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Abstract: Accurately quantifying the variation of urban green space is the prerequisite for fully 
understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of 
urban green space is still insufficient due to multiple challenges that remain in mapping green 
spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to 
demonstrate an analysis methodology that integrates sub-pixel mapping technology and 
landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical 
urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to 
time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric 
analysis was then employed to characterize the variation pattern of urban green space patches. 
Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a 
more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of 
urban greenness occurred in the city core from 2002 to 2013, characterized by the significant 
increase of small-sized green space patches. The green space network has been formed as a 
consequence of new urban greening strategies in Hangzhou. These strategies have greatly 
fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis 
further revealed a distinct pattern of urban green space landscape variation in the process of 
urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our 
approach revealed the subtle variation of urban green space patches which are otherwise easy to 
overlook. Findings from this study will help us to refine our understanding of the evolution of 
heterogeneous urban environments. 
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1. Introduction 

Urbanization is dominated by population growth, industrialization, and land resources, and 
has been associated with a series of environmental issues, such as heat islands [1], urban flooding [2], 
and habitat loss [3]. Urban green space (UGS) is represented by all vegetation cover in and around 
cities, including urban forest, grassland, parks, green roofs, gardens, urban farms, and street trees, 
and is widely believed to provide critical ecosystem services and play a vital role in mitigating the 
negative impacts brought about by urbanization [4]. These include air pollution reduction [5], storm 
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water runoff interception [6], energy use reduction [7], noise reduction [8], and habitat preservation 
[9]. Moreover, the presence of UGS is believed to provide numerous psychological benefits, such as 
relieving stress and anxiety [10] and promoting social cohesion [11]. Studies have also emphasized 
the importance of aesthetic views and restorative opportunities provided by UGS for urban 
residents [12,13]. 

Urbanization exerts a complicated influence on UGS [14–17]. Unplanned urban expansion 
decreases UGS area and degrades the quality of natural vegetation. The expansion of built-up areas 
generally destroys a great amount of the original vegetation cover and later replaces it with new 
artificial green patches, resulting in a high turnover rate for vegetation cover [18]. Vegetation in less 
developed regions is often more isolated and fragmented because economic growth and 
urbanization is regarded as a higher priority than maintaining urban vegetation [19]. However, in 
arid or semiarid cities, urbanization may result in an increase of vegetation by replacing primeval 
landscape with vegetated human settlements [20]. Since the mid-1980s, China has experienced 
arguably the most widespread and intensive urbanization in history, especially in the Yangtze River 
Delta, characterized not only by its enormous scale but also by unparalleled land use change [21]. 
More importantly, this process will not be halted in the short term. The latest National New-type 
Urbanization Plan of China projected that the proportion of permanent urban residents of China’s 
total population will rise from 35.7% in 2013 to reach 60% by 2020 [22]. The remaining green space 
within cities is increasingly recognized as being vital to the amelioration of urban living  
conditions [14,16]. 

Having realized the importance of urban green space, a number of global cities have set 
long-term strategies and policies to incorporate urban green space to help achieve a high-quality 
built environment. London has constructed a zonal greenbelt to shape patterns of urban 
development and create a green network by connecting green patches through a green wedge, green 
galleries, and channels to provide valuable habitat for flora and fauna [23]. Singapore has put 
forward the construction concept of being the “Garden City”, and set goals constantly in different 
development periods [24]. The Japanese government has practiced a controlled green land system 
which limits development area with laws and regulations. In addition, they have also adopted 
auxiliary systems such as loss compensation, land expropriation, and tax cuts to boost the 
enthusiasm of citizens to protect the green space [25]. Similarly, various green space planning 
strategies have been put in place by local governments to promote sustainable development [26,27]. 

