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Abstract: In this paper, a novel algorithm is proposed for the two-dimensional (2D) central 
direction-of-arrival (DOA) estimation of coherently distributed (CD) sources. Specifically, we focus 
on a centro-symmetric crossed array consisting of two uniform linear arrays (ULAs). Unlike the 
conventional low-complexity methods using the one-order Taylor series approximation to obtain 
the approximate rotational invariance relation, we first prove the symmetric property of angular 
signal distributed weight vectors of the CD source for an arbitrary centrosymmetric array, and then 
use this property to establish two generalized rotational invariance relations inside the array 
manifolds in the two ULAs. Making use of such relations, the central elevation and azimuth DOAs 
are obtained by employing a polynomial-root-based search-free approach, respectively. Finally, 
simple parameter matching is accomplished by searching for the minimums of the cost function of 
the estimated 2D angular parameters. When compared with the existing low-complexity methods, 
the proposed algorithm can greatly improve estimation accuracy without significant increment in 
computation complexity. Moreover, it performs independently of the deterministic angular 
distributed function. Simulation results are presented to illustrate the performance of the  
proposed algorithm. 

Keywords: array signal processing; direction-of-arrival (DOA) estimation; coherently distributed 
(CD) sources; crossed array; symmetric property 

 

1. Introduction 

In recent decades, the problem of direction-of-arrival (DOA) estimation, which plays an 
important role in radar, sonar and wireless communication systems, has attracted a lot of attention. 
The most commonly considered system model in the DOA finding techniques is the point source 
model, where the signals are assumed to arrive at the array via a single path [1–4]. When dealing 
with a point source, conventional subspace-based algorithms, such as the multiple signal 
classification (MUSIC) algorithm [5,6] and the estimation of signal parameters via rotational 
invariance techniques (ESPRIT) algorithm [7,8], have high DOA estimation resolution. However, in 
many practical applications, the signals will reach the array through many rays reflected or scattered 
from the vicinity, which causes angular spreading. In these cases, directly applying the MUSIC and 
ESPRIT algorithms may lead to biased estimations. Therefore, some researchers have considered a 
more realistic signal model called the spatially distributed source model [9,10]. Depending on the 
correlation among different rays, distributed sources are classified into two types: coherently and 
incoherently distributed (CD and ID) sources. In this paper, we only consider the DOA estimation of 
the CD sources. 
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Many DOA estimation techniques for CD sources have been published. Since conventional 
subspace-based methods cannot be directly applied to a distributed source, some researchers studied 
modifications to the MUSIC algorithm, which gave rise to the distributed signal parameter estimator 
[11], dispersed parametric estimator [12] and Vec-MUSIC estimator [13]. These three methods were 
established based on the assumption that the distribution shapes of multiply distributed sources are 
identical and known. In addition, the computational complexity is high because of the need for a two-
dimensional (2D) search. The literature [14] used an unstructured model for the part of covariance 
matrix, where the 2D search problem was replaced by a successive one-dimensional (1D) search. With 
even lower computational complexity, a search-free algorithm called the spread root-MUSIC 
algorithm [15] was proposed to fit a two-ray model of the data. However, low-complexity was 
obtained in the special case where only one distributed source existed. In [16], the authors considered 
two identical and closely spaced sub-arrays. When the distance between the two sub-arrays was far 
shorter than the wavelength, an approximate rotational invariance relation between the two sub-
arrays was obtained based on Taylor series approximation, and finally the central DOA of the CD 
source can be estimated by total least square estimation parameter via rotational invariance 
techniques (TLS-ESPRIT) using the generalized array manifold (GAM) model. All of the 
aforementioned works [11–16] were designed for 1D DOA and angular spread estimation of 
distributed sources. However, when the distributed source and the receiving sensor array are not in 
the same plane, it is reasonable to instead model the source as a 2D distributed source. 

