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Abstract: Mechanical equipment is the heart of industry. For this reason, mechanical fault diagnosis
has drawn considerable attention. In terms of the rich information hidden in fault vibration signals,
the processing and analysis techniques of vibration signals have become a crucial research issue in the
field of mechanical fault diagnosis. Based on the theory of sparse decomposition, Selesnick proposed
a novel nonlinear signal processing method: resonance-based sparse signal decomposition (RSSD).
Since being put forward, RSSD has become widely recognized, and many RSSD-based methods
have been developed to guide mechanical fault diagnosis. This paper attempts to summarize and
review the theoretical developments and application advances of RSSD in mechanical fault diagnosis,
and to provide a more comprehensive reference for those interested in RSSD and mechanical fault
diagnosis. Followed by a brief introduction of RSSD’s theoretical foundation, based on different
optimization directions, applications of RSSD in mechanical fault diagnosis are categorized into five
aspects: original RSSD, parameter optimized RSSD, subband optimized RSSD, integrated optimized
RSSD, and RSSD combined with other methods. On this basis, outstanding issues in current RSSD
study are also pointed out, as well as corresponding instructional solutions. We hope this review
will provide an insightful reference for researchers and readers who are interested in RSSD and
mechanical fault diagnosis.

Keywords: resonance-based sparse signal decomposition; signal processing; mechanical fault
diagnosis; feature extraction

1. Introduction

With the rapid development of modern industry, mechanical equipment, the industrial heart,
is developing towards the direction of large scale, high speed, high accuracy and system integration.
Due to harsh working conditions, the faults of mechanical components may strike randomly, and more
frequently in their later life. Even the fault of a single component is likely to result in the shutdown of an
entire piece of mechanical equipment, especially when considering the chain effects. Thus, mechanical
faults may cause huge economic costs and even catastrophic casualties [1,2]. For instance, in 2006,
damage of the propulsion system was induced by a gearbox fault in the ship “Zhouying 4”, causing
enormous pecuniary loss for the Chinese government [3]. Advanced fault diagnosis technology can
not only detect mechanical faults as early as possible, before fatalities, but also fundamentally solve the
problem of inadequate and excessive maintenance, which will be of great benefit to the safe operation
of mechanical equipment. As a result, great attention has been paid to fault diagnosis technology.

Mechanical fault diagnosis is a comprehensive and interdisciplinary study, since it combines
monitoring, diagnosis, and prognostics. Its major research directions include signal acquisition and
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sensing technologies, fault mechanisms and symptom relationships, signal processing and diagnostic
methods, and intelligent decision and diagnosis systems [4], as shown in Figure 1. Among these, signal
processing and diagnosis methods are researched most extensively. It is acknowledged that vibration
analysis is the most effective tool for mechanical fault diagnosis [5,6]. Aiming at extracting information
on fault features and subsequently recognizing mechanical fault types, a wealth of signal processing
methods are continuously put forward and applied to fault vibration signal analysis. To date, fault
feature extraction techniques based on signal processing include short-time Fourier transformation
(STFT) [7], wavelet transformation (WT) [8], empirical mode decomposition (EMD) [2], resonance
demodulation [9], and morphological operators [10], etc. Although these techniques have found
wide application in mechanical fault diagnosis, there are still some problems remaining to be settled.
For example, the basis function of wavelet transformation cannot be altered once selected; mode
mixing problems are common in EMD; and center frequency and bandwidth are difficult to determine
for resonance demodulation. Due to lacking effective solutions to the above problems, misdiagnosis
and even missed diagnosis emerge in many cases, which become the biggest constraints in theory and
engineering applications. In short, the feature extraction method of mechanical fault vibration signal
still needs to be further perfected.
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Resonance-based sparse signal decomposition is a novel nonlinear signal processing method that
was proposed by Selesnick in 2011 [11]. The method takes resonance as an intrinsic property of a signal
and evaluates resonance degree with a quality factor (defined as the ratio of the center frequency and
frequency bandwidth, denoted Q). A signal with stronger resonance signifies that it possesses a higher
Q, oscillates more times in a time domain, and its frequency band is distributed more intensively;
and vice versa. Unlike frequency band based signal analysis methods, such as WT and EMD, RSSD
realizes the nonlinear separation of each component according to its oscillation property (resonance)
through morphological component analysis (MCA) [12], and obtains the sparsest representation
of each resonance component. So far, RSSD has been widely applied in speech signals [13,14],
biological signals [15,16], power systems [17–19], and other fields [20–23], and the relevant literature
has mushroomed over the past few years.

The fault vibration signals collected from mechanical systems—mainly bearings, gearboxes,
and rotor systems—usually exhibit a superposition of periodic fault-induced vibration responses
and random noise. Indeed, periodic signal components and background noise can correlate well
with the high- and low-resonance components in RSSD, especially from the viewpoint of resonance.
Moreover, since RSSD breaks through the limitations of traditional techniques where processing signals
are based on frequency band, it is more suitable to process mechanical fault vibration signals with
obvious nonlinear and non-stationary characteristics. Hence, related research in the mechanical fault
diagnosis field is increasingly heated. Unfortunately, our literature survey reveals that a review on the
applications of RSSD in mechanical fault diagnosis has not been published.

To fill up the review gap, this paper attempts to summarize the theoretical developments and
applications of RSSD in mechanical fault diagnosis. For the purpose of centralizing, categorizing, and
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analyzing these individual studies, this paper provides a more comprehensive reference and promotes the
appearance of more advanced research about RSSD, which can make a great contribution to mechanical
fault diagnosis. The rest of this review is organized as follows. In Section 2, a brief introduction about
signal resonance and two construction methods of wavelet bases are presented. Section 3 presents an
implementation algorithm for RSSD, illustrates its performance, and investigates its parameters’ influences
on decomposition results. Section 4 reviews recent application advances of RSSD in mechanical fault
diagnosis based on different optimization directions. In Section 5, these methodologies and applications
are synthesized in a flow chart and table. Outstanding issues and solutions of RSSD in mechanical fault
diagnosis are discussed in Section 6. Finally, concluding remarks are provided in Section 7.

2. Theoretical Foundation of Wavelet Bases

Due to the differences in signal resonance, RSSD is able to decompose complex signals into
high-resonance components comprising sustained oscillation signals, low-resonance components
consisting of transient impulse signals, and residual components. Noteworthy, the core superiority
of RSSD lies in the construction of wavelet bases. Thus, after a brief explanation of signal resonance,
this section will concentrate on the construction methods of wavelet bases, including rational-dilation
wavelet transformation (RADWT) [24,25] and tunable Q-factor wavelet transformation (TQWT) [26].

2.1. Signal Resonance

The signal resonance property can be described with the Q-factor, which is defined as the ratio of
the center frequency fc and bandwidth BW in frequency domain, as expressed in Equation (1):

Q =
fc

BW
(1)

Figure 2 explains the resonance property in more detail. Note that the left section of this
figure shows the time-domain waveforms, with their corresponding frequency spectra on the right.
For Figure 2a,b, the time-domain signal resembles an impulse signal and exhibits no sustained
oscillatory behavior; thus it is defined as the low-resonance component. For the signals in Figure 2c–f,
whose Q-factors are equal to 4, their oscillations are about eight times in time domain and sustained
oscillatory behaviors are observed, so they are defined as the high-resonance components. Comparing
Figure 2b,d or Figure 2f, it is evident that a higher-Q signal has a more concentrated frequency
distribution for a fixed frequency than a low-Q signal. Moreover, the signals in Figure 2c,e are likely
able to convert to the other one through compressed or stretched transformations in their time domains.
This time-scaling transformation doesn’t change their resonance degrees, which explains why they
have Q-factors. Also, their frequency distributions are nonoverlapping, in accordance with the fact
that the resonance property is independent of time scale and frequency.
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Figure 2. Signals with different Q-factors: (a,b) Q = 1; (c,d) Q = 4; (e,f) Q = 4.
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Based on signal resonance, Selesnick successively put forward RADWT and TQWT to construct
the wavelet bases used in RSSD, and they are both overcomplete discrete wavelet transformations.