There is great debate regarding the reliability and use of data approaches to quantify and track 
the changes, trends, and patterns of UGS over long periods. Owning to the increasing availability of 
image data from multiple sources, the quantification of spatiotemporal patterns for green space 
frequently relies on remote sensing [28–30]. However, data such as Lidar and high-resolution 
images are still not easily accessible for many regions or users due to the high costs of data 
acquisition. Moreover, it is usually impractical to provide full coverage of extensive metropolitan 
areas, with limited data available over long periods. With the advantages of global availability, 
repetitive data acquisition, and long-term consistency, Landsat series satellites have become the best 
compromise to overcome these limitations [14,18,26,31]. 

Green spaces within cities are generally highly fragmented and heterogeneous, characterized 
by abundant dispersed patches [31,32]. The commonly-used 30 m resolution Landsat data may fail 
to capture most of these small UGS patches (for example, lawns, street trees, residential yards), as 
well as their changes [30,33]. In recent years, multiple endmember spectral mixture analysis 
(MESMA) has provided a great advantage to overcoming this problem associated with using 
Landsat data to map urban components in highly heterogeneous urban environments [34–37]. 

Understanding the patterns of UGS is a complex issue, and utilizing landscape metrics analysis 
can be extremely helpful because of its ability to reveal the spatial features and changing processes 
in urban structures [38,39]. The size, accessibility, and connectivity of UGS are deemed to have a 
significant impact on the well-being of urban residents and the maintenance of biodiversity. 
Coupling remote sensing and landscape metrics analysis can provide valuable information on the 
spatial characteristics of UGS distribution and variation under urban development. 
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This study presents a new approach that combines sub-pixel mapping technology and 
landscape analysis with long-term time series Landsat images to describe the detailed pattern of 
UGS variation in a heterogeneous urban environment. The method involves two steps. First, 
MESMA was applied to time series Landsat images to estimate vegetation cover fraction (VCFs) at 
the sub-pixel level. Next, landscape metric analysis was applied to characterize the changing 
spatial-temporal pattern of the UGS. We implemented this approach to study Hangzhou during 
1990, 2002, and 2013 in order to quantify the long-term spatiotemporal dynamics of UGS and explore 
its response to rapid urbanization and urban greening policy. 

2. Methods 

2.1. Study Site 

Hangzhou lies about 180 km southwest of Shanghai and is one of the key cities within the 
Yangtze River Delta region. The study covers an area of around 3068 km2 with a population of 4.09 
million. Hangzhou is a notable international garden city and one of China’s most popular tourist 
venues owing to its enchanting natural beauty and rich cultural heritage. With the rise of the 
Yangtze River Delta region as an emerging global urban region since the 1990s, Hangzhou has 
witnessed a rapid growth in economy and population [40]. This makes Hangzhou a typical case 
study for exploring the evolution of UGS associated with rapid urbanization. 

2.2. Data and Preprocessing  

Landsat series images have been widely used in urban studies [18,41]. The Landsat-8 OLI image 
obtained on 19 July 2013 and Landsat-5 TM images obtained on 23 September 2002 and 8 October 
1990 were used to carry out the study. Orthorectified data with 30 m spatial resolution (Path: 119, 
Row: 39) were acquired from USGS [42], with special consideration of vegetation phenology. 
Subsequently, fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) was applied 
to reduce atmospheric distortion and convert the digital numbers to surface reflectance. Finally, the 
study area was extracted based on the administrative boundary of the city. For endmember selection 
and accuracy assessment, two 0.5 m-resolution color aerial photographs acquired in 26 September 
2002 and 17 August 2013 were collected from Google Earth. 

2.3. Vegetation Fraction Retrieval 

The MESMA procedure was implemented to correctly map the large number of small, 
fragmented vegetation patches that would otherwise be considered non-vegetated classes in 
medium resolution images [18]. The MESMA approach assumes that a landscape is formed from 
continuously varying proportions of several idealized surface materials called endmembers [34,43]. 
Its ability to incorporate a larger number of endmembers and allow the number and type of 
endmembers to vary for each pixel is critical for modeling urban components, especially in Chinese 
cities where a great variation of spectra materials exists due to rapid expansion and ubiquitous 
urban reconstruction [34,43–45]. 

