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Abstract: Mobile agent (MA), a part of the mobile computing paradigm, was recently proposed
for data gathering in Wireless Sensor Networks (WSNs). The MA-based approach employs two
algorithms: Single-agent Itinerary Planning (SIP) and Multi-mobile agent Itinerary Planning (MIP)
for energy-efficient data gathering. The MIP was proposed to outperform the weakness of SIP by
introducing distributed multi MAs to perform the data gathering task. Despite the advantages
of MIP, finding the optimal number of distributed MAs and their itineraries are still regarded as
critical issues. The existing MIP algorithms assume that the itinerary of the MA has to start and
return back to the sink node. Moreover, each distributed MA has to carry the processing code (data
aggregation code) to collect the sensory data and return back to the sink with the accumulated data.
However, these assumptions have resulted in an increase in the number of MA’s migration hops,
which subsequently leads to an increase in energy and time consumption. In this paper, a spawn
multi-mobile agent itinerary planning (SMIP) approach is proposed to mitigate the substantial
increase in cost of energy and time used in the data gathering processes. The proposed approach
is based on the agent spawning such that the main MA is able to spawn other MAs with different
tasks assigned from the main MA. Extensive simulation experiments have been conducted to test the
performance of the proposed approach against some selected MIP algorithms. The results show that
the proposed SMIP outperforms the counterpart algorithms in terms of energy consumption and task
delay (time), and improves the integrated energy-delay performance.

Keywords: mobile agent; data gathering; itinerary planning; spawn mobile agent; wireless
sensor network

1. Introduction

A wireless sensor network (WSN) is a distribution of hundreds or thousands of sensor nodes that
can monitor physical or environmental conditions such as temperature, sound, vibration, pressure,
motion, or pollutants [1,2]. These sensor nodes are generally self-powered (like batteries) and limited
in memory and processing. The main purpose of the sensor nodes is to sense the information in an
area of interest and forward the sensed information periodically to the base station (sink node) for
gathering and data processing. Therefore, inefficient forwarding or routing of the information from
the sensor nodes to the sink will deplete the energy of nodes, and in most cases, if one node runs
out, it will directly affect the connection of WSNs. Several energy-efficient routing protocols, such as
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low energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering
approach (HEED), and energy-efficient opportunistic routing (EEOR) have been proposed to minimize
energy consumption and increase the network’s lifetime [3].

In the traditional architecture of data gathering (client–server architecture), the sensor nodes are
required to send their sensed data to a sink node via multi-hops. Due to the huge amount of data flows,
this process leads to data congestion, increased latency, and high energy consumption—especially for
the nodes located near to the sink. This issue has a significant impact on the performance and lifetime
of the network.

To overcome the above issues, recently, mobile agent (MA) has been used as an efficient tool for
data collection and aggregation in WSNs [4–7]. In WSNs, MA can be defined as a computational code
that is injected inside a packet [8], and this packet is dispatched from the sink and migrates among the
nodes to perform a particular task(s) autonomously (i.e., data aggregation) [9,10]. Figure 1 shows the
data gathering process based on MA and client–server architecture. In Figure 1b, the MA roams the
network and collects the data from the nodes via single-hop, whereas in Figure 1a, the nodes send
their data individually to the sink using single-hop or multi-hop routing techniques.

Figure 1. Data gathering based on: (a) Client–Server. (b) mobile agent (MA).

The use of the MA-based computing paradigm provides several advantages [11,12] in the field of
WSNs, including:

1. Local data processing: the MA can migrate from node to node and do a local processing at the node
in order to achieve an assigned task on behalf of the MA’s dispatcher (sink), and then it returns to
the sink with the results. This would lead to a decrease in the network’s bandwidth because the
nodes no longer need to transmit their data frequently to the sink for data processing.

2. Extensibility and task adaptability: Within the same network, several MAs with different assigned
tasks can be dispatched to the network. Each MA can be used to carry out a specific task, and
then different applications can be achieved. Therefore, the extensibility and task adaptability of
MA extends WSNs’ functionality.

3. Fault-tolerance: The itinerary of MA can be dynamically determined by the information gain and
energy constraints [6]. The MA can check the information of the next hop nodes before it decides
to migrate to the next hop. Here, the fault-tolerance such as link failure or dead nodes can be
avoided during the MA path and then protect the MA from being lost.

4. Progressive accuracy: During the migration, the MA carries a partially integrated result obtained
from nodes that have already been visited by the MA. Thus, assuming the MA follows an
itinerary determined based on the information gain, the migration from node to node is constantly
increasing the accuracy of the integrated result. Therefore, the MA can terminate its migration
and returns the results when the accuracy of the integrated result satisfies a given threshold.
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This advantage of MA decreases both network bandwidth and computation time by avoiding
visiting unnecessary nodes.