Since a 2D CD source is characterized by four parameters: the central azimuth direction, the 
azimuth angular extension, the central elevation direction and the elevation angular extension, the 
conventional optimum estimators will be computationally expensive owing to high-dimensional 
parameters [17]. Consequently, it is very necessary for 2D distributed sources to find some 
suboptimum algorithms to reduce the computational cost. To date, several low-complexity DOA 
estimation algorithms for 2D CD sources have been proposed. Specifically, the authors in [18] 
considered a pair of uniform circular arrays (UCAs). Preliminary estimations of central elevation 
DOAs were obtained using TLS-ESPRIT. Next, by using the estimated elevation DOAs, a sequential 
one-dimensional searching (SOS) method was proposed to estimate the central azimuth DOAs. In 
[19], using two parallel uniform linear arrays (ULAs), a low-complexity algorithm without searching 
was proposed for CD sources. Similarly, central elevation DOAs are obtained based on the 
approximate rotational invariance relation between the two ULAs. Instead of SOS, the quadric 
rotational invariance property (QRIP) of the GAM was used to estimate the central azimuth DOAs. 
Finally, a parameter matching approach was given to obtain the correct DOA estimation. In [20], the 
central elevation and azimuth DOAs were both estimated based on TLS-ESPRIT, which used two 
parallel ULAs, and the parameter matching method was also required. In order to avoid the 
parameter matching procedure, the literature [21] estimated the central elevation and central azimuth 
DOAs by applying the singular value decomposition method to the cross-correlation (CC) matrix of 
the received data in the double parallel ULAs. However, all the algorithms in [18–21] were all based 
on the special array geometry composed of two sub-arrays. The approximate rotational invariance 
relation between the two sub-arrays was obtained by using the one-order Taylor series approximation, 
which may introduce additional errors and affect the estimation accuracy. 

In array processing, the crossed array is a commonly used 2D array geometry [22]. Compared 
to other 2D arrays such as the UCA and plane rectangular array, the crossed array can provide a 
larger aperture and hence offer better resolution for a given number of elements. Moreover, the 
crossed array consists of two intersecting ULAs working independently, thus the computational 
complexity is only double that of a single dimensional array. Several 2D estimation algorithms based 
on the crossed array have been proposed [23,24]. However, they are all based on the point source 
model. To the best of our knowledge, there have been few reports about the DOA estimation for CD 
sources in a crossed array. 

In this paper, we consider a crossed array and divide it into two sub-ULAs. In particular, instead 
of using the Taylor series approximation, we prove the symmetric property of the angular signal 
distributed weight (ASDW) vector for an arbitrary centrosymmetric array, and use this property to 
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establish the generalized rotational invariance relations inside the GAMs for the two sub-ULAs. 
Resorting to such relations, the central elevation and azimuth DOAs are estimated based on 
polynomial-root-based search-free method, respectively. Then simple parameter matching is 
accomplished by searching the minimums of the cost function of the estimated 2D angular 
parameters. The proposed algorithm does not require that the angular distribution functions of the 
multiple distributed sources are the same and known. In addition, it does not suffer additional errors 
induced by Taylor series approximation and high computational complexity brought about by 
spectrum-peak searching. 

The rest of this paper is organized as follows: Section 2 presents the data model. In Section 3, we 
describe the proposed algorithm in detail. Some simulation results which illustrate the validity and 
performance of the proposed method are given in Section 4. Section 5 concludes the paper. 

The following notations will be used throughout this paper. Superscript ( ) ,  T( ) , and  Η( )  
represent the conjugate, transpose and conjugate transpose operations, respectively. The symbol   
denotes the Schur-Hadamard product; [ ]E  stands for the mathematical expectation and det( )  is 
the matrix determinant; [ ]diag  is a diagonal matrix and the values in the brackets are the  
diagonal elements. 

2. Signal Model 

Let us consider the plane crossed array presented in Figure 1. The array is centered at the origin 
of the three-dimensional coordinate system with two ULAs directed along the y-axis and z-axis. The 
ULAs aY  and aZ  are composed of yM  and zM  omni-directional antenna elements, respectively. 

