8 bits): randomly generated number used to relate petitions and responses.
5. Data (480 bits): 60 bytes available to transfer data. Depending on the message type and subtype,

some of these data bytes may be empty. The timestamp associated to this data will be provided
by the INFO_TS submessage of the DDS message.

Figure 5. MDTP generic PDU.

As it was previously mentioned, Figure 3 is containing all the information regarding how PDUs
look like in the Open Splice DDS version of DDS. This is an open source iteration of the DDS
standard that contains the fields that were mentioned in Section 3.3:

1. RTPS: this field is used to include the RTPS version that is used by the PDUs included in a DDS
iteration.

2. Protocol version: used to include the protocol version used in this iteration.
3. Vendor ID: an identifier of the vendor that has developed the DDS iteration.
4. GUID prefix: it is the Globally Unique Identifier used to characterize the message that is sent via

DDS.
5. Submessage INFO_TS: contains information about the timestamp of the message that was sent.
6. Submessage data: contains the information transferred.
7. Submessage heartbeat: used to control the periodicity of the information.

Figure 5. MDTP generic PDU.

Table 4. Serialized data for overwater communications.

Message Type Actions Involved PDUs Involved

Middleware Requests

New Task of a Mission

The middleware sends a request message with a new TASK of a mission.
Tasks are defined by the subtype that is included in them. To define the
mission, the middleware will send several PDUs like this one to specify
the different tasks to accomplish. For example, the task “Go to take
picture” is defined by the subtype “00000100”, task “hover to take a
picture” by the subtype “00000101”, “cover area” by “00000110”, etc.

VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0001 00000100 NUM TASK

The vehicle reports to the middleware whether the task was successfully
registered (ACK = 00) or not (ERROR_ID).

VID (4 bits) Type (4 bits Subtype (8 bits) SeqOp (8 bits) Data (1 byte)

ID 0001 00000100 NUM ACK

Table 5. Serialized data for underwater communications.

Message Type Actions Involved PDUs Involved

Vehicle Periodic
Messages

Periodic Status
Information

The middleware sends a request message to subscribe to periodic data of a vehicle,
specifying the refresh time desired in seconds (REF_TIME).

VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (2 bytes)

ID 0001 00000000 NUM REF_TIME

The vehicle periodically reports about the kind of DATA that the middleware has
subscribed to.

VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0001 00000000 NUM PDATA

Middleware Requests

Task Update

The middleware sends a request message with a new task (UTASK) of a mission.
Tasks are as defined previously, and will be identified by the same kinds of subtypes.

VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0001 10000010 NUM UTASK

The vehicle reports to the middleware whether the task was successfully registered
(ACK = 00) or not (ERROR_ID).

VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (1 byte)

ID 0001 10000010 NUM ACK

Configure Camera

The middleware request the vehicle to change the configuration of the camera.
VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0001 10000001 NUM IMACON

The vehicle reports to the middleware whether the camera configuration was
successfully done (ACK = 00) or not (ERROR_ID).

VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (1 byte)

ID 0001 10000001 NUM ACK

Sensors 2017, 17, 1330 19 of 31

Table 5. Cont.

Message Type Actions Involved PDUs Involved

Vehicle Events

Vehicle Alarms

The middleware subscribes to the alarms of the vehicle.
VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0010 00000000 NUM SALARM

The vehicle sends information about the ALARMs the middleware is subscribed to.
VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0010 00000000 NUM ALARM

Vehicle Detections

The middleware subscribes to the detections of the vehicle.
VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0010 00000001 NUM SDETEC

The vehicle sends the middleware information about some detection.
VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0010 00000001 NUM DETECT

Middleware
Notifications

Middleware
Notifications

The vehicle subscribes to notifications from the middleware.
VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0010 00000010 NUM SNOTIFY

The middleware sends a notification.
VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0010 00000010 NUM NOTIFY

Vehicle Queries

Vehicle Queries

The vehicle queries the middleware. VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0011 00000000 NUM QUERY

The middleware answers the vehicle.
VID (4 bits) Type (4 bits) Subtype (8 bits) SeqOp (8 bits) Data (60 bytes)

ID 0011 00000000 NUM ANSWER

Sensors 2017, 17, 1330 20 of 31

As it was previously mentioned, Figure 3 is containing all the information regarding how PDUs
look like in the Open Splice DDS version of DDS. This is an open source iteration of the DDS standard
that contains the fields that were mentioned in Section 3.3:

1. RTPS: this field is used to include the RTPS version that is used by the PDUs included in a
DDS iteration.

2. Protocol version: used to include the protocol version used in this iteration.
3. Vendor ID: an identifier of the vendor that has developed the DDS iteration.
4. GUID prefix: it is the Globally Unique Identifier used to characterize the message that is sent

via DDS.
5. Submessage INFO_TS: contains information about the timestamp of the message that was sent.
6. Submessage data: contains the information transferred.
7. Submessage heartbeat: used to control the periodicity of the information.

At the same time, the PDU that is used for the CoreDX version developed by Twin Oaks
has roughly the same fields (as it is an implementation of a standard), but there is an additional
one used to include vendor-specific information from the developer. In addition to that, the data
submessage is 40 bytes smaller, due to the fact that is not containing the inline QoS information that
the OpenSpliceDDS version had. These characteristics have been depicted in Figure 4.

It can be seen that despite claiming that there is interoperability between the Open Splice and
CoreDX versions of DDS, both PDUs are of very different characteristics. This is due to the fact that
they are different iterations of the DDS standard. Nevertheless, the tests that have been carried out
guarantee that information has been transferred with no issues regarding the different features of
OpenSpliceDDS and CoreDX.

3.4. Serialized Data

The individual PDUs exchanged both in overwater communications and underwater
communications for each of the messages, as classified in the taxonomy proposed in the present
paper. Each of the PDUs described is based on the format proposed in Figure 5.

1. Overwater communications (IP channel). As there will not be any bandwidth limitation in this
case, the middleware will take advantage of this situation to exchange data with vehicles whose
size is expected to be large, like mission plans, that after being defined by the operators of
the missions will be transmitted from the middleware to the AUVs before launching them to
sea (e.g., if they are on a ship). Table 4 has been used to include all the pieces of information
mentioned. In addition to that, the PDUs that are involved in the communications have also been
included. They follow the structure that was described, which consists of a vehicle identifier
(VID), the type of PDU that is used, its subtype (it is required because there are several different
kinds of requests, reports or events that can be triggered in a mission), its sequence operation
(included as SeqOp) and the data used to make the task possible.

2. Underwater communications (acoustic channel). Will make use of PDUs with smaller amounts
of data. As it was done in Table 4, the PDUs involved in the communications have also been
included. The main reason for MDTP to have been designed is this kind of communication;
if only Over-the-air data transmissions existed, it is likely that a different solution would have
been studied. However, as described in the open issues, none of the existing options seemed to
completely satisfy the required capabilities for data transmissions.