5. Reliability: The MA can be dispatched when the network connection is active and it returns the
results when the network connection is re-established. Consequently, the MA’s performance is
not affected much by the reliability of the network.

In WSNs based on MA, the MA design can be broken down into four components [13]:

1. Architecture
2. Itinerary planning
3. Middleware system design
4. Agent cooperation

Among the MA design components, the itinerary planning has a direct impact on the energy
consumption. The itinerary planning of the MA is the order determination of the source nodes to be
visited during the MA migration. Finding the optimal itinerary of the MA has been identified as an
NP-hard problem [6]. Along this line, itinerary planning algorithms have been developed to determine
sub-optimal MA itinerary. The itinerary planning algorithms can be classified into single itinerary
planning (SIP) and multi itinerary planning (MIP) [14]. In SIP, only a single MA is dispatched from the
sink to visit the source nodes. The SIP algorithms [4–6,15] proposed earlier only performed well in
small- or medium-scale sensor networks. However, in a large-scale networks, SIP incurs the following
drawbacks [14]:

• Long delays because of migrating to hundreds of source nodes.
• An increase in the MA’s packet size due to the aggregation of data from a huge number of visited

source nodes.
• Low reliability when the MA accumulates a huge amount of data.
• The probability of losing the MA’s packet increases when a single MA visits many source nodes.

In order to overcome the drawbacks of SIP, multi itinerary planning algorithms [16–18] were
proposed. In MIP, several MAs are distributed to the network. The MAs work concurrently to visit
groups (partitions) of source nodes. Each MA is assigned to one partition within a shorter itinerary,
where it migrates to a subset of source nodes (within a partition) to perform the data aggregation
task. The dispatched MA carries its processing code (e.g., aggregation code) from the sink to the
assigned partition to collect the data from the source nodes. On completing its task, it returns to
the sink with the accumulated data. The size of the accumulated data by the MA varies from one
partition to another, which depends on the number of source nodes within each partition. This process
enables a reduction in the MA packet size, which further leads to a decrease in the energy consumed as
compared to the SIP algorithms. Moreover, due to the distribution of aggregation tasks among multi
MAs, the task duration is minimized (lower delay). Although the MIP did overcome the weaknesses of
the SIP algorithms, its design is complicated due to the introduction of several challenging issues [11],
which include:

• Determining the optimal number of MAs.
• Partitioning the source nodes into subsets of groups and assigning each MA to a specific group.
• Finding the optimal itinerary of each MA.

A greatest information in the greater memory-based MIP (GIGM-MIP) approach was proposed
in [19]. In the GIGM-MIP approach, each partition may have more than one MA. The data size of the
source nodes in each partition will determine how many MAs will be dispatched to that partition.
Although this solution has balanced the accumulated data among MAs, employing more than one
MA in one partition results in an increase in the number of MA migration hops due to the increased
number of itineraries in each partition. Moreover, all the MAs employed in a particular partition have
to carry the aggregation code (which is identical for all the MAs) to the target source nodes for the
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aggregation task. Multiple MAs carrying the same aggregation code within a single partition would
result in an increase in energy consumption.

In this paper, a spawn multi-mobile agent itinerary planning (SMIP) is proposed to reduce the
substantial increase in cost of energy as well as time used in the data gathering processes. The proposed
approach is based on the agent spawning such that the main MA is able to spawn other MAs within
a single partition. The spawning MA has different tasks assigned from the main MA, such that it
only returns the accumulated data to the sink. The main goal of the proposed SMIP approach is to
alleviate the problem of workload due to multiple MAs carrying the same aggregation code within a
single partition.

The rest of the paper is organized as follows: Section 2 reviews the related work in this research.
Section 3 presents our proposed SMIP approach. Simulation setup is performed in Section 4. Section 5
evaluates the performance of the proposed approach and discusses the simulation results. Finally,
Section 6 concludes this paper with future research directions.

2. Related Work

This section presents a review of some of the existing MIP algorithms. It is noted that MIP
algorithms can be classified into homogeneous networks with one sink [16–21], and heterogeneous
networks with multiple sinks [22] (based on network topologies). The majority of the existing MIP
algorithms are based on the homogeneous network. As such, the works studied in this paper
are centered around the homogeneous networks, where the itinerary of each MA is static and
predetermined at the sink.