The distance between adjacent sensors is d  in the two ULAs. We assume that there are D  
narrowband CD sources impinging on the crossed array. The observation vectors of aY  and aZ  at 
time t are given by [17–21]. 

 
Figure 1. Geometry of the considered crossed array. 
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where ( )ty  is the 1yM  array output vector of the sub-array aY ; ( )tz  is the 1zM  array output 

vector of the sub-array aZ ; i is θ γ t( , , ; )μ  is the complex random angular signal density function of 

the i-th source. The vector 
i ii i θ i γθ σ γ σ( , , , )μ  determines the central azimuth DOA iθ , the azimuth 

angular spread 
iθ

σ , the central elevation DOA iγ  and the elevation angular spread 
iγ

σ  of the i-th 

sensor; y t( )n  and z t( )n  are Gaussian white noise with zero-mean and variance, while 2
nσ ; 

y θ γ( , )a  and z θ γ( , )a  are the two array manifold vectors at direction θ γ( , ) : 
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where 2η πd λ/ , and λ  is the wavelength of the coming signal. 
For a 2D CD source, the angular signal density function i is θ γ t( , , ; )μ  can be written as: 

i i i i is θ γ t s t ρ θ γ( , , ; ) ( ) ( , ; ),μ μ  (4) 

where is t( )  is a random variable and i iρ θ γ( , ; )μ  is the deterministic angular distribution function. 
Define the GAM vectors of distributed source for subarray aY  and aZ  as follows: 








y i y i i

z i z i i

θ γ ρ θ γ dθdγ

θ γ ρ θ γ dθdγ

( ) ( , ) ( , ; ) ,

( ) ( , ) ( , ; ) .

b μ a μ

b μ a μ
 (5) 

For small angular extensions, we have the following closed forms [11,20]: 
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 (6) 

where y i( )g μ  and z i( )g μ  are the ASDW vectors. The observation vectors in (1) and (2) can be 

written as: 
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where 1 2  Dt s t s t s t Τ( ) [ ( ), ( ), , ( )]s  is a 1D  signal vector, and y ( )B μ  and z( )B μ  are the GAM 

matrices, which are composed of D GAM vectors: 
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The total array output vector is expressed as: 
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3. The Proposed Algorithm 

This section consists of four parts. Firstly, the symmetric property of an ASDW vector is 
identified in a centro-symmetric array. Then, by making use of the symmetric property of the ASDW 
vectors in the two sub-ULAs aZ  and aY , we establish two generalized rotational invariance 
relations for the GAM vectors. On the premise of such relations, the central elevation and azimuth 
DOAs are obtained by using a polynomial-root-based search-free approach, respectively. Afterwards, 
and when multiple CD sources exist, a simple parameter matching approach is addressed. Finally, 
we provide the algorithm’s realization steps and an analysis of the computational complexity. 

3.1. Symmetric Property of an ASDW Vector in a Centro-Symmetric Array 

In this part, the symmetric property of an ASDW vector in a centro-symmetric array is derived 
in detail. Let us consider a centro-symmetric array consisting of M identical antenna elements 
centered at the coordinate origin, where the m-th sensor is placed at m m mx y z( , , )  for 1 2 m M, , . 
The array manifold vector in direction θ γ( , )  is expressed as: 

1 1 1

2 2 2

2

2

2

 

 

 

 
 
   
 
  M M M

j π λ x θ γ y θ γ z γ

j π λ x θ γ y θ γ z γ

j π λ x θ γ y θ γ z γ

e
eθ γ

e

( / )( cos sin sin sin cos )

( / )( cos sin sin sin cos )

( / )( cos sin sin sin cos )

( , ) .
......

a  (10) 

If we define   iθ θ θ  and   iγ γ γ , in which iθ , iγ are the central azimuth DOA and the 

central elevation DOA of the i-th source, and θ , γ are the corresponding random angular 
deviations , the GAM vector can be presented as: 



  


     

