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Abstract: In this paper, a novel two-dimensional (2D) direction-of-arrival (DOA) estimation
algorithm for the mixed circular and strictly noncircular sources is proposed. A general array
model with a mixture of signals is firstly built based on uniform rectangular arrays (URAs), and then,
the approach, which uses the rank-reduction-based ROOT-MUSIC, can solve 2D DOA estimation
problem. Besides, the theoretical error of the proposed algorithm, a criterion of the performance for
evaluation, is analyzed by the first-order Taylor expression using second-order statistics. As verified
by the simulation results, a better DOA estimation performance and a lower computational complexity
are achieved by the proposed algorithm than the existing methods resorting to the noncircularity of
the incoming signals.

Keywords: 2D DOA estimation; uniform rectangular arrays; noncircular signals; ROOT-MUSIC;
theoretical error; low complexity

1. Introduction

Array signal processing has been widely used in the fields of sonar, radar, wireless communication,
etc, and many excellent algorithms have been developed in the past few years. Especially the
well-known multiple signal classification (MUSIC) algorithm has not only been applied in its
time-reversal (TR) form to active location [1–4], but has also been widely used in direction-of-arrival
(DOA) estimation (DOA is the research of passive location). In the last few years, DOA estimation
became an important research branch of array signal processing [5–7]. Especially two-dimensional (2D)
direction-of-arrival (DOA) estimation with different structured arrays, such as L-shaped uniform linear
arrays (ULAs) [8–10], two-parallel ULAs [11–13], and uniform rectangular arrays (URAs) [14–18],
has received much attention in past years. For URAs, the well-known multiple signal classification
(MUSIC) algorithm can be used for 2D DOA estimation directly [16]; however, its computational
complexity is very high. To overcome this problem, two efficient 2D DOA estimation methods
have been proposed [17,18]. In [17], the reduced-dimension MUSIC algorithm was proposed,
which reduced the computational complexity, and the 2D DOA estimation performance was very
close to the 2D-MUSIC method. A preprocessing transformation matrix was introduced in [18],
which transformed both the complex-valued covariance matrix and the complex-valued search vector
into real-valued ones, then the 2D DOA estimation problem was decoupled into two successive
real-valued one-dimensional (1D) DOA estimation problems with real-valued computations only.
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However, only the covariance matrix was considered, which characterizes the circular Gaussian
distribution in the above 2D DOA methods.

In recent years, the issue of utilizing noncircular information has been attracting increasing
attention. Abeida et al. presented a theoretical analysis of the resolution of the conventional and
noncircular MUSIC algorithms and proved that the noncircular MUSIC algorithm for the threshold
array signal-to-noise ratios are very sensitive to the noncircularity phase separation of the sources [19].
Pascal et al. introduced the optimal widely linear (WL) minimum variance distortionless response
(MVDR) beamformer for the reception of an unknown signal of interest (SOI) corrupted by potentially
second-order (SO) noncircular background noise and interference [20]. Wan et al. [21] proposed
an algorithm that utilized the noncircular characteristic to solve the DOA estimation of coherently
distributed sources. Because the covariance matrix and the elliptic covariance matrix (which is
also named the complementary covariance or pseudo-covariance) are used in non-circular signals
direction-finding method simultaneously, the DOA estimation performance can be improved greatly
by exploiting the noncircularity information. Gan et al. studied the non-circular characteristics of the
signals and proposed an automatically-paired 2D DOAs estimation method based on non-circular
signals [22]. Based on strictly non-circular signals, Steinwandt et al. proposed the high-resolution R−D
NCstandard ESPRIT and the R− D NC unitary ESPRIT algorithms, which are applicable to arbitrary
shift-invariant R − D antenna arrays and do not require a centro-symmetric array structure [23].
In [24], an extended rank reduction (ERARE) method was introduced for noncircular sources based on
two-parallel ULAs, which made the estimation more accurate than that in [12].

However, in modern wireless communications, a usual situation is that some users send circular
signals such as quadrature phase shift keying (QPSK) signals, but others send non-circular ones such
as binary phase shift keying (BPSK) signals. Therefore, the signals impinging to the array may be
mixed ones. As for the mixed signals situation, a key issue is how to estimate and distinguish the
circular and non-circular signals. In [25,26], the mixed signals situation issue has been studied, and the
corresponding methods based on 1D arrays have been proposed. Gao et al. [25] combined the observed
data and their conjugate counterparts to construct two 1D DOA estimators for detecting the circular
and non-circular signals, but the DOA estimation performance of the method degraded seriously in
the condition of a small separating angle. Liu et al. proposed an improved algorithm in [26], which
detected the circular and non-circular signals by using the difference between the circularity of the
mixed sources. However, to the best of our knowledge, few research works have reported the 2D DOA
estimation problem for mixed circular and non-circular signals. In [27], based on two-parallel uniform
linear arrays (ULAs), Chen proposed an effective algorithm that combined the rank reduction method
and MUSIC algorithm to form four 1D DOA estimators for solving the 2D mixed signals situation.
Nevertheless, the computational complexity of the algorithm in [27] is still high, and the theoretical
performance analysis is never mentioned in this research.