The near-optimal itinerary design (NOID) algorithm [21] was proposed to find the optimal
number of MAs in MIP. This algorithm iteratively groups the sensor nodes in the network to separate
sub-trees that are connected progressively to the processing element (PE) or sink. After NOID finishes
constructing sub-trees, the sink dispatched one MA to each sub-tree. An enhanced version of the NOID
algorithm termed the second near-optimal itinerary design (SNOID) algorithm was proposed in [23].
SNOID differs from NOID by considering the nodes’ communication cost when constructing the MA
itinerary. The number of MAs in SNOID is determined by partitioning the area around the sink into
concentric zones. The nodes lying within the radius of the first zone around the sink will be the starting
points of each itinerary. The first zone radius can be obtained by armax, where a is an input parameter
in the range [0, 1] and rmax is the maximum transmission range of any sensor node. Each MA itinerary
starts from the zones close to the sink and extends to the outer zones. Similarly, a meta-heuristic
method called iterated local search (ILS) was further proposed in [24]. This algorithm is like the other
tree-based MIP algorithms (NOID and SNOID), but it differs in considering the increase in MA’s
packet size as well as the energy consumption due to migration over intermediate nodes when it
constructs the MA itinerary. Although tree-based MIP algorithms perform better than SIP algorithms,
the itinerary of the MA consumes extra energy due to the reverse routes that the MA take—especially
when there are a huge amount of branches.

The central location-based MIP (CL-MIP) algorithm was proposed by [16], where the
determination of the optimal number of MAs in MIP can be divided into four parts; (1) Visiting central
location (VCL) selection algorithm, (2) Source grouping algorithm, (3) Determining the source-visiting
order using SIP algorithms, (4) Iterative algorithm to ensure that all source nodes have been assigned to
their MAs. The main idea of VCL algorithm is to calculate the source nodes density by the distribution
of an impact factor among the source nodes. So, if n represents the number of source nodes, then each
source node will receive (n− 1) impact factor from others, and one from itself. Then, the location of
the source node with the largest accumulated impact factor will be selected as a VCL (the density of
the source nodes). After selecting the VCL, all the source nodes within the radius of VCL are grouped
together and assigned to an MA. By using the iterative algorithm, the above process is repeated until all
the remaining source nodes are grouped and assigned to the MAs. Finally, each itinerary is determined
by using one of the SIP algorithms. Nevertheless, CL-MIP algorithm assumes a cluster-based approach,
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where the source nodes are arranged geographically and distributed in several clusters. This limits
the use of the algorithm when the sensor nodes are sparsely deployed. Moreover, CL-MIP algorithm
can result in source nodes isolation (few source nodes are located together) and then assigned a new
itinerary. This would lead to an increase in energy consumption, especially when the isolated source
nodes are located far from the sink.

Motivated by the need to determine the optimal number of MAs in MIP, a directional source
grouping-based MIP (DSG-MIP) algorithm was proposed in [20]. This algorithm partitions the
network area into sector zones, whose centers consist of a sensor node that lies within the sink’s
radius zone. The sink zone can be obtained by the method presented in the SNOID algorithm in [23] .
The contribution in the DSG-MIP algorithm is to establish an angle gap to partition the network into
sectors. The angle gap is determined by the nodes density described in [16]. A particular angle gap
threshold is used to determine the sector’s size. After several iterations, the isolated source nodes may
be arranged to a new sector (with new itinerary). Here, instead of adding these isolated source nodes to
a new sector, it can be inserted into existing sectors by expanding the angle with the consideration of the
metric of shortest distance to existing itineraries. However, this solution increases the delay of the MA
when the isolated source nodes are located far from the existing itineraries. Additionally, determining
the optimal gap threshold in the DSG-MIP algorithm is still regarded as a challenging issue.

Similarly, a genetic algorithm (GA)-based MIP was proposed in [17] to also determine the optimal
number of MAs in MIP. The aim was to deal with MIP as a single problem instead of utilizing the
four-parts in the outlined in CL-MIP [16] and DSG-MIP [20] algorithms. In GA-MIP, a GA is used to
determine the number of MAs and their assigned source nodes by two-level coding method. The coding
represents a gene that contains source-ordering-code (sequence array) and source grouping code (group
array). A source-ordering-code is an array that includes segments, where each segment has a number
of source nodes to be visited by a particular MA. A source grouping code is an array of numbers, with
each number specifying the number of source nodes of each segment in the source-ordering-code.
The two basic operations of GA (crossover and mutation) are used in each iteration, and a fitness
function is adapted to select the better genes to survive. GA-MIP has better performance than other
previous MIP algorithms in terms of delay and energy consumption, but it is a greedy approach which
produces a substantially suboptimal MIP solution and high computation complexity.