( ) ( , ) ( , ; )

( , ) ( , ; ) ,
i i

i i i

θ γ ρ θ γ dθdγ

θ θ γ γ ρ θ γ dθdγ
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 (11) 

For small angular extensions, the m-th element of i( )b μ  can be written as [11]: 

     mjς
i m i i m iθ γ e ρ θ γ dθdγ[ ( )] [ ( , )] ( , ; ) .b μ a μ  (12) 

Thus, the m-th element of ASDW vector is given by: 

    mjς
m ie ρ θ γ dθdγ[ (u)] ( , ; ) ,g μ  (13) 

where: 
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We have 2 2 2   m m m m M m M m Mx y z x y z/ / /( , , ) ( , , )  in the centrosymmetric array, thus 2 m m Mς ς / . 

Respecting the fact that   iρ θ γ( , ; )μ  is an even function (see Appendix A), we can obtain the 
symmetric property of the ASDW vector such as: 

2 /[ (u)] [ (u)] .m m Mg g  (15) 

It is obvious that aY  and aZ  are centrosymmetric arrays, thus we have: 

2

2
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 (16) 

3.2. Derivation 
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3.2.1. Central Elevation DOA Estimation 

For sub-array aZ , and owing to the symmetric property of the ASDW vector in (16), we can 
establish the following generalized rotational invariance relation of the GAM vector: 


ZM z i i z iγ( ) ( ) ( ),Π b μ Ψ b μ  (17) 

where 
ZMΠ  is the z zM M  exchange matrix with ones on its anti-diagonal and zeros elsewhere. 

iγ( )Ψ  is an z zM M  diagonal matrix which is given by: 

1 3 1     ( )cos ( )cos ( )cos( ) [ , , , ].z i z i z ijη M γ jη M γ jη M γ
iγ diag e e eΨ  (18) 

If we define the complex variable  ijη γk e cos , iγ( )Ψ  can be written as: 

1 3 1     z z zM M Mk diag k k k( ) ( ) ( )( ) [ , , , ].Ψ  (19) 

According to the observation vector t( )z  in (7), the covariance matrix of t( )z  is expressed as: 

2   I
zz y s y n ME t t σΗ H{ ( ) ( )} ( ) ( ) ,R z z B μ R B μ  (20) 

where s E t tΗ{ ( ) ( )}R s s  is the signal covariance matrix of the CD sources. The eigenvalue 
decomposition of zR is given by: 

H H
z z z z n n n ,R U U U U   (21) 

where zU  is the signal subspace matrix, whose columns are the eigenvectors corresponding to the 
D largest eigenvalues of zR . When sR  is of full rank, the subspace spanned by the columns of zU  
is equal to the subspace spanned by the columns of z( )B μ . At this point, there exists a unique non-
singular D D  matrix 1T  such that 1z z( )U B μ T . According to the generalized rotational 
invariance relation in (17), we can formulate a matrix z k( )F : 

1 1

1 1 2 2

1

 

 

  



Z

Z

z M z z

M z z

z z

D z D

k k

k

k k k k
k k

( ) ( )

( ) ( ) ( )

[( ( ) ( )) ( ),( ( ) ( )) ( ),
  ,( ( ) ( )) ( )] .

F Π U Ψ U

Π B μ T Ψ B μ T

Ψ Ψ b μ Ψ Ψ b μ
Ψ Ψ b μ T

 (22) 

Therefore, when  ik k( ) ( )Ψ Ψ for 1 2 i D, , , , the i-th column of z k( )F  is a zero vector. 