All spectra collected from images were categorized into five endmembers: vegetation, 
impervious surfaces, soil, water, and shade. After that, a multi-complexity model procedure which 
contained two-, three-, and four-endmember models was applied to effectively and efficiently model 
the vegetation abundance in each pixel. Finally, the best-fit model for each pixel was chosen from a 
large number of candidate models via several criteria, and the vegetation fraction was calculated to 
generate vegetation coverage fraction maps. Accuracy assessment was conducted by comparing the 
VCFs with “true” vegetation coverage, visually interpreted from high-resolution aerial photographs. 
Two hundred random samples were generated for 2002 and 2013; each comprises an interpretation 
area of 90 × 90 m2. We only implemented accuracy assessments for 2002 and 2013 because a reference 
image for 1990 was unavailable. The coefficient of determination (R2), the root mean squared error 
(RMSE), and the systematic error (SE) were used to evaluate the accuracy and bias of derived VCFs 
[46]. Further details of this method can be found in our previous work [47]. 
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2.4. Green Space Landscape Metric Analysis 

Sub-pixel-based VCFs derived from MESMA possess physical meaning and provide a feasible 
way to examine the dynamics of the UGS pattern [48,49]. All the VCF images were uniformly 
reclassified into five-class thematic green space patches according to threshold: non-coverage 
(0–0.1), low coverage (0.1–0.3), medium coverage (0.3–0.6), high coverage (0.6–0.9), and full-coverage 
(0.9–1). Full-coverage pixels mainly represented green space patches such as large parks, vast lawns, 
farmland, and forests. The area of UGS patches was much larger than the pixel size (900 m2); 
therefore, each pixel was entirely covered by vegetation. Pixels designated as no coverage 
represented areas with little vegetation—usually impervious areas. Those labelled low coverage 
stood for areas containing small patches of vegetation, such as street and residential greening. 

Based on the five-class green space coverage maps, a set of landscape metrics was calculated in 
FRAGSTATS 3.3 [50] to characterize the dynamic of UGS in consideration of domination, scattering, 
aggregation, and diversity. Five commonly-used landscape metrics (Table 1), including percentage 
of landscape (PLAND), patch density (PD), largest patch index (LPI), aggregation index (AI), and 
Shannon’s diversity index (SHDI), were applied to all coverage types as a whole (i.e., at the 
landscape level). Moreover, PLAND, PD, and LPI were also used to examine the spatial patterns of 
different coverage classes individually (i.e., at the class level). 

Table 1. Descriptions of landscape metrics used in this study. 

Landscape Metrics Unit Range Justification 

Percentage of landscape (PLAND) Percent 0–100 
A general index which depicts the relative 

abundance of each vegetation coverage type 

Patch density (PD) Number per 100 hectares >0 Index of fragmentation 

Largest patch index (LPI) Percent 0–100 Index of fragmentation and dominance 

Aggregation index (AI) Percent 0–100 Index of spatial aggregation 

Shannon’s diversity index (SHDI) None ≥0 Index of diversity 

 

Figure 1. Maps showing (a) the location of Zhejiang Province in China; (b) the location of Hangzhou 
City; and (c) the study area, Hangzhou city, with the old city core and two study transects labeled. 
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The analysis was applied to the whole study area, including the old city core and urban–rural 
gradient. The boundary of the old city core was digitized through visual interpretation of the TM 
image of 1990. Additionally, two transects from north to south and west to east were used to derive 
the most significant changing pattern of UGS along the urban–rural gradient (Figure 1). Each 
transect had three adjacent rows, each 2 km wide. Both class- and landscape-level metrics were 
computed using a 3 × 3 (that is, 6 × 6 km2) overlapping moving window across the transect, in order 
to smooth out the noise caused by fine-scale and local variations [51]. 

3. Results 

3.1. Accuracy Assessment 

The presented MESMA approach produced satisfactory accuracy in VCF. The RMSE was 7.50% 
and 10.38% for 2013 and 2002, respectively (Figure 2). Furthermore, the high R2 values ranged from 
0.938 to 0.881, indicating a good fit between the modeled fractions and the “true” fractions. The low 
SE value (0.267% for 2013 and 0.320% for 2002) showed no significant under- or overestimation 
among the modeled VCFs. 