In most of the previously proposed MIP algorithms, the geographic information of the sensor
nodes is the main parameter used to determine the optimal number of MAs and their itineraries.
Recently, a greatest information in the greater memory-based MIP (GIGM-MIP) algorithm was
proposed in [19]. This algorithm not only considers the geographic information, but also takes
into account the data size in each partition to formulate the optimal number of MAs and their
itineraries. In GIGM-MIP, k-means algorithm is used to partition the network into K clusters (partitions).
After partitioning the network, GIGM-MIP calculates the data size of the source nodes in each partition.
This data size will then determine how many MAs would be assigned to that partition such that each
partition may have more than one MA. However, GIGM-MIP algorithm has two main drawbacks.
The first one is that with k-means partitioning algorithm, the number of the partitions has to be
manually identified by the user. This means that the partitioning of the network is not accurately
obtained. The second limitation of the GIGM-MIP algorithm is that the distribution of more than one
MA to a single partition would increase the number of MA’s hops. Moreover, if the partition has more
than one MA, each MA has to carry the processing code (data aggregation code) to its target source
nodes. This limitation has caused an increase in energy and time consumption.

3. Spawn Multi-Mobile Agent Itinerary Planning (SMIP) Approach

3.1. Partitioning the Network

In the GIGM-MIP algorithm, the k-means algorithm was used to partition the network.
As mentioned earlier in Section 2, the algorithm inaccurately partitions the network. As such, an
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x-means algorithm [25] was adopted in this paper for clustering. The x-means algorithm is an extension
of k-means algorithm. The main idea of x-means algorithm is to automatically determine the number
of clusters based on Bayesian information criterion (BIC) scores, which is a known selection criterion
model. X-means starts with one cluster at the first iteration, then after each iteration, x-means goes
into action to make local decisions about which subset of the current centroids should be split in order
to better fit the data. The splitting decision is achieved by computing the BIC scores. It is important to
remark that the implemented partitioning algorithm in this paper is not the main focus, but rather the
itinerary planning of the MAs.

3.2. Spawn Mobile Agent (SMA) Algorithm in SMIP

Once the partitioning of the network is done, the sink node determine the number of the MAs, as
well as their itineraries for each partition. In the previous MIP approaches, each MA starts its migration
from the sink and returns back to the sink with the accumulated data after completing the gathering
process. This means that the sink is the start and end point of each MA itinerary. In this article, a spawn
multi-mobile agent itinerary planning (SMIP) approach is proposed. The spawn mobile agent (SMA)
algorithm is based on one of the characteristics of the agent, named agent spawning [26], employed in
the proposed SMIP. Agent spawning is the ability to create a new agent that has different capacities
and capabilities that are contrary to the original agent. The spawning agent’s task is to handle a part
of the tasks at hand of the original agent. Therefore, in this work, we adopt this characteristic (agent
spawning) in order to distribute the data gathering task among the MAs such that some MAs have
different assigned tasks from others. The sink node assigns one main MA to each partition. The main
task of the main MA is to collect the data from the source nodes, and it also has the ability to spawn
the new MA (SMA) to do a different task at a certain point. Here, the task of the SMA is only to carry
the accumulated data of the main MA back to the sink. As a result of this spawning action, two types
of itineraries are defined: main MA itinerary and SMA itinerary.

It should be noted that the SMA is an entity built inside the main MA packet. The packet
structure of the main MA is described in Figure 2. The main MA packet is defined as an entity of
six attributes: MA ID, MA itinerary, data payload, SMA code, SMA itinerary, and data aggregation
code. The description of these attributes is as follows:

• MA ID: is the identification number of each MA dispatched by the sink node.
• MA Itinerary: contains the itinerary information (source nodes’ visited order list) assigned by the

sink node when dispatched.
• Data payload: MA’s data buffer which carries the aggregation data results.
• SMA code: is the code of the spawning carried by MA.
• SMA Packet: includes the SMA ID, the itinerary information of the SMA (visited sensor nodes)

to get back to the sink node, and SMA payload data. Note that the MA could carry more than
one SMA.

• Data aggregation code: is the implementation of the data aggregation algorithm.

Figure 2. Main MA packet structure. SMA: spawn mobile agent.
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3.3. Determining the Itinerary for Each MA in SMIP

In MIP, determining the itinerary for each MA is a challenging issue, where the optimal itinerary
has a direct impact on both energy and time consumption. In the proposed SMIP approach, there are
two types of MA (main MA and SMA); therefore, the sink is required to determine the itinerary for
each MA. At the first, after the network partitioning process is done, the sink assigns one main MA
to each partition. In each partition, the source nodes’ visited order list for the main MA is statically
determined at the sink by adapting the local closed first (LCF) algorithm. In this paper, LCF algorithm
has been adapted for two reasons. First, LCF algorithm has simplicity and low computation process to
find the path of MA. Secondly, in terms of fair comparison, this paper adapts the same algorithm that
has been used by GIGM-MIP algorithm. LCF algorithm uses the current global network information of
all sensor nodes and determines an efficient MA itinerary at the sink before MA is starts its migration.
When the main MA is at the sink, LCF lookup to the source node with the shortest distance to the
sink from the rest of the source nodes. Then, the LCF algorithm lookup again to the source node with
the shortest distance to the current location of the main MA and so on until all the remaining source
nodes are assigned to the main MA’s visiting list. After the main MA’s visiting list has completed,
the sink then determines in which source node the main MA will create an SMA. In the proposed
SMIP approach, the size of the main MA’s data payload is used to determine at which source node the
SMA can be created. Specifically, a threshold has been used for the main MA’s data payload, so once
the accumulated data exceeds the threshold, the main MA spawns a new SMA. Let S ∈ (1, 2, 3, . . . , i)
represent a set of source nodes to be visited by the main MA, then the size of the main MA’s data
payload at source node i by the MA-assist local reduction process can be calculated as:

Ri = Si
data · (1− r) (1)

where Ri is the data reduced at source i , Si
data is the size of raw data at source i, and r is the reduction

ratio (0 < r < 1). When the main MA completes the reduction process at source i, it migrates to the
next source node (i + 1) to perform the same reduction process and then aggregates the result with the
one that is already carried from source i. Therefore, the size of accumulated data after the MA leaves
source i can be calculated as follows:

S1
ma = R1,

S2
ma = R1 + (1− f ) · R2

Si
ma = Ri + (1− f ) · Ri

= R1 +
S

∑
i=2

(1− f ) · Ri

(2)

where Si
ma is the size of the accumulated data after the main MA leaves the source node i, f is the

aggregation ratio (0 ≤ f ≤ 1), and Ri is the amount of data aggregated by f . Note that in Equation (2),
there is no data aggregation at the first source node. The itinerary of the SMA is also determined by
using LCF algorithm. The only difference between the main MA and SMA itinerary is that the starting
point of the SMA is the location where it has been created, while the starting and ending point of the
main MA is the sink. Moreover, there is no data aggregation process along with the SMA’s itinerary,
because it only visits intermediate nodes. However, LCF algorithm does not always guarantee a lower
cost, since the output of this algorithm is highly dependent on the MA’s current location and the size of
the accumulated data carried by the main MA. The last source nodes to be visited by the main MA are
typically associated with high migration cost due to the increase in the size of the MA’s data payload.
Therefore, in the proposed SMIP approach, the data payload is drained and sent back to the sink with
the SMA, which would lead to a decrease in the migration cost of the main MA.
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It should be noted that in the proposed SMIP approach, the procedure of determining the number
of main MAs, SMAs, and their corresponding itineraries utilized for data gathering process is executed
centrally at the sink. Thus, since the sink assigns one main MA to each partition, the number of
main MAs that will be dispatched to the network is equal to the number of the network’s partitions.
While the total number of SMAs in the whole network can be calculated as below:

TotalSMAs =
z

∑
p=1

Number of SMAs (p) (3)

where p is the partition number and z is the total number of partitions in the network,
Number o f SMAs (p) is the number of SMAs in partition p, which is given by:

Number of SMAs(p) =
TDSp

MADP
− 1 (4)

where TDSp is the total data size in partition p which can be carried by the main MA using Equation (2)
and MADP is a threshold of the data payload of the main MA. Note that the result in Equation (4) has
been reduced by 1 because the last data payload will be carried by the main MA. The pseudo-code of
SMIP approach is detailed in Algorithm 1.

Algorithm 1: Pseudo-code of SMIP approach.

1 Initialization:
2 N← Number of sensor nodes
3 MADP ← The threshold value of the main MA data payload
4 Partitioning the network using x-means algorithm by calculating the distance among N:
5 Z← Number of partitions
6 for p = 1 to Z do
7 S← Number of source nodes in p
8 Assign one main MA to p
9 TDSP ← The total data size of S in p using Equation (2)

10 if TDSP > MADP then
11 Calculate Number of SMAs (p) as in Equation (4)
12 Determine the itinerary of the main MA and SMAs using LCF algorithm
13 end
14 end
15 Return the itineraries of the main MAs and the SMAs