Hence, z k( )F  is rank deficient and the determinant of z zk kΗ ( ) ( )F F  is zero. The central elevation 

DOA estimations  1 2 iγ i D( , , )  can be obtained by finding the highest D  peaks of the following 
spectrum function: 

1 Η( ) / det( ( ) ( )).z z zH k k kF F  (23) 

However, estimator (23) involves computationally intensive spectral-peak searching. In order to 
reduce the complexity, we derive a polynomial-root-based search-free approach. The denominator 
of (23) can be written as the following polynomial: 

 Η( ) det( ( ) ( )).z z zh k k kF F  (24) 

It is obvious that the central elevation DOAs can be obtained by rooting this polynomial. Note 
that the roots of (24) appear in conjugate reciprocal pairs, as in the conventional root-MUSIC [25]. To 
find the D  central elevation DOAs, we select the D  roots 1 2 ik i D( , , )  inside the unit circle 
that maximize (23). Finally, the central elevation DOA estimates are obtained by: 
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i i
λγ ar k
πd

ˆ cos arg( ) .  (25) 

3.2.2. Central Azimuth DOA Estimation 

The method is similar to that of the central elevation DOA estimate, thus we simplify the process 
of deduction. For the centrosymmetric sub-array aY , we also have the generalized shift invariance 
relation: 


yM y i i i y iθ φ( ) ( , ) ( ),Π b μ Ω b μ  (26) 

where i iθ φ( , )Ω  is a y yM M  diagonal matrix which is given by: 
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If we define the complex variable  i ijη θ γl e sin sin , i iθ φ( , )Ω  can be written as: 
1 3 1    

 y y yM M Ml diag l l l( ) ( ) ( )( ) [ , , , ]Ω . 
Let yU  be the signal subspace matrix, whose columns are the eigenvectors corresponding to 

the D  largest eigenvalues of y E t tΗ{ ( ) ( )}R y y . Similarly, there exists a unique non-singular D D  

matrix 2T  such that 2y y ( )U B μ T . Thus, we introduce a matrix y l( )F  which is expressed as: 
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2
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Ω Ω b μ Ω Ω b μ
Ω Ω b μ T

 (28) 

The central azimuth DOA estimations 1 2 iθ i Dˆ ( , , )  can be obtained by rooting the following 
polynomial: 

 Η( ) det{ ( ) ( )}.y y yh l l lF F  (29) 

Similarly, we use the roots inside the unit circle, and select the D  roots 1 2 il i D( , , )  that 
maximize the spectral function such as: 

1 Η( ) / det( ( ) ( )).y y yH l l lF F  (30) 

The values of  i iθ γˆ ˆsin sin  for 1 2 i D, , ,  are obtained as: 

2
 i i i

λθ γ l
πd

ˆ ˆsin sin arg( ).  (31) 

3.2.3. The Parameter Matching Method 

For only one CD source, the central elevation and azimuth DOAs can be estimated directly using 
(25) and (31). However, when multiple CD sources exist, the estimated elevation and azimuth DOAs 
are required to be matched. To perform the pair-matching procedure, we need to consider the GAM 
vector of the whole cross array such as: 

 
  
  

y i
x i

z i

( )
( ) .

( )

b μ
b μ

b μ
 (32) 
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Let J  be an   y z y zM M M M( ) ( )  selection matrix which is defined as: 





 
 
  

y y Z

z y Z

M M M

M M M

.
Π 0

J
0 Π

 (33) 

Based on the symmetric property of the ASDW vector in (16), we have the following generalized 
rotational invariance relation: 

x i i i x iθ γ( ) ( , ) ( ),Jb μ Φ b μ  (34) 

where i iθ γ( , )Φ  is an   y z y zM M M M( ) ( )  diagonal matrix given by: 

1 3

1 1 3 1
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jη M θ γ jη M θ γ
i i
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e e e e

( )sin sin ( )sin sin

( )sin sin ( )cos ( )cos ( )cos

( , ) [ , , ,

, , , , ].