2.2. Basic Theory of RADWT

Dyadic wavelet transformation is a common constant-Q transformation, but a low Q-factor
limits the application in some conditions where a high frequency resolution is strictly requested [25].
To overcome this shortcoming, Selesnick developed RADWT in 2009 and successfully applied it to
RSSD in subsequent years [11].

On a theoretical level, like the tree-structure filter bank for Dyadic wavelet transform, RADWT is
also implemented by using the two-channel filter banks illustrated in Figure 3, except for the difference
that only one sampling process exists in the high-pass filter.
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Tunable parameters in RADWT include p, q, and s, and the dilation factor d is defined as p/q,
wherein co-prime numbers p, q should satisfy p < q and p/q + 1/s > 1. In effect, the Q-factor is adjusted
with the combined action of p, q, and s, as in Equation (2):

Q =
√

d
1

1− d
(2)

It must be mentioned that this formula for the Q-factor is feasible only when the following
equation is satisfied: (

p
q

)2
< 1− 1

s
(3)

Without such a guarantee, it will be extremely difficult to find an accurate formula for calculating
Q-factors. Equation (3) enables the Q-factor to increase generally with increasing dilation factor d.
Particularly when the value of d gradually approaches zero, the Q-factor will increase rapidly according
to Equation (2), and the RADWT wavelet will have a more concentrated frequency, as well as a finer
frequency resolution.

On the other hand, s with a value of 1 will lead to transient wavelet features in time domain, which
usually indicates the low-resonance components. A value larger than 1 for s allows the constructed
wavelets to correlate well with high-resonance components, since the subband wavelets exhibit
sustained oscillations in this case. Comparatively speaking, wavelet oscillatory characteristics are
more sensitive to s than to d, and increasing s can effectively strengthen the time-domain oscillation
and frequency concentration. A sufficiently large s will avoid the “ringing” phenomenon, but result in
a “brick wall” frequency distribution [25].

Assuming Equation (3) is satisfied, and given input signal sampling frequency fs, center frequency
fc and bandwidth BW of the level-j subband wavelet constructed by RADWT can be calculated:

fc = dj−3/2(1− 1
s
+ d) fs (4)

BW = 2dj−2(1− 1
s
+ d)(1− d)π (5)
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Figure 4 displays a typical case for RADWT subband bases and their frequency responses. Note
that values of p and q are specially chosen to make the Q-factor close to 3, consistent with the following
TQWT. It can be seen that all subbands show obvious oscillations in the time domain, and the frequency
distributions of first several subbands both have flat tops, which appear only when Equation (3) comes
into existence. In the meantime, the peak amplitudes of each subband vary from each other and show
an overall growth trend.
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Figure 4. A typical RADWT wavelet base with p = 18, q = 25, s = 2. (a) Time-domain waveforms;
(b) Frequency responses.

Consequently, the proposal of RADWT greatly broadens the scope of Q-factors and improves the
flexibility of selecting Q-factors. Nevertheless, p = 18 and q = 25 can only yield a value approximating 3,
rather than a precise Q. If pursuing a more accurate Q, larger values of p and q are unavoidable because
they are co-prime. This will result in the length increase of the under-decomposed signal, which blocks
RADWT’s applications to more general occasions. In terms of Equation (3), an accurate calculation
for the Q-factor is also unreachable in some cases, which makes it very difficult to select an exact
Q-factor assisted with a priori knowledge. More unfortunately, without calculation formulas for fc and
BW like those given in Equations (4) and (5), subsequent analysis and optimization on subbands are
enormously challenging, lacking theoretical foundation. Taking these restrictions into consideration,
a more advantages transformation needs to be developed.

2.3. Basic Theory of TQWT

As a significant breakthrough in constructing wavelet bases, TQWT overcomes the length
limitation of the input signal excellently, and has a more extensive application prospects than RADWT.
Via directly specifying the Q-factor, redundancy factor r, and decomposition level J, wavelet bases are
designed. Obviously, TQWT has more flexibility than RADWT; therefore, it is not only favored by
RSSD researchers in the field of mechanical fault diagnosis, but also in most signal analysis fields [27].
Briefly, the implementation of TQWT also depends on iterative analysis and synthesis filter banks,
as shown in Figures 5 and 6, respectively.
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Figure 6. The synthesis filter banks of TQWT.

In Figures 5 and 6, HPS and LPS represent high- and low-pass scaling, and β and α are the
corresponding scaling parameters, which satisfy 0 < α < 1, 0 < β < 1, α + β > 1. H1(ω) and H2(ω)

are the high- and low-pass frequency responses, respectively.
The parameters in TQWT consist of the Q-factor, redundancy factor r, and decomposition level J,

whose concrete descriptions are listed in Table 1.

Table 1. Summary of parameters in TQWT.

Parameter Symbol Function Description

Quality factor Q Resonance degree
Redundancy factor R Overlapping rate between subband frequency responses

Decomposition level J Decomposition frequency range

The Q-factor describes the degree of signal resonance, and needs to be selected according to the
characteristics of practical signals. Redundancy factor r controls the overlapping rate between the
frequency responses of adjacent wavelets. With a fixed Q-factor, an increase in redundancy factor r
will lead to a higher overlapping rate. Note that redundancy factor r should be strictly greater than 1;
a value greater than 3 is often recommended for the perfect reconstruction and sparsity. Once the
Q-factor and redundancy factor r are determined, the scaling parameters β and α can be obtained
through the following equation:

β = 2/(Q + 1), α = 1− β/r (6)

The decomposition level, J, adjusts the frequency coverage of the wavelets, with a higher J enabling
the wavelets to cover a wider frequency range and approach 0 Hz. However, excessive decomposition
(an overlarge J) will lead to poor computational efficiency. Specifically, TQWT decomposes an
n-point discrete-time signal into J-level subbands, including the detail coefficients and approximated
coefficients. The maximum number of levels is set according to the following equation ([·] represents
the “round down to the nearest whole unit”):

Jmax =

[
log(β ∗ n/8)

log(1/α)

]
(7)

The center frequency fc and bandwidth BW of the obtained level-j subband can be approximated:
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fc = αj 2− β

4α
fs (8)

BW =
1
2

βαj−1π (9)

Analyzing Equations (6), (8), and (9) jointly, it can be deduced that the tunable Q-factor wavelet
bases can be entirely constructed with the determined Q-factor, redundancy factor r, and decomposition
level J. Figure 7 plots a typical wavelet basis, with Q = 3, r = 3, and J = 8. As the decomposition levels
increase, the corresponding center frequency and bandwidth are both lessened, while the Q-factor
stays unchanged.
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Figure 7. A typical TQWT wavelet bases with Q = 3, r = 3, J = 8. (a) Time-domain waveforms;
(b) Frequency responses.

By comparing the TQWT and RADWT subbands, it can be observed that the frequency responses
of the TQWT subbands no longer have flat tops except for the first level subband, and their frequency
peaks each maintain a constant value. Instead of carefully choosing RADWT parameters p, q, and s,
an explicit Q-factor indicating resonance behavior is much more convenient to obtain with TQWT,
especially when signal oscillatory behavior is known in advance. Furthermore, formulas for calculating
TQWT subband center frequency fc and bandwidth BW greatly promote deeper developments for
extracting information of interest from subband signals, which makes TQWT more popular for
many conditions.