 
Figure 2. Results of the vegetation cover fraction (VCF) accuracy assessment for 2002 and 2013:  
(a) vegetation fraction scatter plot for 2013; (b) vegetation fraction residuals for 2013; (c) vegetation 
fraction scatter plot for 2002; and (d) vegetation fraction residuals for 2002. 

To further compare the MESMA procedure with the traditional pixel-based classification 
method, we applied support vector machine (SVM) classification to Landsat 8 OLI images from 2013 
based on the spectra samples collected for MESMA (i.e., vegetation, soil, impervious, water), and 
merged the results into vegetation and non-vegetation categories (Figure 3). The MESMA approach 
and traditional pixel-based classifications such as SVM both work well for UGS patches of large 
areas (e.g., urban forest, large lawns, and farmland). However, pixels where vegetation covers were 
less than 100%—such as large green space patches with remaining bare soil—were overvalued by 
the traditional pixel-based classification method and simply categorized into the vegetation class. 
More importantly, only limited large UGS patches can be recognized by the traditional pixel-based 
classification method; the widespread small UGS patches such as residential yards, pocket parks, 
roadside trees, and green roofs were virtually ‘‘invisible’’ at worst, and greatly underestimated at 
best [33]. 

Because of the limited good-quality high-resolution images for 1990, we only implemented 
accuracy assessments for 2002 and 2013. The main factor affecting the accuracy of MESMA is the 
careful selection of representative spectra for endmembers. These spectra were generally selected 
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from pixels representing pure land cover, such as from large patch urban forests, golf lawns, farms, 
and so on, which were relative easy to identify in Landsat images. Other parameters and procedures 
used in MESMA were consistent through the 3 years studied. Therefore, we assumed that the results 
from the 1990 fraction image would have acceptable accuracy if the vegetation fraction images for 
2002 and 2013 were reasonably accurate. Nevertheless, the lack of an accuracy assessment for the 
1990 fraction image is a limitation of this study. 

 

Figure 3. Comparisons between results from multiple endmember spectral mixture analysis 
(MESMA) and traditional pixel-based classification in 2013: (a) Landsat 8 OLI (RGB: 654; July 19, 
2013); (b) high-resolution color-composition aerial photographs (August 17, 2013); (c) vegetation 
fraction from MESMA; and (d) vegetation classification result from SVM. 

3.2. General Dynamics of Green Space Landscape Pattern in Hangzhou City 

The green space landscape in Hangzhou experienced a drastic change in terms of composition 
and configuration in the past 20 years (Figure 4a–c). In 1990, full-coverage green space patches 
dominated and covered 69.76% of the study area. Since then, a continual reduction in UGS shrank 
sharply to 33.81% in 2013 (Table 2). Correspondingly, the PLAND for the non-coverage class rose 
from 4.5% in 1990 to 22.08% in 2013. Most green space losses occurred in peri-urban regions, mainly 
due to the expansion of built-up areas [40]. The most conspicuous change of LPI occurred in the 
full-coverage class, which declined sharply from 11.69 in 1990 to 4.05 in 2013, indicating heavy 
disturbances to full-coverage green space patches. Along with the urbanizing process, the 
predominant agriculture landscape was progressively replaced by an urban landscape, resulting in 
mixed land use and a chaotic landscape, as indicated by the increasing SHDI (Table 3). Meanwhile, 
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the constant increase of PD and constant decrease of AI demonstrated a more fragmented and 
isolated vegetation landscape at the regional scale. 

 
Figure 4. Vegetation coverage class maps of Hangzhou for (a) 1990, (b) 2002, and (c) 2013. 

Table 2. Spatial metrics for the whole study area and the old city core at class level. 