Φ
 (35) 

Let xU  be the signal subspace matrix of x E t tΗ{ ( ) ( )}R x x . Similarly, there exists a unique non-
singular D D  matrix 3T  such that 3x x ( )U B μ T . We can also introduce a matrix x θ γ( , )F  which 
is written as: 

2 3

1 1 1 2 2 2

3

 

 

  



( , ) ( , )
( ) ( , ) ( )

[( ( , ) ( , )) ( ),( ( , ) ( , )) ( ),
  ,( ( , ) ( , )) ( )] .

x x x

x x

x x

D D x D

θ γ θ γ
θ γ

θ γ θ γ θ γ θ γ
θ γ θ γ

F JU Φ U
JB μ T Φ B μ T
Φ Φ b μ Φ Φ b μ
Φ Φ b μ T

 (36) 

Similarly, when i iθ γ θ γ( , ) ( , )Φ Φ  for 1 2 i D, , , , the i-th column of x θ γ( , )F  is a zero 
vector. Therefore, the central elevation and azimuth DOA estimations can be matched by minimizing 
of the following cost function: 

 x xf θ γ θ γ θ γΗ( , ) det( ( , ) ( , )).F F  (37) 

If we pick iγ̂  from the elevation DOA estimations 1 2  Dγ γ γˆ ˆ ˆ{ , , } , there will be D  pairs of 2D 

central DOAs for iγ̂ , which is given by 1 2 i i i i iD iθ γ θ γ θ γ, , ,
ˆ ˆ ˆˆ ˆ ˆ{( ),( ), ( )} . We then substitute the DOA 

estimations into (37) and calculate the function value f θ γ( , ) . If ij if θ γˆ ˆ( , )  for 1 2 j D, ,  is the 

largest, then ij iθ γˆ ˆ( , )  is the correct match. 

3.2.4. Algorithm Implementation and Complexity Analysis 

Now, we can summarize the proposed algorithm as follows: 

Step 1: Calculate the covariance matrix z E t tΗ{ ( ) ( )}R z z . Through the eigen-decomposition of zR , 
obtain the signal subspace matrix zU . 

Step 2: Construct the matrix z k( )F  in (22), and root the polynomial in (24) to obtain the central 
elevation DOA estimations iγ̂  for 1 2 i D, , . It is noted that the roots are inside a unit 
circle and maximize (23). 

Step 3: Calculate the covariance matrix y E t tΗ{ ( ) ( )}R y y . Through the eigen-decomposition of 

yR , obtain the signal subspace matrix yU . 

Step 4: Construct the matrix y k( )F  in (28), and root the polynomial in (29) to obtain i iθ γˆ ˆsin sin  

for 1 2 i D, , . It is noted that the roots are inside a unit circle and maximize (30). 
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Step 5: Compute all the possible 2D DOAs ij iθ γˆ ˆ( , )  for the elevation DOA estimations iγ̂ . 

Calculate the function values ij if θ γˆ ˆ( , )  for 1 2 j D, ,  in (37). The largest one is the 

correct match. 
Step 6: Repeat the process in Step 5 to match all the parameters. 

Next, when the number of sensor elements M and the number of snapshots L change, we analyze 
the computational complexity of the proposed algorithm in comparison with the SOS algorithm in 
[18], the CC algorithm in [21] and Zheng’s algorithm in [20]. The main computational cost of the 
proposed algorithm is mostly made of four operations: the estimation of the covariance matrix, the 
eigen-decomposition of the covariance matrix, the polynomials rooting, and the pair-matching 
procedure. Specifically, the cost involved by the estimation of covariance matrices xR , yR  and zR  

is found to be in 26O M L( ) . The eigen-decomposition of the covariance matrices xR , yR  and zR  

needs 310O M( )  multiplications. The computational complexity of rooting polynomials zh k( )  and 

yh k( )  is found to be in 32( )O M , and the pair-matching procedure adds 5 4O D D M( )  

multiplications to the proposed algorithm. In above, the computational complexity of the proposed 
algorithm is 3 2 5 412 6  O M M L D D M( ) . Moreover, the main computational complexity of the SOS 
algorithm, the CC algorithm and Zheng’s algorithm is given in Table 1 (N denotes the number of 
searching points). 

Table 1. Comparison of different algorithms in computational complexity. 