3. Resonance-Based Sparse Signal Decomposition

3.1. RSSD Implementation Algorithm

The objective of RSSD is to separate the different resonance components of a given signal and
realize the sparsest representation of each resonance component. In particular, for a given signal
x = x1 + x2, via RSSD the signal is decomposed into the high-resonance component x1, low-resonance
component x2, and the residual, assuming that x1 and x2 can be sparsely represented in bases S1, S2

(constructed by TQWT with high and low Q-factors), respectively. Hence, a suitable optimization
problem for estimating coefficient matrixes W1 and W2 under S1 and S2 is:

W1, W2 = argmin
W1,W2

{
‖x− S1W1 − S2W2‖2

2 + λ1‖W1‖1 + λ2‖W2‖1

}
(10)

where λ1, λ2 are the corresponding weight coefficients. It is worth mentioning that relative values
of λ1, λ2 determine the energy distributions of these two resonance components. With a fixed λ1,
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increasing λ2 will increase the energy of x1 and decrease the energy of x2, and vice versa. Increasing
both λ1, λ2 will increase the energy of the residual and decrease that of the resonance components.

Although the optimization problem in Equation (10) is convex, a large number of variables and
the non-differentiability of the l1-norm make it difficult to solve [11]. Thankfully, the Split Augmented
Lagrangian Shrinkage Algorithm (SALSA) [28,29] has been proven as a powerful tool to handle
the optimization problem. With SALSA, RSSD iteratively updates coefficient matrixes W1, W2 to
achieve the minimization. At the end of all iterations, optimal coefficient matrixes W∗1 , W∗2 are gained,
and the resonance components also reach a relatively considerable state for fault feature extraction,
although they are not always sparse in terms of random noises. At this time, estimates of the high-
and low-resonance components are provided based on MCA:

x1 = S1W∗1 , x2 = S2W∗2 (11)

More details about RSSD can be found in Reference [11]. Summarizing the contents of Sections 2.3
and 3.1, the concrete steps of RSSD are as follows:

Step 1 Input a signal x for decomposition;
Step 2 Assisted with a priori information, select suitable Q-factors Q1, and Q2, redundancy factors

r1, and r2, and decomposition levels J1, and J2 to construct corresponding wavelet bases S1,
S2 via TQWT;

Step 3 According to the observation signal noise level, determine suitable weight coefficients λ1, λ2

and establish Equation (10);
Step 4 Solve the optimization problem with SALSA and obtain the optimal coefficient

matrixes W∗1 , W∗2 ;
Step 5 Utilize W∗1 , W∗2 to represent the estimates of high- and low-resonance components with

x1 = S1W∗1 , x2 = S2W∗2 .

To clearly demonstrate the superiority of RSSD in decomposing different resonance signals,
a performance illustration is presented in the next subsection.

3.2. Illustration of RSSD Performance

In this subsection, to verify the effectiveness of RSSD in processing mechanical vibration signals,
a typical gear fault vibration signal is constructed as follows (the Morlet function):

y(t) =
5

∑
k=0

e
ζ√

1−ζ2 [2π f (t−kT−τ)]2

cos[2π f (t− kT − τ)] (12)

where damping ratio ζ = 0.01, frequency f = 100 Hz, time shift τ = 0.1 s, and cyclic period T = 0.2 s.
Meanwhile, gaussian noise with a signal-noise ratio 4dB is also added, which makes the simulation
signal closer to the practical one. In this example, the gear fault-induced signal components, in the
form of the Morlet function, belong to the high-resonance component, and noises should fall into
the low-resonance category for their non-oscillatory behaviors. Set decomposition parameters to
Q1 = 4, r1 = 5, J1 = 105, λ1 = 0.3, Q2 = 1, r2 = 5, J2 = 10, and λ2 = 0.1, and employ standard RSSD to
process the composite signal. The original signal, and obtained high- and low-resonance components,
are displayed in Figure 8.



Sensors 2017, 17, 1279 9 of 27
Sensors 2017, 17, 1279 9 of 27 

 

1 2 x x x

0 0.2 0.4 0.6 0.8 1 1.2
-4

-3

-2

-1

0

1

2

3

4

Time (s)
A

m
p

li
tu

d
e 

(0
.1

g
)

Original signal

0 0.2 0.4 0.6 0.8 1 1.2
-4

-3

-2

-1

0

1

2

3

4

Time (s)
A

m
p

li
tu

d
e 

(0
.1

g
)

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

1

Time (s)

A
m

p
li

tu
d

e 
(0

.1
g

)

T = 0.2 s

High-resonance 
component

Low-resonance 
component

 

Figure 8. Illustration of resonance-based sparse signal decomposition (RSSD) performance. 
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Figure 8. Illustration of resonance-based sparse signal decomposition (RSSD) performance.

It can be seen that fault-related waveforms are almost buried due to the presence of strong
background noises, and thus no obvious fault information can be found easily in original signal.
Moreover, the oscillatory waveforms and noises overlap, either in time domain or in frequency
domain, which will invalidate traditional frequency band based methods. In RSSD space, the original
signal can be decomposed into two parts: (1) gear fault-induced sustained waveforms; (2) noises
with non-oscillatory features. With inspection, the results conform the theoretical analysis:
the high-resonance component mainly consists of sustained oscillatory Morlet waveforms, while
the transient characteristic of the low-resonance component is apparent. Meanwhile, the period 0.2 s
for the high-resonance component further indicates an obvious gear fault.

In addition to validating RSSD’s effectiveness, we will also analyze the parameters’ influences on
decomposition results, especially on the high- and low-resonance waveforms.

3.3. Effects of RSSD Parameters

Since the redundancy factor r and decomposition level J only affect the overlapping rate and
frequency coverage, they can cooperate with each other to achieve the frequency ranges requested in
RSSD. As such, only the effects of the Q-factors and weight coefficients are further investigated.

3.3.1. Effects of Q-Factors

Generally, the low Q-factor is set as 1, which satisfies the requirement of representing transient
noises in a complex signal. However, a high Q-factor needs to be selected assisted with a priori
information. Therefore, we will further analyze the mechanical vibration signal simulated above
through altering the high Q-factor Q1 and obtaining the high-resonance components for a different Q1,
as shown in Figure 9. For the sake of clarity, Figure 9 only plots high-resonance components when Q1

is equal to 2, 3, 4 and 5, respectively. Noteworthy, the high-resonance component in blue corresponds
to the illustration of RSSD performance shown in Section 3.2, with identical decomposition parameters.
As seen in Figure 9, high-resonance waveforms seem not to exhibit distinct differences though Q1

varies from 2 to 5.
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Figure 9. High-resonance components in cases where Q1 = 2, 3, 4, 5.

To give a quantitative evaluation to this indistinctive variation, the degree of similarity between
resonance components and the original signal is utilized with the correlation coefficient equation [30,31]

ρi =

∣∣∣∑N
k=1 (xi(k)−mean(x1))(x(k)−mean(x))

∣∣∣√
∑N

k=1 (xi(k)−mean(x1))
2∑N

k=1 (x(k)−mean(x))2
i = 1, 2 (13)

where xi(k) is the element in high- and low-resonance components respectively, x(k) is the element
in the original signal, and mean represents the averaging operation. Thus, we obtain the correlation
coefficients ρ1, ρ2 between the resonance components and the original signal, respectively, as listed in
Table 2. From Table 2, it is easy to discover that correlation coefficients change slightly when Q1 varies
from 2 to 9 for both the high-resonance component and low-resonance component. The maximum
variations of high- and low-resonance components are only 0.08% and 0.44%, respectively. It is the tiny
variations that explain why the high-resonance waveforms don’t show obvious differences. Meanwhile,
Table 2 also indicates that the selection of a high Q-factor has some effects on the decomposition results,
or rather an exacter description—‘limited effects’.