4. Implementation and Testing Activities on MDTP

4.1. Implementation Works

Once the protocol was fully designed, implementation works were carried out in order to test the
usefulness of the solution. A prototype that covers the main features previously described has been

Sensors 2017, 17, 1330 21 of 31

implemented. This prototype, which has been used as the platform where MDTP performance was
tested, is composed of two parts:

• A Java component that represents the publish-subscription manager of the middleware, in charge
of the DDS communication with the AUVs. The DDS functionalities of this component are
implemented by means of CoreDX DDS, a proprietary DDS solution offered by Twin Oaks [43].

• A C++ component that represents the DDS proxy of the AUV. This component is composed
by two different layers: a communication layer in charge of DDS communication with the
middleware, and a translation layer in charge of formatting the information to/from the language
or commands supported by the AUV (e.g., ROS). This manuscript focuses on the communication
layer, as the purpose of the authors is to validate the PDUs defined under MDTP. The DDS
functionalities of the DDS proxy are implemented by means of Vortex OpenSplice DDS Community
Edition which is an open-source DDS solution offered by PrismTech [44].

The DDS communication between both components has been tested in an acoustic network
emulated by means of an online modem emulator provided by Evologics [46], which consists of a
simulation of their medium frequency modem S2CR 18/34 whose effective bitrate is 1 kbps. This
emulator provides real-time modem working procedures, and implements the same source code
and commands that the real acoustic modem does. Besides, as it is accessible remotely via Internet,
it allows the simplification of the integration tasks and the minimization of the development costs.
Besides, the Evologics emulator is able to simulate specific propagation effects in underwater acoustic
communication channels, like signal propagation delays, data packet collision detection, packet
synchronization errors, time difference of arrivals on the Ultra-Short Base Line (USBL) grid elements
and the movement of a real modem due to sea current. Besides, in order to enable the compatibility of
this modem with the DDS protocol, a specific software module called DDS-acoustic converter able to
implement the translation DDS/Evologics-Acoustic-Framework has been developed in the SWARMs
project. This is a C++ component with DDS functionalities implemented by means of Vortex OpenSplice
DDS Community Edition.

In order to create a scenario for testing purposes, the publish-subscription manager of the
middleware, the DDS proxy of the vehicle and the DDS-acoustic converter were installed on a
Linux based Personal Computer. To run the modem emulator, it was also necessary to install
the Evologics Dual Media Access Control (DMAC) advanced data-link layer protocol. A specific
Interface Description Language (IDL) file has been defined to implement the messages in MDTP.
IDL can be defined as a specification language used to describe the data model used in the interface
between software components in a language-independent manner. All commercial and open source
DDS implementations currently available use an IDL file, also known as Data Definition Language
(DDL) file, as the cornerstone for the generation of the data types needed for a specific software
implementation. The format of the IDL file that has been defined is the following:

module swarmsIDL

{

struct SWARMsmsg

{

octet vid_type; //8 bits (VID bits 7..4, Type bits 3..0)

octet _subtype; //8 bits

octet seqoperation; //Sequence nr of the operation (8 bits)

unsigned long dataInt[15]; //15 x 32 bits

};

};

Sensors 2017, 17, 1330 22 of 31

The first byte represents the Vehicle ID (4 bits) and the Type (4 bits) of MDTP, while the second and
the third byte represent the SubType and the Sequence Operation (all of them described in Section 3.3).
Finally, 60 bytes have been reserved to transfer data, although the authors of the proposal are aware
that not all transmissions will need such an amount of data, so in some cases part of these data bytes
may be empty.

4.2. Specific PDU Tests

The activities to be carried out to create the scenario where the testing activities are done were
as follows: (1) starting the online modem emulator by opening a terminal window and running
the Evologics DMAC software. This software automatically accesses to Evologics’ Virtual Private
Network (VPN) and starts the online modem emulator; (2) starting the publish-subscription manager
of the middleware by opening another terminal window and running this specific piece of software;
(3) starting the DDS proxy of the AUV in a new terminal window; (4) Finally, starting the DDS-acoustic
converter of the modem emulator in a separate terminal window.

As soon as the DDS components (the DDS-acoustic converter, the publish-subscription manager
and the DDS proxy) are started, the auto-discovery of the DDS nodes takes place. The automatic
discovery of entities provided by DDS is a useful feature that allows applications to publish and
subscribe to data without needing to configure the specific endpoints that they use to interchange
information, regardless of whether these nodes are on the same machine or distributed in a network.
Each DDS application performs the standard automatic discovery process which includes announcing
the presence of its DDS Entities, listening for other DDS Entities, and looking for matches between its
own DDS Entities and those discovered. This process usually takes a few seconds only, but due to the
especial characteristics of the DDS entities of our implementation based on two different DDS libraries
(i.e., the publish-subscription manager is CoreDX DDS based, while the DDS-acoustic converter and
the DDS proxy are Vortex OpenSplice DDS Community Edition based), the auto-discovery process
takes around 25 s. It must be kept mind that this process shall only be executed once (the moment the
scenario is initialized).

In order to test the developed implementation, three main different cases have been defined:
(1) the case where the middleware subscribes to periodic environmental information sent by a vehicle;
(2) the case where the middleware requests to a vehicle the execution of a specific task and (3) the
discovery of the Control Data Terminal (CDT) component used to know the active vehicles in a
deployment. In addition to that, other testing activities that have been carried out involve the case
where the middleware subscribes to periodic status information sent by a vehicle.

4.2.1. Test Case 1: Subscription to Periodic Environmental Data

The middleware architecture wants to subscribe to periodic environmental information sent by
a vehicle, so it publishes a PDU under the topic “request_environment” to request the vehicle the
delivery of environment-related data every 10 s. Figure 6 shows the kind of data that were added to
the fields that conform the PDU send to do the request.

Sensors 2017, 17, 1330 22 of 31

As soon as the DDS components (the DDS-acoustic converter, the publish-subscription
manager and the DDS proxy) are started, the auto-discovery of the DDS nodes takes place. The
automatic discovery of entities provided by DDS is a useful feature that allows applications to
publish and subscribe to data without needing to configure the specific endpoints that they use to
interchange information, regardless of whether these nodes are on the same machine or distributed
in a network. Each DDS application performs the standard automatic discovery process which
includes announcing the presence of its DDS Entities, listening for other DDS Entities, and looking
for matches between its own DDS Entities and those discovered. This process usually takes a few
seconds only, but due to the especial characteristics of the DDS entities of our implementation based
on two different DDS libraries (i.e., the publish-subscription manager is CoreDX DDS based, while
the DDS-acoustic converter and the DDS proxy are Vortex OpenSplice DDS Community Edition
based), the auto-discovery process takes around 25 s. It must be kept mind that this process shall
only be executed once (the moment the scenario is initialized).

In order to test the developed implementation, three main different cases have been defined: (1)
the case where the middleware subscribes to periodic environmental information sent by a vehicle;
(2) the case where the middleware requests to a vehicle the execution of a specific task and (3) the
discovery of the Control Data Terminal (CDT) component used to know the active vehicles in a
deployment. In addition to that, other testing activities that have been carried out involve the case
where the middleware subscribes to periodic status information sent by a vehicle.