Algorithm Main Computational Complexity
Proposed algorithm 3 2 5 412 6  ( )O M M L D D M  

SOS algorithm 3 2 3 28 4 3  O M M L N D D M( ( ))  

CC algorithm 3 2 3 O M M L D( )  

Zheng’s algorithm 3 2 32 1 2 1   O M M L D(( ) ( ) )  

When the number of searching points N is large, it is clear to see that the propose algorithm 
provides lower computational cost compared to the SOS algorithm. Although the computational 
complexity of the proposed algorithm is higher than Zheng’s algorithm and the CC algorithm, it is 
not significant increment since the proposed algorithm does not require any spectrum searching. In 
addition, and unlike the SOS algorithm, Zheng’s algorithm and the CC algorithm, the proposed 
algorithm does not use the Taylor series approximation to establish the rotational invariance relation, 
as this approximation may introduce additional errors. 

4. Simulation Results and Performance Analysis 

In the following experiments, noise is a complex Gaussian process with zero mean. The number 
of snapshots is 200. We use the root mean squared error (RMSE) to evaluate the estimation 
performance, where the RMSE of the central azimuth and elevation DOAs ( θRMSE( )  and γRMSE( ) ) 
are defined as: 

2

1

1


 
D

i i
i

θ E θ θ
D

ˆRMSE( ) [ ( - ) ],  (38) 

2

1

1


 
D

i i
i

γ E γ γ
D

ˆRMSE( ) [ ( - ) ],  (39) 
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where ˆ
iθ  and iθ  are the estimated and true central azimuth DOA of the i-th source, respectively. 

Additionally, ˆ iγ  and iγ  are the estimated and true central elevation DOA of the i-th source, 
respectively. 

In the following simulations, the signal power of sources is assumed to be the same. In addition, 
signal-to-noise ratio (SNR) is defined as: 

2

210SNR log ,s

n

σ
σ

 (40) 

where 2
sσ  is the signal power of sources, while 2

nσ  is the variance of noise. 

4.1. Effect of Different Deterministic Angular Distributed Functions 

In this part, we examine if the proposed algorithm works properly for different angular 
distributed functions. The sub-arrays aY  and aZ  are both composed of 16 y zM M  sensors. The 
distance between adjacent sensors is 0 5λ. . The parameters of two CD sources are 

1 20 3 20 5    ( , , , )μ  and 2 60 4 80 4    ( , , , )μ . Their deterministic angular distributed functions are 
Gaussian and uniform shaped, respectively. The SNR is 15 dB. For 30 independent trials, the central 
DOA estimations of CD sources are plotted in Figure 2. It can be seen that the proposed algorithm 
can give the correct DOA estimations for cases where different CD sources have different 
deterministic angular distributed functions, or unknown deterministic angular  
distributed functions. 

 
Figure 2. The 2D central DOA estimation results of the proposed algorithm (30 trials). 

4.2. Performance Comparison 

In this part, we compare the estimation accuracy of the proposed algorithm with the SOS 
algorithm in [18], the CC algorithm in [21] and Zheng’s algorithm in [20] with respect to SNR from 0 
dB to 30 dB. The Cramér-Rao lower bound (CRLB) is also used as a benchmark [26]. The sub-arrays 

aY  and aZ  of the crossed array in proposed algorithm are both composed of 16 y zM M  sensors. 
The arrays in the SOS algorithm and the CC algorithm are both composed of 32 sensors. Since the 
number of antenna elements in Zheng’s algorithm must be odd, we set it to 33. In these algorithms, 
the distance between adjacent sensors in a sub-array is 0 5λ. , the vertical distance between the two 
sub-arrays is 0 5λ. , and the radius of the UCA is 4 16λ π/ ( sin( / )) . The parameters of two Gaussian-
shaped CD sources are 1 20 2 60 3    ( , , , )μ  and 2 15 3 70 2    ( , , , )μ , respectively. Based on 500 
Monte Carlo experiments, the RMSE curves of the central DOA estimations versus SNR are shown 
in Figure 3. It is clearly indicated that the estimation accuracy of the proposed algorithm is higher 
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than the SOS algorithm, the CC algorithm and Zheng’s algorithm, which arises from the fact that the 
proposed algorithm does not suffer additional errors brought about by Taylor series approximation. 