Table 2. Correlation coefficients when Q1 varies from 2 to 9.

Q1 Q2
Correlation Coefficient Correlation Coefficient

(High) (Low)

2 1 0.3067 0.9710
3 1 0.3072 0.9656
4 1 0.3072 0.9703
5 1 0.3068 0.9710
6 1 0.3065 0.9721
7 1 0.3063 0.9730
8 1 0.3063 0.9743
9 1 0.3059 0.9754

3.3.2. Effects of Weight Coefficients

As analyzed, weight coefficients λ1, λ2 control the energy distribution between each resonance
component. To highlight the significant influence caused by variations of the weight coefficients,
we consider the condition that only λ1 varies. Figures 10 and 11 plot the high- and low-resonance
components when λ1 is equal to 0.1, 0.2, 0.3, and 0.4 respectively, whose correlation coefficients are
provided in Table 3. As is easily seen in Figures 10 and 11, as the weight coefficient λ1 changes,
both high- and low-resonance components undergo considerable waveform changes, especially the
high-resonance component.
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Figure 10. High-resonance components in cases where λ1 = 0.1, 0.2, 0.3, 0.4.
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Figure 11. Low-resonance components in cases where λ1 = 0.1, 0.2, 0.3, 0.4.

In detail, when λ1 = 0.4, 0.3, the high- and low-resonance components can be clearly separated.
Though amplitudes of both high-resonance components decay a little bit, their periodical oscillatory
features are fairly dominant, which indicates a satisfactory decomposition result for mechanical
fault diagnosis.

When λ1 = 0.2, amplitude of the high-resonance waveform increases significantly, but slight
noise springs up as well, compared with the condition when λ1 is 0.4 or 0.3, as described above.
Consequently, the sparsity of high-resonance components cannot be guaranteed due to the emergence
of unwanted noise.

Furthermore, the case where λ1 is equal to 0.1 is discussed. At this time, sustained oscillatory
characteristics can hardly be distinguished in the high-resonance component, since noise is rather
abundant, which will make few contributions to mechanical fault feature extraction. Reflecting on the
low-resonance components in the above cases, with an increasing λ1, the most evident variation lies
that their amplitudes increase gradually. Considering that there is less fault information embedded
in low-resonance components, high-resonance components are more suitable for the detection of
mechanical fault features.

A summary of the information in Table 3 shows that maximum correlation coefficient variations
reach up to the surprising levels of 61.5% and 15.69% for the high- and low-resonance components,
respectively. With a careful observation, the correlation coefficient of the high-resonance component
undergoes a sharp variation when λ1 steps from 0.1 to 0.2, the primary cause of which is the rich
presence of noise. In short, such a quantitative result demonstrates that weight coefficients have a
remarkable effect on the decomposition results of RSSD, and they must be treated with caution.
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Table 3. Correlation coefficients in cases where λ1 varies from 0.1 to 0.8.

λ1 λ2
Correlation Coefficient Correlation Coefficient

(High) (Low)

0.1 0.1 0.9182 0.8351
0.2 0.1 0.3856 0.9622
0.3 0.1 0.3072 0.9703
0.4 0.1 0.3057 0.9745
0.5 0.1 0.3053 0.9792
0.6 0.1 0.3048 0.9838
0.7 0.1 0.3041 0.9882
0.8 0.1 0.3032 0.9920

In spite of the outstanding performance of RSSD in processing nonlinear and non-stationary
signals, whether RSSD can be conducted successfully relies not only on signal intrinsic characteristics,
but also on the selection of ideal parameters to a great extent. By contrast, weight coefficients have
a more significant and even decisive effect on decomposition results than Q-factors. As a result,
to guarantee applied success, the optimized selection of Q-factors and weight coefficients is the most
crucial issue for developing more advanced RSSD and promoting wider applications.

4. Applications of RSSD in Mechanical Fault Diagnosis

Due to the rich fault-related information buried in noisy mechanical fault signals, fault diagnosis
technique based on signal processing can extract sensitive features and identify fault types. RSSD
separates complex signals based on a new perspective, resonance, overcomes the limitation of
traditional frequency band based methods, and can reveal fault features from original mechanical
vibration signals more effectively. This huge advantage allows RSSD to be extensively applied to the
fault diagnosis of crucial industrial components, that is, bearings, gearboxes and rotors. To present an
organized review, this section will provide a survey of the applications of RSSD in mechanical fault
diagnosis based on different optimization directions, including original RSSD, parameter optimized
RSSD, subband optimized RSSD, integrated optimized RSSD, and RSSD combined with other methods.

4.1. Original RSSD in Mechanical Fault Diagnosis

Up to now, the original RSSD proposed by Selesnick in 2011 has been extensively applied in the
field of mechanical fault diagnosis. This subsection will review the publications in which only original
RSSD was used, without combining other techniques. In 2012, Yu et al. [32] pioneered the introduction
of RSSD into the field of mechanical fault diagnosis and proposed an envelope demodulation method
based on RSSD. This method separated transient impacts containing bearing fault information into
their low-resonance components, and executed envelope demodulation analysis on the low-resonance
components to detect the rolling bearing’s inner and outer fault features successfully. Afterwards,
a similar method was also employed for the fault diagnosis of gears [33]. Xiang et al. [34,35]
and Huang et al. [36,37] performed RSSD to decompose rolling bearing fault vibration signals into
high- and low-resonance components, effectively reduced heavy background noise, and extracted
weak rolling bearing fault information quickly and accurately. In consideration of the frequency
overlap between gearbox fault vibration signal components, RSSD was utilized [38,39]. The obtained
low-resonance component of the engineering gearbox fault signal, as well as its envelope spectrum,
is illustrated in Figure 12. Since the gear fault feature frequency was 30.1 Hz, the peaks at 29.3 Hz and
harmonics were cogent enough to indicate a gear fault. For the sake of safety in production, the factory
checked and confirmed the broken gear teeth a few weeks later.
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Zhang et al. [40] introduced an energy operator demodulating analysis method based on RSSD and
detected compound fault features of a gearbox. To segment the impacts from vibration signals in rotor
systems, Chen et al. [41,42] performed RSSD and diagnosed early rub-impact fault with the reassigned
wavelet scalogram. In 2014, Wang et al. [43] used TQWT to construct high- and low-Q-factor wavelet
bases to successfully separate the periodic component with rotor rotation rate from transient component
induced by rub-impact fault. Accurate fault identification from the low-resonance component verified
RSSD’s validity. In addition, a condition assessment system for an automatic tool changer in CNC
machining centers was established by Chen [44]. This monitoring system, based on RSSD, could not
only detect the transient component caused by a globoidal indexing cam fault, but also locate the
fault’s exact position.