Year Class 
The Whole Study Area The Old City Core 
PLAND PD LPI PLAND PD LPI 

1990 

Non 4.50 8.00 0.43 56.42 19.42 22.88 
Low 3.80 23.46 0.00 17.00 91.97 0.09 

Medium 10.31 44.77 0.21 18.09 75.80 0.10 
High 11.63 48.32 0.03 7.05 39.06 0.14 
Full 69.76 7.28 11.69 1.44 5.80 0.08 

2002 

Non 11.40 17.81 0.76 59.84 20.98 29.87 
Low 4.91 26.63 0.01 14.58 87.31 0.04 

Medium 10.90 54.58 0.02 13.48 78.51 0.05 
High 22.72 46.88 0.22 10.81 38.61 0.25 
Full 50.06 14.80 11.80 1.30 5.82 0.06 

2013 

Non 22.08 19.76 0.69 41.77 31.46 5.60 
Low 9.54 46.10 0.03 24.95 84.21 0.20 

Medium 15.69 66.07 0.01 20.16 89.40 0.08 
High 18.87 45.14 0.05 11.43 48.36 0.08 
Full 33.81 13.42 4.05 1.69 7.25 0.31 
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Table 3. Spatial metrics for the whole study area and the old city core at landscape level. 

Region Year 
Spatial Metrics 

PD LPI AI SHDI 

The whole study area 
1990 131.84 11.69 47.38 1.00 
2002 160.71 11.60 31.31 1.32 
2013 190.49 4.05 21.35 1.53 

The city core 
1990 232.06 22.88 57.27 1.18 
2002 231.23 29.87 56.82 1.16 
2013 260.68 5.60 50.67 1.35 

Compared with the whole study area, the city core has a much higher proportion of 
non-coverage green space (Figure 5a–c). In 1990, about 56.42% of the old city center was covered by 
the non-coverage class, and there were very limited large green patches, most of which lay at the 
urban fringe and West Lake Scenic Spots. In contrast to the study area as a whole, there were no 
significant changes in UGS configuration observed in the first period; slight variations of PLAND, 
SHDI, and AI—indicating the greening policy in this period—showed very limited effect on the 
urban environment. Dominant non-vegetation coverage patches in the city core were enlarged due 
to infill development, as indicated by the peaking value of PLAND and LPI for non-coverage class in 
2002. 

 
Figure 5. Vegetation coverage class maps of the city core for (a) 1990, (b) 2002, and (c) 2013. 

A remarkable increase of PLAND for low- and medium-coverage classes was observed from 
2002 to 2013, mainly due to emerging small-sized green patches in the city center. Meanwhile, the 
significant decrease of PLAND and LPI for the non-coverage class indicated that newly-built green 
space fragmented built-up areas that had little vegetation coverage before. The formation of green 
space networks resulted in a more diverse and heterogeneous UGS landscape, as evidenced by the 
significant decrease of AI and increase of SHDI. 
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3.3. Gradient Analysis of the Study Area Using Landscape Metrics 

Figure 6 shows the spatiotemporal change of hierarchical UGS patches along the transect over 
the past two decades. We presented only the result pertaining to the north–south transect in this 
section because the west–east and north–south transects showed similar patterns. 

The changing of the relative dominance of hierarchical UGS patches indicated a changing land 
use pattern along the transect, shifting from natural landscape to artificial landscape. In 1990, the 
PLAND for the non-coverage class dominated in the urban center (−4 km to 4 km), accounting for 
nearly 50%, and there were very limited high-coverage and full-coverage classes. The PLAND for 
the full-coverage class gradually increased with distance, and became dominant on both ends of the 
transect. The increasing dominance of PLAND for the non-coverage class and the corresponding 
decrease of PLAND for the full-coverage class from 1990 to 2002 exhibit the hotspot of urban 
expansion in the northward direction. The Qiantang River lying to the south of the city center 
limited urban expansion, which explains the relatively insignificant change of vegetation coverage 
in this direction. During this period, most change was found in the urban periphery and was 
characterized by vegetation loss. 