4.2.1. Test Case 1: Subscription to Periodic Environmental Data

The middleware architecture wants to subscribe to periodic environmental information sent by
a vehicle, so it publishes a PDU under the topic “request_environment” to request the vehicle the
delivery of environment-related data every 10 s. Figure 6 shows the kind of data that were added to
the fields that conform the PDU send to do the request.

Figure 6. Appearance of the PDU used to request environment information.

Since the vehicle is subscribed to the topic “request_environment”, it processes the petition,
takes the correspondent measurements and publishes every 10 s a state vector (under the topic
“report_environment”) with the corresponding data shown in Figure 7.

Figure 6. Appearance of the PDU used to request environment information.

Sensors 2017, 17, 1330 23 of 31

Since the vehicle is subscribed to the topic “request_environment”, it processes the petition,
takes the correspondent measurements and publishes every 10 s a state vector (under the topic
“report_environment”) with the corresponding data shown in Figure 7.Sensors 2017, 17, 1330 23 of 31

Figure 7. Appearance of the PDU used to send environment information.

The time that it takes for the DDS proxy located in the AUV to answer the requests from the
publish-subscription manager of the middleware and send a state vector has been measured as
varying between 3.56 and 5.58 s. It has also been verified that if 10 DDS proxy components are
started in 10 different terminal windows (i.e., representing a swarm of 10 AUVs deployed
underwater), the request sent by the publish-subscription manager reaches the 10 components
almost simultaneously. The reliability of the protocol to work among the different parts of the
components was tested by means of a series of tests where the PDUs where sent through all the
software components used for their interaction. Figure 8 displays the results obtained when running
50 attempts at sending environmental data related to subscriptions.

Figure 8. Time measurements for periodic environmental data subscriptions.

In this figure, it is shown how the period of time used to transfer data regarding subscriptions
can be done in a reliable (there were no connection errors in the scenario that was used) and realistic
manner. The data were transmitted at rates that are similar to the ones used in other solutions that
involve message transmission in middleware environments: for example, user experience with data
transmission in Oracle Fusion Middleware is expected to be measured in seconds (“For example,
you might want to ensure that 90% of the users experience response times no greater than 5 s and the
maximum response time for all users is 20 s” [47]. Timeout and keep alive messages use time
intervals of 300 and 5 s, respectively). JBoss Enterprise Application Platform uses 30 s intervals for

Figure 7. Appearance of the PDU used to send environment information.

The time that it takes for the DDS proxy located in the AUV to answer the requests from the
publish-subscription manager of the middleware and send a state vector has been measured as varying
between 3.56 and 5.58 s. It has also been verified that if 10 DDS proxy components are started in
10 different terminal windows (i.e., representing a swarm of 10 AUVs deployed underwater), the
request sent by the publish-subscription manager reaches the 10 components almost simultaneously.
The reliability of the protocol to work among the different parts of the components was tested by means
of a series of tests where the PDUs where sent through all the software components used for their
interaction. Figure 8 displays the results obtained when running 50 attempts at sending environmental
data related to subscriptions.

Sensors 2017, 17, 1330 23 of 31

Figure 7. Appearance of the PDU used to send environment information.

The time that it takes for the DDS proxy located in the AUV to answer the requests from the
publish-subscription manager of the middleware and send a state vector has been measured as
varying between 3.56 and 5.58 s. It has also been verified that if 10 DDS proxy components are
started in 10 different terminal windows (i.e., representing a swarm of 10 AUVs deployed
underwater), the request sent by the publish-subscription manager reaches the 10 components
almost simultaneously. The reliability of the protocol to work among the different parts of the
components was tested by means of a series of tests where the PDUs where sent through all the
software components used for their interaction. Figure 8 displays the results obtained when running
50 attempts at sending environmental data related to subscriptions.

Figure 8. Time measurements for periodic environmental data subscriptions.

In this figure, it is shown how the period of time used to transfer data regarding subscriptions
can be done in a reliable (there were no connection errors in the scenario that was used) and realistic
manner. The data were transmitted at rates that are similar to the ones used in other solutions that
involve message transmission in middleware environments: for example, user experience with data
transmission in Oracle Fusion Middleware is expected to be measured in seconds (“For example,
you might want to ensure that 90% of the users experience response times no greater than 5 s and the
maximum response time for all users is 20 s” [47]. Timeout and keep alive messages use time
intervals of 300 and 5 s, respectively). JBoss Enterprise Application Platform uses 30 s intervals for

Figure 8. Time measurements for periodic environmental data subscriptions.

In this figure, it is shown how the period of time used to transfer data regarding subscriptions
can be done in a reliable (there were no connection errors in the scenario that was used) and realistic
manner. The data were transmitted at rates that are similar to the ones used in other solutions that

Sensors 2017, 17, 1330 24 of 31

involve message transmission in middleware environments: for example, user experience with data
transmission in Oracle Fusion Middleware is expected to be measured in seconds (“For example, you
might want to ensure that 90% of the users experience response times no greater than 5 s and the
maximum response time for all users is 20 s” [47]. Timeout and keep alive messages use time intervals
of 300 and 5 s, respectively). JBoss Enterprise Application Platform uses 30 s intervals for timeout
messages too [48]. Lastly, it is consistent with results that can be expected from Message-Oriented
Middleware, where according to Korhonen, “Online messaging is in real time, with message delivery
typically occurring in seconds or even sub-seconds” [49]. Overall, it can be said that this protocol
that has been conceived for autonomous maritime vehicles shows a comparable performance with
some other already established solutions. Nevertheless, MDTP has been explicitly conceived for
transmission of maritime data using as little amount of bits as possible, unlike all the other solutions
that make use of a reliable transmission medium.

Table 6 shows that the performance of the system is satisfactory overall: clearly, the amount of
time employed to deliver data from a subscription varies within acceptable ranges of time if the data
transmission between vehicles is considered. Furthermore, the average and median values obtained
from the 50 successful attempts to establish communications are very close one to the other; this
implies that the outlier values have little weight in the measurements obtained, and therefore confirms
that the protocol offers a predictable performance. This is reinforced by the comparatively reduced
time difference between the minimum and maximum figures (minimum is slightly less than 64% of
the maximum) that have been measured.

Table 6. Most prominent figures obtained from periodic data subscription measures

Request Attempt Time (s)
Maximum 5.58
Minimum 3.56
Average 4.2936
Median 4.365

Standard deviation 0.63554174

4.2.2. Testing Case 2: Task Execution Request

In this case, the middleware wants the vehicle to cover an area, so it publishes a PDU under the
topic “request task” specifying the needed data to perform such a task. As it can be seen in Figure 9,
the information that will be transferred this time will be more abundant than before, due to the fact
that it has to include the parameters used to perform the task (thus, since it implies covering an area,
the data implies information about how to maneuver the vehicle and area boundaries).

Since it is assumed that the vehicle is subscribed to the topic “request_task”, it processes the
petition and publishes the reports of such a task (under the topic “report_task”) as soon as these reports
are available. Figure 10 depicts the results of those reports. It can be noted how there is only one field
used now, which will be used to communicate whether the request was successful or not.