It is interesting that a group of scholars represented by Yu, Cui, and Chen thought the vibration
responses induced by mechanical fault impact exhibited transient characteristics, which should
fall under the category of the low-resonance component, while the high-resonance component
sparsely represented the high-frequency interferences. In sharp contrast, Huang’s team considered
the fault impact as a damped oscillation response, whose amplitude diminished continuously but
still exhibited sustained oscillation behaviors while the low-resonance component corresponded to
random interference in the original signal. Thus Huang preferred to discover fault information from
the high-resonance component rather than from the low-resonance component. In fact, all fault-related
information cannot be completely decomposed into a single resonance component, and energy leakage
was inevitable due to their inherent mutual coherence. Yu et al. made use of the low-resonance
component to seize the instantaneous peak induced by mechanical fault impact, while Huang utilized
the high-resonance component to catch the characteristics of damped oscillations. These two detection
methods were both reasonable and feasible in theory. Moreover, the fact that they all extracted
the mechanical fault features in their own way confirms the energy leakage phenomenon. In short,
mechanical fault-induced feature information will simultaneously lie in the high-resonance component,
the low-resonance component, and even the residual.

The original RSSD has been proven effective for feature extraction, and has a promising application
in mechanical fault diagnosis. However, in consideration of the RSSD method and its application,
some key points remain to be further investigated:

(1) Construction of wavelet bases;
(2) Optimized selection of numerous decomposition parameters;
(3) Reconstruction of subband signals;
(4) Sparse decomposition of multiple resonances.

At the present time, further research on RSSD mainly focuses on two aspects, the optimized
selection of parameters (Point 2), and the reconstruction of subband signals (Point 3).
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4.2. Parameter Optimized RSSD in Mechanical Fault Diagnosis

The analysis in Section 3.2 explains that parameters (Q-factors and weight coefficients) appreciably
influence decomposition results, and that the effects of weight coefficients are much more predominant
and crucial. Therefore, abundant literatures have paid much attention to selecting optimal
decomposition parameters, seeking more effective application for mechanical fault diagnosis. Dai
and Cui [45,46] comprehensively studied the effects of Q-factors, redundancy factors, and weight
coefficients, and emphasized weight coefficients’ effects in RSSD. Some efficient suggestions were
provided by Huang for selecting the decomposition level J in conjunction with a specific diagnosis
objects: rolling bearings [47]. Coincidentally, both stressed the suitable selection of weight coefficients
for feature extraction of early weak faults in rolling bearings. The conclusions from these studies are
completely consistent with our analysis in Section 3.2. Regretfully, no index or indicator was adopted
in these studies to evaluate the influences. Consequently, Cai et al. [48] offered a new method to select
weight coefficients. In this method, three indexes were set up to assess the decomposition results,
and weight coefficients corresponding to better results were adopted. Then RSSD with optimized
parameters was used to successfully detect the compound fault features of a gearbox. To overcome the
large subjective randomness when selecting RSSD parameters, an optimized RSSD based on the genetic
algorithm (GA), and realizing the adaptive decomposition of high- and low-resonance components,
was proposed in Reference [49] by concurrently selecting and optimizing the elements of coefficient
matrixes. This method minimized information leakage in the process of signal decomposition and
effectively extracted compound fault characteristics of rolling bearings. On this basis, Huang et al. [50]
made full use of the global optimization ability of GA, and optimized Q-factors further. RSSD with
the optimal Q-factors was used successfully to diagnose the composite faults of the planetary gear
and bearing in a planetary gearbox. Similar work was also performed in Reference [51], though one
difference that must be mentioned was that Li took the kurtosis of low-resonance component as the
objective function used in GA, instead of a function like Equation (10), utilized in Huang’s research.

Soon afterward, Zhang et al. [52] developed a composite weight function as the objective function
in GA and adaptively optimized Q-factors and redundancy factors synchronously. Equations (14)–(16)
provide more details about the smoothness SI of high-resonance component and kurtosis Kur of low
resonance component used in GA, as well as the weight function F:

SI(x1) =

exp
{

N
∑

i=1
ln x1(i)/N

}
N
∑

i=1
x1(i)/N

(14)

Kur(x2) =

E
{

N
∑

i=1
(x2(i)− µ)4

}
σ4 (15)

F = α1 · SI(x1) + β2 · Kur(x2) (16)

where σ and µ denote the standard deviation and the average of original signal x, E{ } represents the
calculation of the expected value, and α1 and β2 are the weight coefficients of SI and Kur, respectively.
This method was executed to process the signal collected from a gearbox fault test rig with a faulty
gear and an outer race faulty bearing simultaneously. The optimized parameters based on the
above-mentioned GA were Q1 = 4.25, r1 = 8.06, Q2 = 1, and r2 = 6.68. Figure 13 displays the resulting
high- and low-resonance components and their instantaneous amplitude spectra. It can be easily seen
that clear peaks occurred at the rotation rate fr (10 Hz) in instantaneous amplitude spectrum of the
optimal high-resonance component, which indicated a gear fault. Similarly, the dominant peaks at
outer race fault feature frequency, and its harmonics shown in Figure 13d, verified the existence of the
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outer race fault. The same method was also applied to diagnose the compound faults of a gear tooth
crack and a bearing outer race fault.
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Since the single Q-factor pairs can hardly represent all resonances of interference or wanted
components, some researchers have attempted to solve this problem through the iterative algorithm.
For example, Wang et al. [53] developed a comprehensive strategy based on RSSD and the iterative
algorithm for the separation of full-oscillatory components from noisy machining vibration signals at
the thin-walled parts machining process. When minimization of the Q-factor variation was reached,
chatter-related low-resonance component and periodic cutting-related high-resonance component
were separated successfully, providing a new means for monitoring the machining state. Comparing to
Reference [53], in 2016, Shi [54,55] found that the oscillatory behaviors of high-frequency interferences
in faulty rolling bearing vibration signals were manifold; thus a single high Q-factor failed to eliminate
all interference signals at once. Inspired by this, an iterative RSSD was put forward to “peel” the
interferences step by step, and rolling bearing fault feature information was successfully dug out
from the final “purified” low-resonance component. It is important to note that even though the
iterated objects are different, the basic point of these studies is identical. Specifically, it is the oscillatory
property of one resonance component that is difficult to know beforehand, and a single Q-factor pair is
highly likely to cause the loss of useful information. However, such an iterative RSSD will inevitably
suffer from low efficiency, especially when dealing with large-scale data.

4.3. Subband Optimized RSSD in Mechanical Fault Diagnosis

Because there was still considerable noise in the resonance components obtained from RSSD, some
scholars continually exploited the approaches for reconstruction of subband signals to further highlight
fault features. Huang et al. [47] first proposed the concept of the “main subband”, and combined high-
and low-resonance components to perform subband reconstruction in order to minimize the energy
leakage mentioned in Section 4.1. As they described, for rolling bearing ER-12T, the rotation rate
and its harmonic components were primarily concentrated below 2 kHz, with two natural frequency
bands occurring at approximately 3 and 10 kHz, and the rest belonging to all kinds of interfering
noise. Hence, the concrete frequency band distribution was gained, as viewed in Figure 14. Using
Equations (8) and (9), the subbands approaching natural frequency bands, which were defined as
the main subbands, can be calculated. After the main subbands of both high- and low-resonance
components were obtained, the original signal’s main subbands can be obtained through superposing
these two resonance components’ main subbands. The resulting main subband envelope spectra of
the high-resonance component, low-resonance component, and original signal were illustrated in
Figure 15a–c. As can be seen in this figure, although obvious peaks all occurred at the feature frequency
(163.5 Hz), the corresponding amplitudes implied that the main subband of original signal brought the
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richest fault information, and thus it should be taken full advantage of, particularly when diagnosing
incipient bearing faults.
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Figure 15. Main subband envelope spectra: (a) High-resonance component; (b) Low-resonance
component; (c) Original signal [47].