 
Figure 6. Gradient changes in selected metrics in the north to south transect in 1990, 2002, and 2013: 
(a) percentage of landscape for the non-coverage class; (b) percentage of landscape for the 
low-coverage class; (c) percentage of landscape for the medium-coverage class; (d) percentage of 
landscape for the high-coverage class; (e) percentage of landscape for the full-coverage class;  
(f) patch density (number of patches/100 ha); (g) largest patch index (%); (h) aggregation index (%); 
(i) Shannon’s diversity index. The values were obtained from each sampling cell from north to south. 
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With the implementation of new urbanization strategies crossing the Qiantang River and 
developing southward, a very modern and rapidly developing sub city was built along the south 
bank of the Qiantang River. This is indicated by significantly increasing PLAND for the 
non-coverage class and decreasing PLAND for the full-coverage class, from 8 km to 16 km after 2002. 
Such a dramatic shift in vegetation coverage demonstrates the new hotspot of urban expansion in 
the southward direction. At the same time, a remarkable increase of PLAND for the low-coverage 
class appeared (from −8 km to 8 km), accompanied by the decreasing value of PLAND for the 
non-coverage class, indicating a conversion from non-coverage land to low-coverage land due to an 
increase of small-sized green patches in the city center. 

In 1990, the LPI metric peaked at the urban center, fell swiftly in the urban fringe (−6 km and 6 
km), and rose again in the outer region, with the increasing distance being a result of the 
full-coverage class gradually becoming dominant. Because of urban expansion, the remaining green 
space in the urban fringe was occupied, and more and larger patches of built-up area were formed, 
as indicated by the increased LPI in the urban area in 2002. However, with the new urban greening 
strategy in the latter decade, greatly increasing low- and medium-coverage green space fragmented 
the large built-up patches. Consequently, the vegetation landscape became more diverse, as 
evidenced by the significant decrease of LPI in most of the region in the 2013 transect. 

The SHDI and AI calculated for the transect revealed spatial variation in different segments. In 
the city core, the increase of SHDI and decrease of AI from 2002 to 2013 indicated diversification and 
fragmentation of the vegetation landscape in the urban center. Taking into account the significant 
increase of PLAND for low- and medium-coverage classes, this reveals the recovery of UGS 
characterized by small-size green space patches. In the urban fringe, an initial decline was followed 
by a rise of SHDI, showing a fluctuating diversity because of infill development and the drastic loss 
of green space in the first period, with a recovery of UGS later. As for the outer region (8 km to 16 
km), an opposing trend occurred due to urban sprawl in the first decade and the following infill 
development. This distinct pattern among different urban regions reflects the conversion process of 
vegetative landscape during urbanization, from natural vegetation to semi-natural and 
subsequently artificial green space. 

4. Discussion 

Despite its proven benefits, a widespread decline in UGS was observed in cities in the UK [16] 
and across Europe [52], particularly in most Eastern European cities [53]. Similarly, 17 of 20 major 
cities in the USA experienced a statistically significant decline in tree cover between 2003 and 2009 
[54]. Recently, a study assessing UGS variation in 25 cities across the pan-Pacific region from 1984 to 
2012 found that cities in China have the greatest vegetation loss, while cities in developed countries 
such as Canada, Japan, and the USA showed stable vegetation trends over time [20]. Based on 
statistical data released by the Chinese government, Zhao et al. [17] have indicated a steady increase 
in average UGC across 286 Chinese cities between 1989 and 2009. However, a study based on 
remotely-sensed normalized difference vegetation index (NDVI) data from 117 cities reported 
decreasing trends in UGS between 1982 and 2006 [55]. This conflicting result is mainly due to the 
difference in the definition and statistical caliber of UGS in two studies. The overall trend in the 
entire region shows lost vegetation cover; however, the old cities’ districts became greener in 2010 
than they had been in 1990, and expanded built-up areas generally have higher UGC than old city 
districts [18]. 