The time that it takes the DDS proxy of the AUV to report about the execution of the task
demanded by the publish-subscription manager of the middleware varies between 3.6 and 5.71 s.
In order to ensure the kind of performance that could be obtained in case there were several task
execution requests from a collection of robots deployed in a system rather than just one, 50 more
requests attempts were made. As it happened with the previous use case, the range of times
obtained (even for outlier samples) was deemed as satisfactory in the simulations where the different
components were running under the PDUs described in this protocol. The results of this set of tests
have been portrayed in Figure 11. Overall, the performance resembles what was obtained in the
previous used case with a small increment in the time required for the requests to be attended, which
is to be expected due to the fact that one of the PDUs used for information interchanges is longer than
the ones that were used before.

Sensors 2017, 17, 1330 25 of 31

Sensors 2017, 17, 1330 24 of 31

timeout messages too [48]. Lastly, it is consistent with results that can be expected from
Message-Oriented Middleware, where according to Korhonen, “Online messaging is in real time,
with message delivery typically occurring in seconds or even sub-seconds” [49]. Overall, it can be
said that this protocol that has been conceived for autonomous maritime vehicles shows a
comparable performance with some other already established solutions. Nevertheless, MDTP has
been explicitly conceived for transmission of maritime data using as little amount of bits as possible,
unlike all the other solutions that make use of a reliable transmission medium.

Table 6 shows that the performance of the system is satisfactory overall: clearly, the amount of
time employed to deliver data from a subscription varies within acceptable ranges of time if the data
transmission between vehicles is considered. Furthermore, the average and median values obtained
from the 50 successful attempts to establish communications are very close one to the other; this
implies that the outlier values have little weight in the measurements obtained, and therefore
confirms that the protocol offers a predictable performance. This is reinforced by the comparatively
reduced time difference between the minimum and maximum figures (minimum is slightly less than
64% of the maximum) that have been measured.

Table 6. Most prominent figures obtained from periodic data subscription measures

Request Attempt Time (s)
Maximum 5.58
Minimum 3.56
Average 4.2936
Median 4.365

Standard deviation 0.63554174

4.2.2. Testing Case 2: Task Execution Request

In this case, the middleware wants the vehicle to cover an area, so it publishes a PDU under the
topic “request task” specifying the needed data to perform such a task. As it can be seen in Figure 9,
the information that will be transferred this time will be more abundant than before, due to the fact
that it has to include the parameters used to perform the task (thus, since it implies covering an area,
the data implies information about how to maneuver the vehicle and area boundaries).

Figure 9. Appearance of the PDU used for area cover request. Figure 9. Appearance of the PDU used for area cover request.

Sensors 2017, 17, 1330 25 of 31

Since it is assumed that the vehicle is subscribed to the topic “request_task”, it processes the
petition and publishes the reports of such a task (under the topic “report_task”) as soon as these
reports are available. Figure 10 depicts the results of those reports. It can be noted how there is only
one field used now, which will be used to communicate whether the request was successful or not.

Figure 10. Appearance of the PDU used as an answer for the task reported.

The time that it takes the DDS proxy of the AUV to report about the execution of the task
demanded by the publish-subscription manager of the middleware varies between 3.6 and 5.71 s. In
order to ensure the kind of performance that could be obtained in case there were several task
execution requests from a collection of robots deployed in a system rather than just one, 50 more
requests attempts were made. As it happened with the previous use case, the range of times
obtained (even for outlier samples) was deemed as satisfactory in the simulations where the
different components were running under the PDUs described in this protocol. The results of this set
of tests have been portrayed in Figure 11. Overall, the performance resembles what was obtained in
the previous used case with a small increment in the time required for the requests to be attended,
which is to be expected due to the fact that one of the PDUs used for information interchanges is
longer than the ones that were used before.

Figure 11. Time measurements for task executions.

An analysis of the most prominent data that has been obtained and summarized in Table 7
shows similar remarks as the ones that were described in the previous example: maximum and
minimum values are included within ranges that are reasonable (minimum value is 63% of the
maximum value, which is roughly the same result that was obtained in the previous experiment)
and the average and median figures are very close one from each other (also demonstrated by the
low value of standard deviation, which shows low dispersion among the values retrieved while
fulfilling requests).

Figure 10. Appearance of the PDU used as an answer for the task reported.

Sensors 2017, 17, 1330 25 of 31

Since it is assumed that the vehicle is subscribed to the topic “request_task”, it processes the
petition and publishes the reports of such a task (under the topic “report_task”) as soon as these
reports are available. Figure 10 depicts the results of those reports. It can be noted how there is only
one field used now, which will be used to communicate whether the request was successful or not.

Figure 10. Appearance of the PDU used as an answer for the task reported.

The time that it takes the DDS proxy of the AUV to report about the execution of the task
demanded by the publish-subscription manager of the middleware varies between 3.6 and 5.71 s. In
order to ensure the kind of performance that could be obtained in case there were several task
execution requests from a collection of robots deployed in a system rather than just one, 50 more
requests attempts were made. As it happened with the previous use case, the range of times
obtained (even for outlier samples) was deemed as satisfactory in the simulations where the
different components were running under the PDUs described in this protocol. The results of this set
of tests have been portrayed in Figure 11. Overall, the performance resembles what was obtained in
the previous used case with a small increment in the time required for the requests to be attended,
which is to be expected due to the fact that one of the PDUs used for information interchanges is
longer than the ones that were used before.

Figure 11. Time measurements for task executions.

An analysis of the most prominent data that has been obtained and summarized in Table 7
shows similar remarks as the ones that were described in the previous example: maximum and
minimum values are included within ranges that are reasonable (minimum value is 63% of the
maximum value, which is roughly the same result that was obtained in the previous experiment)
and the average and median figures are very close one from each other (also demonstrated by the
low value of standard deviation, which shows low dispersion among the values retrieved while
fulfilling requests).

Figure 11. Time measurements for task executions.

An analysis of the most prominent data that has been obtained and summarized in Table 7 shows
similar remarks as the ones that were described in the previous example: maximum and minimum

Sensors 2017, 17, 1330 26 of 31

values are included within ranges that are reasonable (minimum value is 63% of the maximum value,
which is roughly the same result that was obtained in the previous experiment) and the average and
median figures are very close one from each other (also demonstrated by the low value of standard
deviation, which shows low dispersion among the values retrieved while fulfilling requests).

Table 7. Most prominent figures obtained from periodic data subscription measures.

Request Attempt Time (s)
Maximum 5.71
Minimum 3.6
Average 4.4002
Median 4.455

Standard deviation 0.59223027

4.2.3. Testing Case 3: Discovery of Control Data Terminal Component

This use case was introduced with the idea of having an accurate idea of the amount of time
required to check the existence of available vehicles present in a deployment. The system where MDTP
works is based on the usage of CDTs in order to know which autonomous maritime vehicles are
present (since an active CDT will mean that a vehicle has been deployed). While the PDU required to
make this possible is simpler than the others, as it can be seen in Figure 12, MDTP has been conceived
to work with two different versions of DDS when a system is deployed. Consequently, there are
several parameters that must be negotiated and will take a longer time to have that process completed.
Fortunately, it is a procedure that will only have to be done once during a mission, so it will not be
time consuming or disruptive from the bandwidth usage point of view.