Another subband reconstruction method was explored in Reference [56]. It merged the subbands
of low-resonance component and selected the optimal signal with the biggest kurtosis for the extraction
of fault features. Via this method, the fault features of a rolling bearing were prominent and easy
to detect. As well as the direct mergence in Reference [56], Luo et al. [57] further combined these
merged signals with similar kurtosis values and neighboring subbands. The final signal with the
biggest kurtosis value was successfully used to diagnose a rolling bearing outer race fault. By selecting
the components with extreme kurtosis values and removing those under the correlation coefficient
threshold, Tang and Wang [58] successfully extracted weak characteristic frequency components of
rolling bearings. Motivated by the neighboring coefficient thresholding for wavelet de-noising [59],
He et al. [60] developed a neighboring coefficient de-noising (NCD) based RSSD. The subbands were
processed through a neighboring coefficient thresholding scheme and then the reconstructed signal
was obtained. The effective engineering applications, including bearing and gearbox fault diagnosis,
validated its practicability and effect on suppressing noise. Given the sparsity and clustering/grouping
property of subband coefficients [61], He and Zi [62] introduced a modified RSSD on the basis of
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overlapping group shrinkage (OGS) to facilitate the sparsity of results, and thus accomplished early
fault diagnosis of rolling bearings.

4.4. Integrated Optimized RSSD in Mechanical Fault Diagnosis

To pursue a perfect application of RSSD in mechanical fault diagnosis, numerous advanced
RSSD techniques have recently been developed via combining parameter optimization and subband
reconstruction methods, which show greater accuracy and adaptability in the field of mechanical
fault diagnosis. An ensemble super-wavelet transformation (ESW) was proposed to investigate the
vibration characteristics of bearing faults in temper mills and wind turbines [63]; the detailed flow
chart is shown in Figure 16. With the fault feature ratio Rf established by the Hilbert envelope spectrum,
this method can adaptively select the optimal Q-factor. RSSD was subsequently performed on a faulty
bearing’s vibration signal and the single optimal subband was extracted for subsequent reconstruction.
As shown at the bottom of Figure 16, the impulses with period 0.0168 s (corresponding to 59.52 Hz)
in the optimal subband time-domain waveform, and the obvious peaks at 60 Hz and 120 Hz in the
frequency spectrum, all demonstrated that there was a defect on the outer race of bearing SKF-6232/C3.
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In 2016, in response to the disadvantage in Reference [63] wherein the high-frequency interferences
were not taken into consideration and the reconstruction of a single subband might lead to leakage of
useful fault features, He et al. [64] improved the ensemble super-wavelet transformation. By modifying
the definition of fault feature ratio Rf and incorporating two optimal subbands, the modified method
exhibited stronger robustness to high-frequency interferences and preserved more fault-related
information. According to a priori information on the intrinsic periodic features of impulsive bearing
faults, a periodic sparsity-based oriented super-wavelet transformation (PSOSW) was proposed [65].
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An established weight index for the periodic sparsity feature energy ratio was adopted to guide
the selection of RSSD parameters and reconstruction. The selected optimal super-wavelet bases
were utilized for RSSD. This superior RSSD effectively discovered incipient weak fault features of a
motor bearing installed on wind-power generation equipment. With the research on bearing fault
mechanisms, Yu and Zhou [66] introduced an innovative method for diagnosing bearing faults using
a combination of RSSD and spectral kurtosis. In accordance with the spectral kurtosis maximum
principle, the optimal Q-factor and decomposition level were calculated. Meanwhile, the neighboring
coefficient de-noising method was employed to eliminate the noise in the reconstructed signal, which
resulted in a better application for bearing fault diagnosis.

4.5. RSSD Combined with Other Methods in Mechanical Fault Diagnosis

This subsection reviews the applications of RSSD combined with other methods in mechanical
fault diagnosis. To solve the problem that gear fault features are difficult to reveal under rotation rate
fluctuations, Sun et al. [67] investigated an order-domain analysis based RSSD, which used the chirplet
path pursuit algorithm to obtain rotation rate information. By performing order domain analysis on the
low-resonance component obtained using RSSD along with the rotation rate information, the fault of
gear with rotation rate fluctuation was identified. In 2014, Chen et al. [68] proposed an improved RSSD,
based on ensemble empirical mode decomposition (EEMD) and TQWT, for the feature extraction of
a rolling bearing’s early weak fault. Figures 17 and 18 presented a typical example of bearing fault
identification adopting their proposed method. The original signal of a bearing (type 6207) inner
race fault was shown in Figure 17, including time- and frequency-domain signals where nothing
fault-related can be readily observed. By applying EEMD, several intrinsic mode functions (IMF) were
obtained. With a calculation with Equation (14), since IMF5 owned the biggest kurtosis, it was handled
selectively using standard RSSD. The resulting envelope spectrum of the low-resonance component
was shown in Figure 18. The peaks at the inner race fault feature frequency (246 Hz) and sideband
frequencies manifested the effectiveness of Chen’s method.

Sensors 2017, 17, 1279 18 of 27 

 

super-wavelet bases were utilized for RSSD. This superior RSSD effectively discovered incipient 

weak fault features of a motor bearing installed on wind-power generation equipment. With the 

research on bearing fault mechanisms, Yu and Zhou [66] introduced an innovative method for 

diagnosing bearing faults using a combination of RSSD and spectral kurtosis. In accordance with the 

spectral kurtosis maximum principle, the optimal Q-factor and decomposition level were calculated. 

Meanwhile, the neighboring coefficient de-noising method was employed to eliminate the noise in 

the reconstructed signal, which resulted in a better application for bearing fault diagnosis. 

4.5. RSSD Combined with Other Methods in Mechanical Fault Diagnosis 

This subsection reviews the applications of RSSD combined with other methods in mechanical 

fault diagnosis. To solve the problem that gear fault features are difficult to reveal under rotation rate 

fluctuations, Sun et al. [67] investigated an order-domain analysis based RSSD, which used the 

chirplet path pursuit algorithm to obtain rotation rate information. By performing order domain 

analysis on the low-resonance component obtained using RSSD along with the rotation rate 

information, the fault of gear with rotation rate fluctuation was identified. In 2014, Chen et al. [68] 

proposed an improved RSSD, based on ensemble empirical mode decomposition (EEMD) and 

TQWT, for the feature extraction of a rolling bearing’s early weak fault. Figures 17 and 18 presented 

a typical example of bearing fault identification adopting their proposed method. The original signal 

of a bearing (type 6207) inner race fault was shown in Figure 17, including time- and frequency-

domain signals where nothing fault-related can be readily observed. By applying EEMD, several 

intrinsic mode functions (IMF) were obtained. With a calculation with Equation (14), since IMF5 

owned the biggest kurtosis, it was handled selectively using standard RSSD. The resulting envelope 

spectrum of the low-resonance component was shown in Figure 18. The peaks at the inner race fault 

feature frequency (246 Hz) and sideband frequencies manifested the effectiveness of Chen’s method. 

 

Figure 17. Rolling bearing early weak fault signal: (a) Time-domain waveforms; (b) Envelope 

demodulation spectrum [68].  
Figure 17. Rolling bearing early weak fault signal: (a) Time-domain waveforms; (b) Envelope
demodulation spectrum [68].



Sensors 2017, 17, 1279 19 of 27

Sensors 2017, 17, 1279 19 of 27 

 

 

Figure 18. Envelope demodulation spectrum of IMF5 handled with RSSD [68]. 