In order to have a good understanding of the proposed SMIP approach, Figure 3 illustrates
an example of data gathering based on SMIP approach when compared to GIGM-MIP algorithm.
In this example, the sink is required to send the MA to one partition. In this partition, there are nine
source nodes (the red nodes 1, 2, 3, 4, 5, 6, 7, 8, and 9) to be visited by the MA. In Figure 3a, with the
GIGM-MIP algorithm, the sink determined that two MAs should be dispatched and visit the nine
source nodes. By adapting the LCF algorithm, the source nodes’ visited order of the first MA is (1, 2,
3, 4, and 5). After the first MA complete data collection from source node (5), it returns to the sink
due to the full size of the data payload. The source nodes’ visited order of the second MA is (9, 8, 7,
and 6). Note that in the GIGM-MIP algorithm, each MA has to carry its processing code (aggregation
code). Moreover, each MA has its own itinerary such that each MA starts its migration from the sink
and returns back to the sink with the accumulated data. On the other hand, Figure 3b shows the data
collection process of the proposed SMIP approach. With the SMIP approach, the sink dispatches only
one main MA to perform the data collection task. The source nodes’ visited order of the main MA as
determined by LCF algorithm is (1, 2, 3, 4, 5, 6, 7, 8, and 9). When the main MA finishes collecting data
from source node (5) and its data payload exceeds the threshold, the main MA spawns an SMA in
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order to carry the accumulated data back to the sink. The SMA follows a different itinerary towards
nodes 5, A and B until it reaches the sink. Note that the nodes along the SMA itinerary work only as
intermediate nodes, which means there is no data collection process along the SMA itinerary. Once the
main MA spawns the SMA, it continues its migration to perform the data collection task from the
remaining source nodes (node numbers 6, 7, 8, and 9). Here, if the data payload of the main MA again
exceeds the threshold of data payload and there are no more source nodes, the main MA returns the
accumulated data back to the sink without making spawn SMA; else, the main MA repeats the above
spawning process.

Figure 3. An example of data gathering based on: (a) greatest information in the greater memory-based
MIP (GIGM-MIP); (b) spawn multi-mobile agent itinerary planning (SMIP) approach algorithm.

Comparing the GIGM-MIP algorithm against the proposed approach (as shown in Figure 3a),
the total hops (including intermediate and source nodes) utilized by the two MAs in the GIGM-MIP
algorithm is 20 hops, while in Figure 3b, the number of hops utilized by the main MA and SMA in
the proposed SMIP approach is 17 hops. Therefore, the proposed SMIP approach eliminates three
unnecessary hops, which has a direct impact on the energy consumption and task duration. Moreover,
with the proposed SMIP approach, the MA carries the processing code (which is indispensable) only
once to each partition. This has enabled the proposed SMIP approach to save more energy when
compared to GIGM-MIP algorithm.

3.4. SMA Itinerary Energy Calculation

A WSN is defined as a complete graph G = (V, E) [11], consisting of a set of N vertices,
|V| = N, where each vertex i, (i = 0, 1, 2, . . . , N − 1) in V corresponds to a sensor node (SN),
Si (i = 0, 1, 2, . . . , N − 1), and each edge L(i, j) in E corresponds to a wireless communication link
between each pair of sensor nodes SNi and SNj. The node S0 represents the sink node, which dispatches
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and receives the MAs. Furthermore, there are M source nodes included in a specific subset K′, where
K′ ∈ S.

The wireless communication link L(i, j) is associated with a link cost C(i, j), i, j ∈ (0, 1, 2, . . . ,
N − 1)—a function of the power loss to transfer the packet from Si to Sj. Given the cost matrix
C = C(i, j)||L(i, j) ∈ E, in MIP, the MA routing problem is to find a set of t near-optimal itineraries,
I = I1, I2, . . . , It so that the overall cost of all the itineraries in I is reduced. Each particular I will
cover a group of sensor nodes K′ which is a subset of S. In order to avoid the interference, each two
itineraries should share no common source nodes. The process of the LCF algorithm is to assign the
source nodes to an MA’itinerary one by one depending on the shortest distance to the current location
of the MA. Then, this process is repeated again for the second MA’itinerary and so on until all the
remaining source nodes are assigned to all MAs’ itineraries. In this case, each MA’itinerary will have a
different set of source nodes from other MA’itineraries. Each MA’itinerary has a migration energy cost.
The total energy cost of all the itineraries can be written as:

Ctotal =
|I|

∑
t=1

ICt (5)

where ICt is the energy cost of itinerary It covered by the MA, and ICt can be simplified to:

ICt =
|It |

∑
j=1

(jd f + pc)ci,j (6)

|It| represents the number of visited nodes in the itinerary It by the MA, j is the visited sensor node,
jd f means the size of data collected by the MA at sensor node j after aggregated by a ratio f , pc is the
MA’s initial size (processing code plus MA packet header), and ci,j is the energy consumption of the
MA to migrate from sensor node i to sensor node j. Note that j could act as source node (has data to be
collected by the MA) or intermediate node (only hop).