Sensors 2017, 17, 1330 26 of 31

Table 7. Most prominent figures obtained from periodic data subscription measures.

Request Attempt Time (s)
Maximum 5.71
Minimum 3.6
Average 4.4002
Median 4.455

Standard deviation 0.59223027

4.2.3. Testing Case 3: Discovery of Control Data Terminal Component

This use case was introduced with the idea of having an accurate idea of the amount of time
required to check the existence of available vehicles present in a deployment. The system where
MDTP works is based on the usage of CDTs in order to know which autonomous maritime vehicles
are present (since an active CDT will mean that a vehicle has been deployed). While the PDU
required to make this possible is simpler than the others, as it can be seen in Figure 12, MDTP has
been conceived to work with two different versions of DDS when a system is deployed.
Consequently, there are several parameters that must be negotiated and will take a longer time to
have that process completed. Fortunately, it is a procedure that will only have to be done once
during a mission, so it will not be time consuming or disruptive from the bandwidth usage point of
view.

Figure 12. PDU used for CDT discovery.

The measurements involving a collection of 50 attempts to successfully prove this functionality
have been included here too. These are larger than the ones obtained previously due to the
negotiations that have to be done regarding the different DDS versions used in the designed system,
but discovery is carried out successfully in any case. Furthermore, no discovery requests or
interchanged data were lost during the testing activities. These features can be appreciated in Figure
13, where the results are shown in a graphical manner.

Figure 13. Time measurements for CDT discovery.

Figure 12. PDU used for CDT discovery.

The measurements involving a collection of 50 attempts to successfully prove this functionality
have been included here too. These are larger than the ones obtained previously due to the negotiations
that have to be done regarding the different DDS versions used in the designed system, but discovery
is carried out successfully in any case. Furthermore, no discovery requests or interchanged data were
lost during the testing activities. These features can be appreciated in Figure 13, where the results are
shown in a graphical manner.

With regards to the most prominent figures obtained from the set of run tests, despite been
higher than the ones obtained previously (due to the parameters that must be negotiated between the
two different implementations of DDS) they still show the same positive features that were shown
before. For example, the difference between the minimum and maximum time figures is still contained
(the minimum value is 62.9% of the maximum). What is more, as it can be seen in Table 8, the difference
between average (25.4436 s) and median (25.885 s) parameters is small enough to confirm the stability
of the protocol under the scenario that has been put forward.

Sensors 2017, 17, 1330 27 of 31

Sensors 2017, 17, 1330 26 of 31

Table 7. Most prominent figures obtained from periodic data subscription measures.

Request Attempt Time (s)
Maximum 5.71
Minimum 3.6
Average 4.4002
Median 4.455

Standard deviation 0.59223027

4.2.3. Testing Case 3: Discovery of Control Data Terminal Component

This use case was introduced with the idea of having an accurate idea of the amount of time
required to check the existence of available vehicles present in a deployment. The system where
MDTP works is based on the usage of CDTs in order to know which autonomous maritime vehicles
are present (since an active CDT will mean that a vehicle has been deployed). While the PDU
required to make this possible is simpler than the others, as it can be seen in Figure 12, MDTP has
been conceived to work with two different versions of DDS when a system is deployed.
Consequently, there are several parameters that must be negotiated and will take a longer time to
have that process completed. Fortunately, it is a procedure that will only have to be done once
during a mission, so it will not be time consuming or disruptive from the bandwidth usage point of
view.

Figure 12. PDU used for CDT discovery.

The measurements involving a collection of 50 attempts to successfully prove this functionality
have been included here too. These are larger than the ones obtained previously due to the
negotiations that have to be done regarding the different DDS versions used in the designed system,
but discovery is carried out successfully in any case. Furthermore, no discovery requests or
interchanged data were lost during the testing activities. These features can be appreciated in Figure
13, where the results are shown in a graphical manner.

Figure 13. Time measurements for CDT discovery.

Figure 13. Time measurements for CDT discovery.

Table 8. Most prominent figures obtained from CDT discovery measures.

Request Attempt Time (s)
Maximum 30.67
Minimum 19.28
Average 25.4436
Median 25.855

Standard deviation 2.24441871

4.2.4. Other Testing Activities

Among the other functionalities conceived to make use of MDTP for data transmissions, creating
a subscription to periodic mission status data is one of the most important. In this case, the middleware
wants to subscribe to the periodic mission status data sent by a vehicle, so it publishes a PDU under
the topic “request_mission” to request the vehicle to send the mission status every 5 s. The overall
structure of the PDU, as depicted in Figure 14, is oriented to information requests.

Sensors 2017, 17, 1330 27 of 31

With regards to the most prominent figures obtained from the set of run tests, despite been
higher than the ones obtained previously (due to the parameters that must be negotiated between
the two different implementations of DDS) they still show the same positive features that were
shown before. For example, the difference between the minimum and maximum time figures is still
contained (the minimum value is 62.9% of the maximum). What is more, as it can be seen in Table 8,
the difference between average (25.4436 s) and median (25.885 s) parameters is small enough to
confirm the stability of the protocol under the scenario that has been put forward.

Table 8. Most prominent figures obtained from CDT discovery measures.

Request Attempt Time (s)

Maximum 30.67
Minimum 19.28
Average 25.4436
Median 25.855

Standard deviation 2.24441871

4.2.4. Other Testing Activities

Among the other functionalities conceived to make use of MDTP for data transmissions,
creating a subscription to periodic mission status data is one of the most important. In this case, the
middleware wants to subscribe to the periodic mission status data sent by a vehicle, so it publishes a
PDU under the topic “request_mission” to request the vehicle to send the mission status every 5 s.
The overall structure of the PDU, as depicted in Figure 14, is oriented to information requests.

Figure 14. Appearance of the PDU used as a request for periodic mission status data.

As the vehicle is subscribed to the topic “request_mission”, it processes the petition and
publishes a mission state message (under the topic “report_mission”) with the corresponding data
every 5 s. The answer will provide an identifier with the status of the mission and another identifier
for the error. Its overall appearance is displayed in Figure 15.

Figure 15. Appearance of the PDU used as an answer for periodic mission status data.

The time that it takes the DDS proxy of the AUV to answer the request from the
publish-subscription manager of the middleware and send the mission status was measured as
varying between 3.75 and 4.60 s. As in test case 1, if several DDS proxy components were started, the

Figure 14. Appearance of the PDU used as a request for periodic mission status data.

As the vehicle is subscribed to the topic “request_mission”, it processes the petition and publishes
a mission state message (under the topic “report_mission”) with the corresponding data every 5 s.
The answer will provide an identifier with the status of the mission and another identifier for the error.
Its overall appearance is displayed in Figure 15.