Aiming at the ill-posed problem of blind source separation, Mo et al. [69] introduced a fast 

independent component analysis method (FastICA) on the basis of RSSD, which provided a new 

solution to the blind separation problem of the single-channel composite fault signal. The proposed 

method was then carried out to extract roller bearing composite faults. By integrating RSSD and 

fractional calculus, Yu et al. [70] analyzed the signal gathered by an oil particle sensor. With this 

method, the significant condition information of mechanical devices was provided in real time, owing 

to its advantageous computational efficiency and stability. To solve the sparsity problem required in 

compressed sensing (CS) and break through the limitation of signal length under the Shannon 

sampling theorem, a compressed fault-diagnosis method for roller bearings, based on RSSD, was 

proposed by Wang et al. in 2016 [71]. The application cases powerfully demonstrated that the bearing 

fault features could be extracted by the CS theory with RSSD even from the compressed samples. 

Combining RSSD analysis and manifold learning, an enhancement method was presented for 

periodic-impact fault features of rotating machinery [72]. Assisted by an impulse-enhanced signature 

index, it identified the rotating machine’s practical faults, including two defective bearing cases. 

Based on TQWT, Zhang et al. [73] established a kurtosis-based weighted sparse model utilizing two 

pieces of a priori information. By means of convex optimization, Zhang reliably extracted the outer 

race fault information of a deep-groove ball bearing using the estimated wavelet coefficients. In 

further research, Wang et al. [74] proposed an intelligent fault-diagnosis method for rolling bearings 

that made full use of TQWT, principle component analysis (PCA), and intelligent classifiers (nearest 

neighbor classifier and SVM classifier). The introduction of sparse wavelet energy (SWE) features 

greatly cinched this method’s success, including both fault feature extraction and pattern recognition 

of rolling bearings. 

5. Summary and Discussion 

In Section 4, we have reviewed the applications of RSSD in mechanical fault diagnosis. In light 

of the numerous practical procedures and applications described, we believe that a clear and concrete 

flow chart is necessary, as shown in Figure 19. Note that both parameter optimization and subband 

reconstruction are included, so that such a flow chart describes a comprehensively optimized RSSD, 

which is of great value to guiding mechanical fault diagnosis. Meanwhile, due to the variety of 

approaches, the published research described above is also summarized in Table 4, for a one-page 

overview. The category, reference numbers, diagnostic objects, and supporting techniques are listed 

in the table.  
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Aiming at the ill-posed problem of blind source separation, Mo et al. [69] introduced a fast
independent component analysis method (FastICA) on the basis of RSSD, which provided a new
solution to the blind separation problem of the single-channel composite fault signal. The proposed
method was then carried out to extract roller bearing composite faults. By integrating RSSD and
fractional calculus, Yu et al. [70] analyzed the signal gathered by an oil particle sensor. With this
method, the significant condition information of mechanical devices was provided in real time, owing
to its advantageous computational efficiency and stability. To solve the sparsity problem required
in compressed sensing (CS) and break through the limitation of signal length under the Shannon
sampling theorem, a compressed fault-diagnosis method for roller bearings, based on RSSD, was
proposed by Wang et al. in 2016 [71]. The application cases powerfully demonstrated that the
bearing fault features could be extracted by the CS theory with RSSD even from the compressed
samples. Combining RSSD analysis and manifold learning, an enhancement method was presented for
periodic-impact fault features of rotating machinery [72]. Assisted by an impulse-enhanced signature
index, it identified the rotating machine’s practical faults, including two defective bearing cases. Based
on TQWT, Zhang et al. [73] established a kurtosis-based weighted sparse model utilizing two pieces of
a priori information. By means of convex optimization, Zhang reliably extracted the outer race fault
information of a deep-groove ball bearing using the estimated wavelet coefficients. In further research,
Wang et al. [74] proposed an intelligent fault-diagnosis method for rolling bearings that made full use
of TQWT, principle component analysis (PCA), and intelligent classifiers (nearest neighbor classifier
and SVM classifier). The introduction of sparse wavelet energy (SWE) features greatly cinched this
method’s success, including both fault feature extraction and pattern recognition of rolling bearings.

5. Summary and Discussion

In Section 4, we have reviewed the applications of RSSD in mechanical fault diagnosis. In light of
the numerous practical procedures and applications described, we believe that a clear and concrete
flow chart is necessary, as shown in Figure 19. Note that both parameter optimization and subband
reconstruction are included, so that such a flow chart describes a comprehensively optimized RSSD,
which is of great value to guiding mechanical fault diagnosis. Meanwhile, due to the variety of
approaches, the published research described above is also summarized in Table 4, for a one-page
overview. The category, reference numbers, diagnostic objects, and supporting techniques are listed in
the table.
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Table 4. Summary of RSSD applications in mechanical fault diagnosis.

Category Objects Supporting Techniques References

Original RSSD Bearing None [32,34–37]
Gearbox None [33,38–40]

Rotor None [41–43]
Others None [44]

Parameter optimized RSSD Bearing Qualitative analysis [45–47]
GA [49,51]

Iteration [54,55]
Gearbox Evaluation index [48]

GA [50,52]
Others Iteration [53]

Subband optimized RSSD Bearing Main subband [47]
Kurtosis [56–58]

NCD [60]
OGS [62]

Gearbox NCD [60]

Integrated optimized RSSD Bearing ESW [63]
Improved ESW [64]

PSOSW [65]
Kurtosis, NCD [66]

RSSD combined with others Bearing EEMD [68]
FastICA [69]

CS [71]
Manifold learning [72]

Kurtosis [73]
PCA, SWE, Classifier [74]

Gearbox Chirplet path pursuit [67]
Oil Fractional calculus [70]
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From the application cases described in Section 4 and summarized in Table 4, the following tips
are provided:

(1) At present, the applications of RSSD mainly focus on crucial industrial components like
bearings, gearboxes, and rotors. Through RSSD, a mechanical fault signal is decomposed
into the high-resonance component, low-resonance component, and residual, after which fault
information can be extracted from these resonance components. In general, RSSD is considered
as a powerful and excellent tool for the feature detection of mechanical faults.

(2) It must be stated that mechanical fault impact information will unavoidably scatter in
high-resonance components, low-resonance components, and even residual components, due
to the inherent coherence. This phenomenon can be thought as a kind of energy leakage.
Different scholars are inclined to mine mechanical fault impact information from either high-
or low-resonance components. Thankfully, they all have gained satisfactory diagnosis results.
In fact, since these two perspective-based mechanical fault-diagnosis methods are both feasible,
it is difficult to say that one approach will always outperform the others. Therefore, it is highly
advisable to pay closer attention to the high- and low-resonance components simultaneously,
as well as to the residual component. Moreover, it is the energy leakage that facilitates our seeking
an optimized RSSD to preserve and extract mechanical fault-related information as richly as
possible, which will be of great significance for early mechanical fault identification.

(3) To date, one feasible solution to reduce energy leakage and preserve the richest fault features is
to optimize RSSD decomposition parameters, mainly including Q-factors and weight coefficients.
With a view to these parameters’ significant effects on decomposition results, an artificially
selected parameter pair may be not capable of discovering sufficient fault features. Even worse,
ill-selected decomposition parameters might yield misleading diagnosis results. To avoid these
problems and pursue satisfactory diagnosis, many techniques such as genetic algorithm, kurtosis
index, and iterative algorithms, are successively introduced to adaptively acquire optimal
Q-factors, weight coefficients, redundancy factors, and decomposition levels. Compared to
original RSSD, parameter optimized RSSD can generate resonance components with richer
fault impulsive information and less energy leakage, which will make great contributions to
diagnostic decision-making.