Two distinct patterns identified in two periods in our study were largely due to the spatial 
characteristics of UGS patches and their changes. With the open policy of 1978, the Western ideal of 
the modern park was introduced to China. Based on the ideal of the western lake landscape, 
moderate and gradual point-by-point development was adopted to build the modern city park 
system [56]. Yet at the same time, under the significant pressure of a booming urban population and 
for the pursuit of economic benefits, a large amount of urban green space including even some 
newly-built parks was replaced by residential areas or commercial establishments [57]. These two 
opposing processes offset each other and led to an insignificant increase of UGS in 2002. The 
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conflicts between booming demand for land, driven by urban population growth and land scarcity, 
severely restricted the amelioration of UGS. Except for a few newly-built urban parks, urban 
greening policy in this period showed very limited effect on the urban environment. On the 
contrary, dominant non-vegetation land patches in the old city center were enlarged by new 
emerging non-vegetation patches due to infill development. 

The re-adjustment of the administrative boundary of Hangzhou in 2001 provided the city with 
more space to relieve its increasing population and building density, and additionally provides an 
opportunity for UGS construction [58]. Consequently, a green network system was designed, and a 
series of greening projects have been carried out since 2002. Meanwhile, new urban greening policies 
such as “stick in a pin wherever there’s room” and “borrow land to afforest” were gradually 
adopted to take full advantage of previously-neglected spaces to restore urban vegetation, especially 
in the city core [59]. These efforts included retrofitting green space in industrial brownfields and 
widespread tree planting alongside city streets, main roads, railway lines, and canals. In addition, 
the new Regulation of Hangzhou Urban Greening Management prescribed the level of greening 
coverage required in new built-up areas at no lower than 30% [60]. These new greening 
development strategies, with small-sized patches in the form of scattered distribution, contributed to 
the astonishing increase of low- and medium-coverage UGS in this period. 

Providing sufficient public UGS has always been emphasized as a planning goal by the Chinese 
government. However, only the totality of UGS within a city was given emphasis during the 
policy-making process, neglecting the importance of its form and location [61]. In this study, we did 
not quantitatively analyze the variation in ecological quality, as it is almost unrealistic to accurately 
extract quality information on UGS (e.g., tridimensional greening quantity, vegetation composition, 
and species diversity) in Landsat data due to the mixed pixel problem. However, by analyzing the 
vegetation fraction variation within pixels, along with the derived landscape metrics, some features 
of UGS which are highly related to its ecological and social functions can be discussed. Most UGS 
loss in peri-urban regions was large patches of natural vegetation, causing the degradation of 
regional ecological quality. These larger UGS patches (e.g., urban forest) provided necessary habitats 
for biodiversity preservation and played important functions like carbon sequestration and energy 
conservation, which substantially influence urban dwellers from a regional and global perspective 
[9,62]. Meanwhile, the increase of UGS within the city was mostly in the form of scattered, 
small-size, artificial or semi-natural green space. These green spaces are unlikely to offer ecological 
services equivalent to the large natural vegetation patches, although they can also provide essential 
services that are critical to urban ecological functioning such as supporting the city birds’ diversity 
[63]. Additionally, large UGS patches are relatively rare and generally not within walking distance 
for most urban dwellers; in contrast, the abundant scatted small patches of UGS are widespread in 
places where people live, work, and play, and therefore provide a more evenly-distributed access to 
urban residents [64]. As cities grow, interactions between people and nature depend increasingly on 
green spaces like street plantings, backyards, and gardens for crucial cultural ecosystem services, 
such as providing important outdoor recreation opportunities for a variety of people [59], which are 
closely related to the quality of inner-city life [62,65]. 