In order to calculate the total energy cost in our proposed SMIP approach, the energy cost of both
types of itineraries (main MA itinerary and SMA itinerary) has to be taken into account. Therefore, the
total energy cost of SMIP approach can be calculated as follows:

CtotalSMIP =
|I|

∑
t=1

ICt +
|ISMA |

∑
h=1

ISMACh (7)

where ISMACh is the energy cost of itinerary Ih
SMA covered by the SMA. So, ISMACh can be simplified to:

ISMACh =
|Ih |

∑
m=1

(m + pcSMA)cSMA
m,j (8)

where |Ih| refers to the number of visited nodes in the itinerary Ih by the SMA, m is the visited sensor
node, pcSMA is the SMA’s initial size (processing code plus SMA packet header), and cSMA

m,j is the
energy consumption of the SMA to migrate from sensor node m to sensor node j. It should be noted
that m in Equation (8) acts only as an intermediate node, which means there is no data to be collected
along the SMA itinerary.

4. Simulation Setup

In order to evaluate our proposed SMIP approach, we have compared the proposed SMIP
approach against GIGM-MIP algorithm [19] as well as to the basic MIP algorithm (CL-MIP
algorithm). The implementations have been tested using a simulation developed via MATLAB
R2014a. The implementations have been tested using simulation developed via MATLAB R2014a.
In this paper, MATLAB was chosen for two reasons. First, it is an easy-to-use mathematical simulation
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tool for different mathematical models and analysis of results. Secondly, in order to fairly compare
the simulation results, MATLAB is used because it was used by GIGM-MIP algorithm, which is
the compared algorithm to our proposed SMIP approach. We adopted the same network model
in [16,17,19,20], which is the most popular network model in data gathering-based MIP. We used the
same energy consumption model as in [17,27]. The sensor nodes are static, densely and uniformly
deployed within a 1000 m × 500 m network size. We selected a large-scale network with 800 sensor
nodes in order to validate the scaling of the proposed SMIP approach. The sink node is located at the
center of the network, and it has unlimited energy supply and higher computational capability. All the
sensor nodes have the same initial energy with fixed transmission range. Each sensor node has at least
one neighbor node with its transmission range set to 60 m. In each data gathering task, a random
number of source nodes is selected which is varied from 10 to 40 by the step of 5. Each compared
MIP algorithm was tested on the same selected number of source nodes. The sink node has all the
geographic information of the sensor nodes, and it is responsible for calculating the main MAs and
SMAs itineraries for each data aggregation task. The itineraries are static, where the list of the visited
sensor nodes is predetermined at the sink. The simulation parameters are listed in Table 1.

Table 1. Simulation parameters of SMIP approach.

Network Parameters Value

Network’s Terrain 1000 m × 500 m
Number of deployed nodes 800

Number of source nodes 10–40
Transmission range 60 m

Raw data size 1024 bits

MA Parameters Value

MA processing code 1024 bits
MA accessing delay 10 ms

Raw data reduction ratio 0.8
Aggregation ratio 0.9

Data processing rate 50 Mbps
Data payload threshold 1500 bits

SMA Parameters Value

SMA processing code 128 bits
SMA accessing delay 10 ms
Data processing rate 50 Mbps

5. Performance Evaluation

In this section, we evaluate five performance metrics: task energy consumption, task duration,
energy-delay product (EDP), hop count, and task distance. For each data point in each presented
figure, we take the average of 30 simulation runs with a different selected random number of source
nodes. The proposed SMIP approach was compared against the GIGM-MIP algorithm as well as the
CL-MIP algorithm. For each MA itinerary, local closed first (LCF) algorithm was used to determine the
visited source nodes order. The LCF algorithm searches for the next node with the shortest distance to
the current node. The sink node is the starting point of the main MA itinerary, while the starting point
of the SMA itinerary is the point where the main MA made spawn. The sink node is the ending point
for both itineraries (main MA and SMA).

Figure 4 shows the impact of the number of source nodes on the task energy consumption.
The task energy consumption is the energy spent for transmitting, receiving, and exchanging control
messages to perform the data collection task from all source nodes. In this figure, when the number
of source nodes increased, the energy consumption of the CL-MIP algorithm goes high from 0.32 to
1.5 J/Task. The CL-MIP algorithm consumes high energy due to the distribution of a large number of
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MAs to the network which leads to an increase in the number of MA’s hops. GIGM-MIP algorithm
consumes less energy than CL-MIP algorithm when the number of source nodes increases. This is
because GIGM-MIP algorithm distributes the data gathering task among the MAs in each partition.
On the other hand, the proposed SMIP approach achieves 61.8% and 13.2% energy decrease when
compared to CL-MIP and GIGM-MIP, respectively. Significantly, this achievement is obtained for
two reasons. The first is the minimization in the number of MA hops. The second reason is that
the processing code (aggregation code) of the main MA is carried once to each partition, while
in GIGM-MIP algorithm, each partition may have multiple processing codes carried by the MAs.
Additionally, in SMIP approach, the accumulated data of the main MA is sent back to sink separately
by the SMA, while in the GIGM-MIP algorithm, each MA has to carry its accumulated data to the sink.
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Figure 4. The impact of number of source nodes on energy consumption.