The time that it takes the DDS proxy of the AUV to answer the request from the
publish-subscription manager of the middleware and send the mission status was measured as varying
between 3.75 and 4.60 s. As in test case 1, if several DDS proxy components were started, the request
send by the publish-subscription manager reaches all these components almost simultaneously.
Interestingly enough, the time required to make the data delivery is only slightly higher than the
one required in the first test. Most of the information sent in this test is contained in the DDS header,
which is mandatory to correctly implement the defined publish-subscribe mechanism and apply the
QoS settings.

Sensors 2017, 17, 1330 28 of 31

Sensors 2017, 17, 1330 27 of 31

With regards to the most prominent figures obtained from the set of run tests, despite been
higher than the ones obtained previously (due to the parameters that must be negotiated between
the two different implementations of DDS) they still show the same positive features that were
shown before. For example, the difference between the minimum and maximum time figures is still
contained (the minimum value is 62.9% of the maximum). What is more, as it can be seen in Table 8,
the difference between average (25.4436 s) and median (25.885 s) parameters is small enough to
confirm the stability of the protocol under the scenario that has been put forward.

Table 8. Most prominent figures obtained from CDT discovery measures.

Request Attempt Time (s)

Maximum 30.67
Minimum 19.28
Average 25.4436
Median 25.855

Standard deviation 2.24441871

4.2.4. Other Testing Activities

Among the other functionalities conceived to make use of MDTP for data transmissions,
creating a subscription to periodic mission status data is one of the most important. In this case, the
middleware wants to subscribe to the periodic mission status data sent by a vehicle, so it publishes a
PDU under the topic “request_mission” to request the vehicle to send the mission status every 5 s.
The overall structure of the PDU, as depicted in Figure 14, is oriented to information requests.

Figure 14. Appearance of the PDU used as a request for periodic mission status data.

As the vehicle is subscribed to the topic “request_mission”, it processes the petition and
publishes a mission state message (under the topic “report_mission”) with the corresponding data
every 5 s. The answer will provide an identifier with the status of the mission and another identifier
for the error. Its overall appearance is displayed in Figure 15.

Figure 15. Appearance of the PDU used as an answer for periodic mission status data.

The time that it takes the DDS proxy of the AUV to answer the request from the
publish-subscription manager of the middleware and send the mission status was measured as
varying between 3.75 and 4.60 s. As in test case 1, if several DDS proxy components were started, the

Figure 15. Appearance of the PDU used as an answer for periodic mission status data.

4.3. Discussion of the Development Work

As it has been shown, the undertaken development works show the feasibility of the protocol
that has been put forward. This version of the protocol includes more complex features that have
been codified for the integration stages of the SWARMs project, which constitutes the framework
used for the development of MDTP. Even with them, the performance of the protocol regarding
transmission of information at the data level has been proven satisfactory, as data are transmitted at a
pace acceptable by both the deployed hardware and any potential human operator. Even when more
complex information is transmitted, such as GPS coordinates, the protocol will handle the data without
issues or errors and will be transmitted and understood correctly at both ends of the communication.
In addition to these, there are some other features that have a major importance for the development
works that have been taken into account for the deployment of the protocol:

1. A nominal bitrate of 1 kbps is quite common for underwater communications. While limitations
on the bandwidth for underwater communications have been explained in this manuscript,
it must be taken into account that 1 kbit per second data transmission are the usual ones present
in acoustic communications. It is because of this reason that PDUs cannot be larger than a certain
limit of bytes, or otherwise data will be lost. At the same time, trying to send information in
single PDUs that do not relay on other ones to provide all the information requested is also
something to consider, as such a procedure will maximize the chances of having all the data
correctly delivered to the destination.

2. The simulator that has been used to mimic the behaviour of underwater communications in the
open sea is based on what is used in the SWARMs project, that is to say, the model S2C18/34
manufactured by Evologics (Berlin, Germany), which matches the required performance for
transmission of data over relatively large distances (up to 3.5 km) with data rate up to 13.8 kbps
(nominally). Although this bitrate will usually fall well below this figure when communications
take place in shallow waters (due to reflections in the acoustic waves), it will still be usable to
transmit information.

3. If one acoustic modem is responsible to transmit the periodic data sent by several AUVs, the
period for the transmission of periodic data will be no lower than 10 or 15 s in order to have the
acoustic modem working correctly. This is due to the fact that, due to the characteristics of the
environment where data transmissions take place, it is not advisable to establish periodic data
transfers at a rate of milliseconds, especially if there are several vehicles transmitting information
at the same time, because they might overall the modem, regardless of the strategy used to send
that information (for example, if too many PDUs gather at a point, the modem will give priority
to the first data received, in a First-In-First-Out fashion).

5. Conclusions and Future Works

A study of the existing protocols capable of offering compelling enough features, while at the
same time being used in the environment that has been described (underwater autonomous maritime
vehicles, low bandwidth availability, unreliability for transmissions at the data level), has been included
in Section 2. The open issues and challenges that have been found are dealt with by the protocol that

Sensors 2017, 17, 1330 29 of 31

has been thoroughly described in Section 3. Since the protocol is expected to be more than just a mere
design, implementation works have been carried out, as described in Section 4. As far as the authors
are concerned, a protocol tailored for the needs of transmissions at the data level among distributed
elements of a collection of maritime vehicles is not presented in any piece of literature. Furthermore,
its usefulness is guaranteed, as it is expected from it that will transfer information in a level of detail
and accuracy that is hardly matched by any other current proposal.

There are several future works to be undertaken, as part of the activities to be done in the SWARMs
project. The protocol will be tested with the plethora of vehicles expected to be used in the project,
which range from AUVs to ASVs or ROVs. Their differences in performance and computational
capabilities should not be significant for the protocol, as it is lightweight enough to guarantee that it
can be used in a transparent way by them. Furthermore, any partial modification that has to be done
on the protocol will be tackled, even though after collecting all the information that is required for the
application domain where it is used, changes or further extensions of MDTP seem unlikely. Finally,
even though there is inter-compatibility among the different versions of DDS, the usage of a single one
at both ends of the communication will be taken into account in order to optimize the procedure used
for automatic discovery of elements during data transfer. This could provide an important advantage
due to the fact that using a single DDS distribution will minimize the amount of time required for
automatic discovery, as it has been defined in the standard.

Acknowledgments: The research and development activities that have been included in this manuscript have
been performed as part of the SWARMs (Smart and Networking Underwater Robots in Cooperation Meshes)
1034 European research project. It is under Grant Agreement 1035 n.662107-SWARMs-ECSEL-2014-1 and is being
partially supported by the Spanish Ministry of Economy and Competitiveness (Ref: PCIN-2014-022-C02-02) and
the ECSEL JU. We would also like to thank Evologics GmbH for the support given when using their tools for the
testing activities.

Author Contributions: The contributions of the authors have been made like this: Jesús Rodríguez-Molina has
made contributions in the introduction and has reviewed half of the related works that have been included in the
manuscript. He has also provided information in the modelling considerations and description of the Maritime
Data Transfer Protocol, its performance and the conclusions that can be extracted from the development works
done. Belén Martínez has provided extensive information about the PDU structure that has been defined in
Section 3, as well as about the overall structure of the manuscript and the implementation works that have been
included in the manuscript. Sonia Bilbao has contributed with information regarding the serialized data and the
information to be exchanged in the possible scenarios where the protocol is used. Tamara Martín-Wanton has
delivered content for the introduction and the other half of the related works that have been reviewed in order to
conceive the PDUs of the protocol.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rajkumar, R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-physical systems: The next computing revolution.
In Proceedings of the 47th ACM/IEEE Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010.