(a) 
 

(b) 

Figure 3. (a) RMSE curves of the central azimuth DOA estimations versus SNR; (b) RMSE curves of 
the central elevation DOA estimations versus SNR. 

4.3. Effect of Snapshots 

In this part, we illustrate the influence of the number of snapshots on the performance of the 
proposed algorithm. The number of snapshots varies from 100 to 900. The SNR is fixed to 15 dB and 
the other parameters are the same as in Section 4.2. Based on 500 Monte Carlo experiments, the RMSE 
curves for different algorithms are shown in Figure 4, from which we can draw similar conclusion as 
in Section 4.2. 

(a) 
 

(b) 

Figure 4. (a) RMSE curves of the central azimuth DOA estimations versus the number of snapshots; 
(b) RMSE curves of the central elevation DOA estimations versus the number of snapshots. 

4.4. Effect of the Central Elevation and Azimuth DOAs 

In the last example, we examine the performance of the proposed method versus the central 
elevation and azimuth DOAs for a Gaussian-shaped CD source with 1  

i iθ γσ σ . First, let us 
consider in Figure 5a the influence of the central azimuth DOA on performance. Assume that 

30iγ , SNR = 10 dB and the number of snapshots 200L . As can be seen from the Figure 5a, the 
RMSE of  iθ  estimated by the proposed method increases dramatically when the central azimuth 
DOA approaches the lower bound ( 90  iθ ) or the upper bound ( 90 iθ ), but our method can 
still estimate effectively the central azimuth DOA. Next, the influence of the central elevation DOA 
on performance is examined in Figure 5b. At this time, we assume that 30  iθ , SNR = 10 dB and 

200L . Similarly, the RMSE of  iγ  estimated by the proposed method also increases dramatically 
when the central elevation DOA approaches the lower bound ( 0 iγ ), and our method has still 
satisfying estimation performance for approaching the lower bound. 
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(a) 
 

(b) 

Figure 5. (a) RMSE curves versus the central azimuth DOA; (b) RMSE curves versus the central 
elevation DOA. 

5. Conclusions 

In this paper, we have presented a new approach for estimating the 2D central DOA of CD 
sources using a centrosymmetric crossed array. Instead of using the Taylor series approximation, we 
derive the symmetric property of an ASDW vector in a centrosymmetric array, based on which the 
generalized shift invariance relations inside the GAMs are established in the two sub-ULAs. 
Resorting to such relations, the central elevation and azimuth DOAs are estimated based on the 
polynomial-root-based search-free method, respectively. After that, the pair-matching method is 
presented. The proposed algorithm performs independently of the deterministic angular distributed 
function. Compared to the existing low-complexity algorithms, the proposed algorithm does not 
suffer additional errors brought by the Taylor series approximation, which allows it to achieve a 
higher estimation accuracy. Moreover, the proposed algorithm does not suffer high computational 
complexity brought by spectrum-peak searching. 
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Appendix A 

The most commonly used the deterministic angular distributed functions for a 2D CD source 
are presented as follows: 

Gaussian shaped: 

2 2 2 21
21

2
 


  

( / / )
( , ; ) ,θ γθ σ γ σ

i
θ γ

ρ θ γ e
πσ σ

μ  (A1) 

Uniform shaped: 

1 3 3
12

0


 

 



  
       

( , ; ) ,
              otherwise

θ γ
θ γi

θ σ and γ σ
σ σρ θ γ μ  (A2) 

Laplacian shaped: 
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   ( / / )( , ; ) ,θ γθ σ γ σ
i

θ γ

ρ θ γ e
σ σ

μ  (A3) 

where the small deviation θ  and γ  are defined as  
iθ θ θ  and   iγ γ γ , respectively. 
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