In a SIP algorithm, the task duration is the average delay from the time when the MA is dispatched
by the sink to the time when MA returns back to the sink. In MIP algorithms, however, since multiple
MAs are dispatched to the network and work simultaneously, the task duration of the MIP algorithm
is the delay of the MA that returns back to the sink at last. In the proposed SMIP approach, the task
duration is the delay of either main MA or SMA that returns back to the sink at last.

As depicted in Figure 5, the proposed SMIP approach achieves a significant improvement in terms
of task duration. This improvement is about a 39.4% and 7.04% decrease of task duration as compared
to CL-MIP and GIGM-MIP algorithms, respectively. In both CL-MIP and GIGM-MIP algorithms,
each MA should travel along its itinerary starting the migration from the sink to perform the data
collection process from the source nodes, and then returns back to the sink with the accumulated data.
This process increases the number of MA’s hops which leads to a large delay, especially when the
source nodes are distributed sparsely over the network. Meanwhile, the proposed SMIP approach
reduces the task duration by constructing the shortest MA itineraries with fewer MA hops.

For time-sensitive applications (e.g., wireless multimedia sensor networks and video sensor
networks [28]), it is important to consider both energy consumption and task duration (energy-delay
product, EDP) in order to evaluate the performance of the proposed approach. EDP can be calculated as
EDP = energy× delay, such that the smaller the value of EDP, the better performance obtained. Figure 6
illustrates the overall EDP performance of CL-MIP, GIGM-MIP, and SMIP. Due to the high energy and
task duration, CL-MIP has the largest value of EDP, which yields the worst overall performance when
compared to GIGM-MIP and SMIP. Evidently, the proposed SMIP approach outperforms GIGM-MIP
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with a decreased EDP value up to 17.8%, and continues to achieve better performance even when the
number of source nodes increases. This verifies the effectiveness of the proposed approach.
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Figure 5. The impact of the number of source nodes on task duration.
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Figure 7 illustrates the accumulated hop counts, which includes both source and intermediate
nodes of the compared algorithms. In SIP algorithms, the hop count is defined as the average hop
count of the MA itinerary. In MIP algorithms, the average hop count is the accumulated hop counts of
all the MAs’ itineraries. As shown in Figure 7, the results indicate that the CL-MIP algorithm produces
the largest hop count among other MIP algorithms by constructing many MA itineraries, which returns
a large number of hops. Besides, the GIGM-MIP algorithm accumulates fewer hops compared to the
CL-MIP algorithm. On the other hand, the proposed SMIP approach has the lowest number of hops
due to the shortest distance utilized by the MAs as well as fewer itineraries.
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Figure 8 shows the evaluation of the task distance metric. It represents the accumulated distance
travelled by all MAs until they return to the sink. When the number of source nodes increases,
the accumulated distance spent by all MAs increases due to the construction of many intermediate
nodes along with MAs’ itineraries. Note that the intermediate nodes consume more energy than the
source nodes due to data forwarding, while the source nodes are visited only once for data collection
process. As shown in Figure 8, the proposed SMIP approach achieves the shortest distance compared
to GIGM-MIP and CL-MIP algorithms. This achievement is related to the fact that the proposed SMIP
approach utilizes fewer intermediate nodes when constructing the MAs itineraries. This indicates that
the proposed approach can be suitable for target tracking problems in wireless sensor networks where
the distance is a very important factor.
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6. Conclusions

Determining the optimal number of MAs and their itineraries in MIP has a direct impact on the
overall performance of the data gathering task in WSNs. However, the previous MIP algorithms were
based on a general assumption such that the sink node is the starting and ending point of each MA’s
itinerary. In this paper, a spawn multi-mobile agent itinerary planning (SMIP) approach has been
proposed. The main aim of the proposed SMIP was to determine the optimal number of MAs and
their itineraries in MIP. The idea of the proposed SMIP approach was based on agent spawning, where
the sink node dispatches only one main MA to the assigned partition in the network, and this main
MA has the ability to spawn one or more new MAs with different assigned tasks. Furthermore, the
proposed SMIP approach used x-means clustering algorithm to partition the network such that the
number of clusters is efficiently achieved. Subsequently, extensive simulations have been carried out to
evaluate the performance of the proposed SMIP. The results shown that SMIP has achieved significant
improvements in terms of energy and task duration. Additionally, the proposed SMIP approach has
achieved a better performance (EDP) compared to the previous MIP algorithms. Future research needs
to consider fault tolerance (such as sensor’s failure and battery depletion) during the determination of
the MA itinerary, so that the MA can dynamically migrate to the next hop node.
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