2. Bradley, J.; Atkins, E. Optimization and Control of Cyber-Physical Vehicle Systems. Sensors 2015, 15,
23020–23049. [CrossRef] [PubMed]

3. Hernández, J.D.; Istenič, K.; Gracias, N.; Palomeras, N.; Campos, R.; Vidal, E.; García, R.; Carreras, M.
Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments. Sensors
2016, 16, 1174. [CrossRef] [PubMed]

4. Mei, J.H.; Arshad, M.R. COLREGs based navigation of riverine Autonomous Surface Vehicle. In Proceedings
of the 2016 IEEE International Conference on Underwater System Technology: Theory and Applications
(USYS), Penang, Malaysia, 13–14 December 2016.

5. Koo, J.; Jung, S.; Myung, H. A jellyfish distribution management system using an unmanned aerial vehicle
and unmanned surface vehicles. In Proceedings of the 2017 IEEE Underwater Technology (UT), Busan,
Korea, 21–24 February 2017.

6. Caraivan, M.; Dache, V.; Sgârciu, V. Simulation Scenarios for Deploying Underwater Safe-Net Sensor
Networks Using Remote Operated Vehicles: Offshore Exploration Constructions Models and Sensor

http://dx.doi.org/10.3390/s150923020
http://www.ncbi.nlm.nih.gov/pubmed/26378541
http://dx.doi.org/10.3390/s16081174
http://www.ncbi.nlm.nih.gov/pubmed/27472337

Sensors 2017, 17, 1330 30 of 31

Deployment Methods. In Proceedings of the 2013 19th International Conference on Control Systems
and Computer Science, Bucharest, Romania, 29–31 May 2013.

7. Li, N.; Martínez, J.-F.; Rodríguez-Molina, J.; Meneses Chaus, J.M.; Eckert, M. A Survey on Underwater
Acoustic Sensor Network Routing Protocols. Sensors 2016, 16, 414. [CrossRef] [PubMed]

8. Martins, R. Disruption/delay tolerant networking with low-bandwidth underwater acoustic modems.
In Proceedings of the 2010 IEEE/OES Autonomous Underwater Vehicles, Monterey, CA, USA,
1–3 September 2010.

9. Chitre, M.; Shahabudeen, S.; Stojanovic, M. Underwater Acoustic Communication: Its Challenges and
Research Opportunities. Mar. Technol. Soc. J. 2008, 42, 14. [CrossRef]

10. Lloret, J.; Sendra, S.; Ardid, M.; Rodrigues, J.J.P.C. Underwater Wireless Sensor Communications in the
2.4 GHz ISM Frequency Band. Sensors 2012, 12, 4237–4264. [PubMed]

11. Qureshi, U.M.; Shaikh, F.K.; Aziz, Z.; Shah, S.M.; Sheikh, A.A.; Felemban, E.; Qaisar, S.B. RF Path and
Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments.
Sensors 2016, 16, 890. [CrossRef] [PubMed]

12. Lyalinov, M.A. Scattering of acoustic waves by a sector. Wave Motion 2013, 50, 739–762. [CrossRef]
13. Stojanovic, M. Underwater Acoustic Communications. 2003. Available online: http://millitsa.coe.neu.edu/

sites/millitsa.coe.neu.edu./files/ency3.pdf (accessed on 7 June 2017).
14. Liu, L.; Zhou, S.; Cui, J.-H. Prospects and problems of wireless communication for underwater sensor

networks. Wirel. Commun. Mob. Comput. 2008, 8, 977–994.
15. SWARMs Consortium. SWARMs Early Trials. 2016. Available online: http://www.swarms.eu/PDFs/

Newsl/SWARMs_Newsletter2_January2017.pdf (accessed on 17 April 2017).
16. Beaujean, P.P.J.; Carlson, E.A.; Spruance, J.; Kriel, D. HERMES—A high-speed acoustic modem for real-time

transmission of uncompressed image and status transmission in port environment and very shallow water.
In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008.

17. Naiad Team. Naiad for a Better Future. 2017. Available online: http://naiad.se/ (accessed on 17 April 2017).
18. Hydroid Inc. New Generation REMUS 100. 2017. Available online: https://www.hydroid.com/

NewGenREMUS (accessed on 17 April 2017).
19. ECA Group. ECA A9-M. 2017. Available online: http://eca-media.ecagroup.com/player/pdf?key=

c618ddf7338ea3f9c7c392bc127ebcb5 (accesssed on 17 April 2017).
20. SWARMs Consortium. SWARMs: Smart and Networking UnderWAter Robots in Cooperation Meshes. 2015.

Available online: http://www.swarms.eu/ (accessed on 2 June 2017).
21. Tian, G.; Camtepe, S.; Tian, Y.C. A Deadline-Constrained 802.11 MAC Protocol With QoS Differentiation for

Soft Real-Time Control. IEEE Transac. Ind. Inf. 2016, 12, 544–554.
22. Internet Engineering Task Force (IETF). Request For Comments 7252—The Constrained Application Protocol RFC

7252(CoAP); Internet Engineering Task Force (IETF): Bremen, Germany, 2014.
23. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures. 2000. Available

online: http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf (accessed on
8 December 2016).

24. AMQP Consortium. AMQP 1.0 Becomes OASIS Standard. 2012. Available online: http://www.amqp.org/
node/102 (accessed on 2 June 2017).

25. Apache Software Foundation. Apache Qpid. 2017. Available online: https://qpid.apache.org/index.html
(accessed on 2 June 2017).

26. Pivotal Software Inc. RabbitMQ. 2017. Available online: https://www.rabbitmq.com/ (accessed on
20 April 2017).

27. Qian, L.; Zhang, S.; Liu, M.; Zhang, Q. A MACA-based power control MAC protocol for Underwater Wireless
Sensor Networks. In Proceedings of the 2016 IEEE/OES China Ocean Acoustics (COA), Harbin, China,
9–11 January 2016.

28. Chenn-Jung, H.; Yu-Wu, W.; Hsiu-Hui, L.; Chin-Fa, L.; Kai-Wen, H.; Tun-Yu, C. A power-efficient routing
protocol for underwater wireless sensor networks. Appl. Soft Comput. 2011, 11, 2348–2355.

29. MQTT Consortium. MQTT Version 3.1.1. 2014. Available online: http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/os/mqtt-v3.1.1-os.pdf (accessed on 8 December 2016).