(4) On the other hand, taking inevitable noise interference into consideration, fault information
in resonance components obtained by parameter optimized RSSD may still be masked. As a
result, many researchers have applied themselves to the energy distribution and reconstruction
of subband signals, for the purpose of suppressing noise. Guided by a common concept, these
studies have introduced specific indexes that can reveal fault information richness, and some
de-noising techniques, including main subband, NCD, OGS, etc. The subbands with the richest
information have been chosen to reconstruct mechanical fault vibration signals. It has been
found that reconstructed signals with optimized subbands show outstanding performance in
clearly detecting mechanical fault features, because broadband noise is obviously weakened.
Moreover, an advanced RSSD, combining both parameter and subband optimization, will
certainly perform better in diagnosing incipient mechanical faults than unilateral optimized
RSSD, let alone original RSSD.

(5) In early stages of identifying mechanical fault types assisted with RSSD, researchers employed
RSSD alone, or optimized it with decomposition parameters and/or subband reconstruction.
Recently, many studies attempt to develop superior fault diagnosis approaches by combining
standard RSSD with additional techniques, which are attracting more and more attention.
For instance, after pre-processing by EEMD, the IMF with the biggest kurtosis value is
analyzed for fault feature extraction using RSSD; CS theory is utilized to obtain the sparsest
representation of resonance components from compressed samples, which breaks through the
limitation of signal length. Successful applications prove that these specific RSSD-based methods
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can outperform standard RSSD in many applications and provide constructive guidance for
diagnosing mechanical faults.

6. Outstanding Issues and Solutions

With RSSD’s swift advance, it has been proven fairly reliable in mechanical fault diagnosis.
However, in addition to the above-described applications and developments, the following outstanding
issues and solutions also deserve intensive discussion for advancing RSSD.

6.1. Construction of Wavelet Bases

As explained in Section 2, there are only two available methods to construct wavelet bases,
RADWT and TQWT. Unfortunately, the wavelet waveforms constructed by both methods are
symmetric in the time domain (see Figure 2). Due to machine operation, fault-induced vibration
signals of mechanical components (represented by rolling bearings) usually exhibit distinct single-side
damped oscillation characteristics after being transmitted through several mechanical interfaces.
Hence, apparent inconsistency lies on the fault signal waveforms and wavelets obtained from RADWT
or TQWT. Wang uses the single-side characteristic of the simulation signal to explain why the amplitude
of resulting resonance component is halved [53]. However, taking the effects of decomposition
parameters into consideration, especially the weight coefficients’ (see Figures 10 and 11), conclusions
drawn only from morphological characteristics aren’t convincing enough. Hence, when attempting to
utilize a fixed method to construct wavelet bases with the aim of implementing all kinds of mechanical
fault signal decomposition, wavelet bases will inevitably describe the morphological characteristics of
fault signals inaccurately. To solve this problem, the following issues should be further investigated:

• Establish the dynamic models of mechanical systems and study vibration excitation mechanisms
of various mechanical fault types; seek quantitative parameters that can characterize the
morphology of fault vibration waveforms so as to reveal the mapping relationships between
fault-induced vibration signal waveforms and mechanical fault types;

• On this basis, explore new construction means and construct targeted wavelet bases according to
specific mechanical fault types, to make wavelet morphological characteristics match better with
practical fault signals.

6.2. Parameter Optimization and Subband Reconstruction

Parameter optimization and subband reconstruction are two important topics of RSSD,
as well as the fundamental assurance of RSSD’s successful application to mechanical fault diagnosis.
State-of-the-art techniques primarily recur to the qualitative analysis, GA, and kurtosis index. However,
qualitative analysis lacks a strong theoretical foundation, while objective function and prematurity
in GA remain to be settled, and kurtosis is sensitive to noise interferences and unable to reflect the
variation characteristics of fault impacts. All these shortcomings call for a more effective means in
aspects of parameter optimization and subband reconstruction. Future work should pay close attention
to the following aspects:

• Thoroughly study parameters’ influences on decomposition results, mainly including the
influences of Q-factors and weight coefficients, then set up reasonable indexes to quantitatively
evaluate their influence levels;

• Based on quantitative influence levels, study parameters’ coupling effects on RSSD results;
establish a multi-parameter fusion optimization problem and take full advantage of multiple
optimization ideas to realize the highly efficient optimization of decomposition parameters;

• Research the intrinsic links between fault signal features and subband energy distribution of
resulting high- and low-resonance components; then put forward new methods for subband
reconstruction to guide the core feature extraction of mechanical fault vibration signals.
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6.3. Sparse Decomposition of Multiple Resonances

Aware of the multiple resonances existing in fault signals, the authors attempted to separate
different resonance components via the iterative algorithm [53–55]. However, the iterative algorithm
requires that resonance differences of the hidden components be rather distinct. Moreover, the resulting
burden on time and memory, as well as the establishment of convergence indexes, are also quite
challenging. Therefore, it must break through these bottlenecks and exploit effective sparse
decomposition of multiple resonances when dealing with multiple signal components that own
indistinctive resonance differences. To this end, three important directions are highly suggested:

• Investigate methods that can reduce inherent mutual coherence between resonance components,
to promote the effective separation of each resonance component. As is known, mechanical
fault-induced periodic signals usually correlate to natural frequency bands of systems, and the
energy of resulting resonance components will merely concentrate on some specific subband
groups. Considering that different signal components may lead to different frequency bands,
a potential means is to utilize the specific subbands corresponding to respective frequency bands
for signal decomposition with several resonances, rather than all J-level subbands. In this way,
mutual coherence can be effectively dealt with. Additionally, as shown in Figures 4 and 7, there is
significant overlap of several adjacent subband responses: a latent scheme guides us to filter out
some middle subbands whose frequency range can be filled up with their neighboring subbands.
The vacant frequency ranges belonging to the filtered subbands can be prepared for another
resonance component’s subbands. In this way, mutual incoherence between each resonance
component can be feasibly enhanced. Notably, determining which subbands to filter relies heavily
on the calculation of subband fc and BW with Equations (8) and (9), which needs a certain stock of
a priori knowledge.

• Establish the optimization problem consisting of multiple resonances and develop a fast algorithm
to seek its minimization;

• For potential mechanical fault types and resonances, seek characteristic variables or vectors that
can describe mechanical fault vibration waveforms with several similar resonances. This direction
offers an opportunity to further distinguish and separate resulting resonance components in view
of signal structures.

7. Concluding Remarks

In this paper, we attempt to synthesize and review the theoretical developments of RSSD and its
applications in mechanical fault diagnosis. As is known, RSSD is a new nonlinear signal separation
method depending on resonance rather than frequency or time scale, which solves the frequency
overlapping problem of each component and promotes the sparsity of resonance components.
Consequently, it has become a new hotspot for numerous fields closely related to signal processing,
especially the field of mechanical fault diagnosis.

So far, the main application objects of RSSD in mechanical fault diagnosis include bearings,
gearboxes, and rotors, etc. In this review, based on the analysis of parameter effects and optimization
directions, the application studies of RSSD have been classified into five categories: (1) original RSSD;
(2) parameter optimized RSSD; (3) subband optimized RSSD; (4) integrated optimized RSSD; (5) RSSD
combined with other methods. Despite preliminary achievements, there are some outstanding issues
remaining to be discussed and solved, such as the construction of wavelet bases, suitable selection of
parameters, subband reconstruction, and multi-resonance sparse decomposition. Specific approaches
to these problems have been also pointed out.

In conclusion, the intention of this paper is to synthesize and review the scattered research on
the developments and applications of RSSD in mechanical fault diagnosis. This review expectantly
provides an in-depth and comprehensive reference for researchers who are concerned with RSSD and
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mechanical fault diagnosis. Moreover, we hope more advantageous RSSD will be developed and play
an increasingly significant role in mechanical fault diagnosis.
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