In China, a spectacular real estate boom has pushed up the price of land [66]. Given the limited 
land available for greening in urban areas, utilizing neglected spaces—which are usually small-sized 
and fragmented—to improve urban greening has been widely adopted by local governments as an 
economical and effective way to increase green space [67]. It is challenging to measure these subtle 
and fragmented changes of UGS on medium-resolution data using traditional pixel-based classifiers. 
Despite its ability to detect the overall pattern, pixel-based classification fails to describe the 
abundance and subtle change of green space within a pixel, and therefore results in an unrealistic 
and inaccurate measurement of UGS [14]. However, information about the patterns of this kind of 
change might be crucial to complete and refine our understanding of the urban environmental 
evolution [33]. The VCFs derived from MESMA provide abundant information about vegetation 
coverage—especially isolated small-sized green space. Compared with interpretation based on 
high-resolution images, the disadvantage of the MESMA procedure is that this method could not 
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give the actual location of the components within a pixel. By reclassifying the VCFs into different 
sub-pixel proportion classes, we were able to further apply landscape metrics to analyze the 
variation of UGS landscape. Although the achieved metric values are harder to interpret, we believe 
this is an alternative way to allow full play to the value of medium-resolution data in studying urban 
ecology. 

With the advantages of freely-available worldwide repetitive data acquisition, spatial and 
spectral consistency over long-term periods, and stable quality, analyses of UGS variation based on 
our approach could be an important alternative approach to comparative studies of regional or even 
global urban environments. 

5. Conclusions 

Timely and accurate information about urban green space is crucial for urban environment 
management. However, the high spatial heterogeneity of urban environments challenges the 
mapping of UGS using medium-resolution data. The sub-pixel method proves to be a promising tool 
to overcome this problem and to provide a feasible and cost-effective way of exploring inter-urban 
green space dynamics. This paper provides comprehensive insight into the spatiotemporal 
dynamics of UGS landscapes during the rampant urbanization process in Hangzhou, China from 
1990 to 2013. Despite complex spectral confusion in urban areas, the integration of MESMA and 
landscape analysis shows great ability to capture the spatial feature of UGS landscapes. Temporal 
changes of metrics facilitated the investigation and characterization of impacts on urban 
environments from accelerating urbanization. 

Rapid urbanization over the past 20 years has brought about fundamental changes in green 
space composition and configuration. Green space landscapes also exhibit diverse spatiotemporal 
dynamics due to differences in urban growth and the implementation of green space protection 
policies. The whole study area has witnessed a significant loss of UGS, characterized by a significant 
increase of non-coverage patches. Most of these losses were located in peri-urban regions, mainly 
due to the expansion of built-up areas. In general, the regional UGS landscape has become more 
fragmented and isolated. 

Yet unlike the study area as a whole, a remarkable amelioration of urban green space was 
observed in the inner-city core in the latter decade, in the form of the growth of low-coverage UGS 
patches as well as increasing patch diversity. Owing to new urban greening strategies in the second 
decade, a large amount of neglected space was utilized for urban greening. The green space network 
formed by newly-added small-sized vegetation has greatly fragmented the built-up areas and 
enriched the diversity of the urban environment. Our gradient analysis further revealed a distinct 
pattern of urban green space landscape variation in the process of urbanization, mainly a landscape 
conversion from natural vegetation to semi-natural and artificial green space. The spatiotemporal 
characteristics of the changing pattern of urban green space revealed the combined effects of rapid 
urbanization and greening policies. 

This study demonstrates a practicable and meaningful application of time series Landsat 
images to explore the evolution of urban green space. Further integrated and cross-regional 
comparisons for cities with varying socioeconomic characteristics and natural conditions should be 
carried out to add to efforts for revealing, modeling, and predicting the change of urban 
environments in rapidly urbanizing cities. Our study highlighted the innovative efforts embraced by 
the local government to fully activate neglected spaces to restore green space within the urban area, 
given that there is generally very limited space for urban greening in rapidly growing high-density 
cities. Despite their small size, these green patches also provide essential ecological and social 
benefits by more evenly distributing access for most urban residents. Given increasing built-up areas 
and population density, broad strategies such as roof greening and vertical greening are suggested 
to keep up a high level of urban greening in the inner city. Green space patches should be preserved 
and enlarged during the process of urban redevelopment. Finally, conservation plans are still 
needed to protect forests and agricultural lands in suburban areas to serve as buffer zones to avoid 
potential loss caused by urbanization. 
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