30. Locke, D. MQ Telemetry Transport (MQTT) V3.1 Protocol Specification; IBM DeveloperWorks Technical Library:
Armonk, NY, USA, 2010.

http://dx.doi.org/10.3390/s16030414
http://www.ncbi.nlm.nih.gov/pubmed/27011193
http://dx.doi.org/10.4031/002533208786861263
http://www.ncbi.nlm.nih.gov/pubmed/22666029
http://dx.doi.org/10.3390/s16060890
http://www.ncbi.nlm.nih.gov/pubmed/27322263
http://dx.doi.org/10.1016/j.wavemoti.2013.02.001
http://millitsa.coe.neu.edu/sites/millitsa.coe.neu.edu./files/ency3.pdf
http://millitsa.coe.neu.edu/sites/millitsa.coe.neu.edu./files/ency3.pdf
http://www.swarms.eu/PDFs/Newsl/SWARMs_Newsletter2_January2017.pdf
http://www.swarms.eu/PDFs/Newsl/SWARMs_Newsletter2_January2017.pdf
http://naiad.se/
https://www.hydroid.com/NewGenREMUS
https://www.hydroid.com/NewGenREMUS
http://eca-media.ecagroup.com/player/pdf?key=c618ddf7338ea3f9c7c392bc127ebcb5
http://eca-media.ecagroup.com/player/pdf?key=c618ddf7338ea3f9c7c392bc127ebcb5
http://www.swarms.eu/
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.amqp.org/node/102
http://www.amqp.org/node/102
https://qpid.apache.org/index.html
https://www.rabbitmq.com/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

Sensors 2017, 17, 1330 31 of 31

31. Thangavel, D.; Ma, X.; Valera, A.; Tan, H.-X.; Tan, C.K.-Y. Performance evaluation of MQTT and CoAP via a
common middleware. In Proceedings of the IEEE Ninth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), Singapore, 21–24 April 2014; p. 6.

32. Karagiannis, V.; Chatzimisios, P.; Vazquez-Gallego, F.; Alonso-Zarate, J. A survey on application layer
protocols for the Internet of Things. Trans. IoT Cloud Comput. 2015, 3, 11–17.

33. Andy Stanford-Clark, H.L.T. MQTT For Sensor Networks (MQTT-SN) Protocol Specification; IBM: Armonk, NY,
USA, 2013.

34. Tolle, G. Internet Engineering Task Force (IETF). In Embedded Binary HTTP (EBHTTP); 2013; Available online:
https://tools.ietf.org/html/draft-tolle-core-ebhttp-00 (accessed on 2 June 2017).

35. Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence; 2014;
Available online: https://xmpp.org/rfcs/rfc3921.html (accessed on 2 June 2017).

36. Attarwala, A.; Jagdish, D.; Fischer, U. Real Time Collaborative Video Annotation Using Google App Engine
and XMPP Protocol. In Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing,
Washington, DC, USA, 4–9 July 2011.

37. Bendel, S.; Springer, T.; Schuster, D.; Schill, A.; Ackermann, R.; Ameling, M. A service infrastructure
for the Internet of Things based on XMPP. In Proceedings of the 2013 IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM Workshops), San Diego, CA, USA,
18–22 March 2013.

38. Tian, L.; OMA Device Management Working Group (OMA DM WG). Lightweight M2M (OMA LWM2M), 2012.
39. Gholkar, V. An Introduction to IoT Protocols; O’Reilly: Portland, OR, USA, 2014.
40. Díaz, V.H.; Martínez, J.F.; Cuerva, A.; Rodríguez-Molina, J.; Rubio, G.; Jara, A. Semantic as an Interoperability

Enabler in Internet of Things. In Internet of Things: Converging Technologies for Smart Environments and
Integrated Ecosystems; Vermesan, O., Friess, P., Eds.; River Publishers: Aalborg, Denmark, 2013.

41. Internet Engineering Task Force RFC 7011. Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of Flow Information. 2013. Available online: https://tools.ietf.org/html/rfc7011
(accessed on 2 June 2017).

42. Object Management Group. Documents Associated with The Real-Time Publish-Subscribe Wire Protocol
DDS Interoperability Wire Protocol Specification, V2.2. 2016. Available online: http://www.omg.org/spec/
DDSI-RTPS/2.2/ (accessed on 25 February 2017).

43. Twin Oaks Computing Inc. CoreDX DDS Developer Documentation. Java Programmer's Guide; Twin Oaks
Computing Inc.: Castle Rock, CO, USA, 2016.

44. Prismtech Inc. Vortex OpenSplice Deployment Guide; Prismtech Inc.: Stirling, UK, 2016.
45. Real-Time Innovations. RTI Connext DDS. 2017. Available online: https://www.rti.com/products

(accessed on 25 February 2017).
46. Kebkal, O.G.; Kebkal, K.G.; Komar, M. Development of upper-layer protocols with S2CR acoustic modems

emulator. In Proceedings of the Conference on Underwater Communications: Channel Modelling and
Validation, UCOMMS, Sestri Levante, Italy, September 2012.

47. Oracle, Inc. Oracle®Fusion Middleware. Performance and Tuning Guide; 11g Release 1 (11.1.1); Oracle, Inc.:
Redwood Shores, CA, USA, 2012.

48. Red Hat, Inc. Nest Practices for Performance Tuning. JBoss Enterprise Application Platform 5.
2010. Available online: https://www.redhat.com/f/pdf/JB_JEAP5_PerformanceTuning_wp_web.pdf
(accessed on 2 June 2017).

49. Korhonen, M. Message Oriented Middleware (MOM); Internetworking Seminar; Department of Computer
Science, Helsinki University of Technology: Espoo, Finland, 2015.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://tools.ietf.org/html/draft-tolle-core-ebhttp-00
https://xmpp.org/rfcs/rfc3921.html
https://tools.ietf.org/html/rfc7011
http://www.omg.org/spec/DDSI-RTPS/2.2/
http://www.omg.org/spec/DDSI-RTPS/2.2/
https://www.rti.com/products
https://www.redhat.com/f/pdf/JB_JEAP5_PerformanceTuning_wp_web.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Cooperating Autonomous Maritime Vehicles as a Cyber-Physical System
	The Challenging Nature of Communications in Maritime Environments
	Paper Contributions and Structure

	Related Works
	A Deadline-Constrained 802.11 MAC Protocol
	Constrained Application Protocol (CoAP)
	Advanced Message Queuing Protocol (AMQP)
	Multiple Access with Collision Avoidance (MACA)-Based Power Control
	A power-Efficient Routing Protocol for Underwater Wireless Sensor Networks
	Message Queue Telemetry Transport (MQTT)
	MQTT-SN (Message Queue Telemetry Transport for Sensor Networks)
	Embedded Binary HTTP (EBHTTP)
	Extensible Messaging and Presence Protocol (XMPP)
	Lightweight Machine-to-Machine Protocol
	Open Issues and Challenges

	Description of the Maritime Data Transfer Protocol
	Modelling Considerations
	Taxonomy of Messages
	Messages from the Maritime Data Transfer Protocol
	Serialized Data

	Implementation and Testing Activities on MDTP
	Implementation Works
	Specific PDU Tests
	Test Case 1: Subscription to Periodic Environmental Data
	Testing Case 2: Task Execution Request
	Testing Case 3: Discovery of Control Data Terminal Component
	Other Testing Activities

	Discussion of the Development Work

	Conclusions and Future Works