In this paper, we study the 2D DOA estimation problem based on uniform rectangular arrays
(URAs) using the rank-reduction-based ROOT-MUSIC method and the theoretical performance
analysis of the proposed algorithm. Firstly, we establish an array model with mixed circular and
noncircular sources with URAs; secondly, to avoid seeking the peak of the spectrum and reduce
the computation load, a novel algorithm based on ROOT-MUSIC and the rank-reduction method
is proposed to solve the 2D DOA estimation issue; finally, the theoretical error of the proposed
algorithm is derived as a benchmark. Particularly, the paper mainly discusses the uncorrelated signals
impinging upon the array. If we utilize some decorrelation methods such as the spatial smoothing
technologies [28,29] or four-order cumulants-based Toeplitz matrices reconstruction (FOC-TMR)
method [13] to preprocess the correlated signals and obtain the de-correlated matrices, the proposed
method can also be generalized to the case of correlated sources.

The rest of this paper is organized as follows. Section 2 presents the array signal model.
The description of the proposed algorithm is introduced in Section 3. The theoretical error analysis of
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the proposed algorithm is derived in Section 4. Finally, the simulation results are given in Section 5,
and conclusions are drawn in Section 6.

Notations: (·)∗, (·)T and (·)H represent conjugation, transpose and conjugate transpose. E[·] is the
expectation operation; diag(·) and blkdiag(·) stands for the diagonalization and block diagonalization
operation, respectively; Iω denotes the ω × ω dimensional identity matrix; det[·] indicates the
determinant of a matrix; arg(·) is the phase angle operator. Expect En, Ên, En1, Ên1, En2 and Ên2

representing the corresponding noise subspace; other variables have index n such as (·)n, which denote
ones related to the non-circular signal. (·)c indicates a variable associated with the circular signal.

2. Problem Formulation

In this paper, we suppose that the number of signals is known or is estimated by the existing
number detection technique in advance [30]. As illustrated in Figure 1, consider that K uncorrelated
far-field narrowband signals sk(t) (k = 1, 2, ..., K) impinging upon the array with Kn noncircular signals
sn,kn(t) (kn = 1, 2, ..., Kn) and Kc circular signals sc,kc(t) (kc = 1, 2, ..., Kc), from directions (θk, βk),
k = 1, 2, ..., K, where K = Kn + Kc. The array is composed of uniform rectangular arrays (URAs)
with N ×M omnidirectional sensors spaced by dx in the x-axis direction and dy in the y-axis direction.
λ is the wavelength of the incident waves, and dx = dy = λ/2. The additive noises of the URAs are
circular Gaussian with zero mean and variance σ2, which are uncorrelated with the impinging signals.
The received data vectors of the URAs at sample t can be expressed as:

[H]x1(t) = AG1s̃(t) + n1(t) (1)

x2(t) = AG2s̃(t) + n2(t) (2)

...

xN(t) = AGN s̃(t) + nN(t) (3)

where x1(t) = [x11(t), x12(t), . . . , x1M(t)], x2(t) = [x21(t), x22(t), . . . , x2M(t)], ... ,
xN(t) = [xN1(t), xN2(t), . . . , xNM(t)]. A = [a(θ1), a(θ2), . . . , a(θK)] is the steering
matrix with each column denoted by a(θk) = [a1(θk), . . . , aM(θk)]

T , k = 1, 2, . . . , K, with
ai(θk) = e−j 2π

λ dx(i−1)cosθk , i = 1, 2, . . . , M. Gζ , ζ = 1, 2, . . . , N, is termed the
steering element matrix given by Gζ = diag[υζ(β1), υζ(β2), . . . , υζ(βK)] with υζ(βk) =

ej 2π
λ (ζ−1)dycosβk . n1(t) = [n1,1(t), n1,2(t), . . . , n1,M(t)]T , n2(t) = [n2,1(t), n2,2(t), . . . , n2,M(t)]T ,

... , and nN(t) = [nN,1(t), nN,2(t), . . . , nN,M(t)]T indicate the circular Gaussian noise vectors
of the URAs, respectively. s̃(t) is the mixed signal vector, which can be denoted as s̃(t) =

[sn,1(t), . . . , sn,Kn(t), sc,1(t), . . . , sc,Kc(t)]
T , and we can see that there are Kn noncircular and Kc

circular signals in it.
In practice, non-circularity and circularity are important properties of random variables;

their concept directly comes from the geometrical interpretation of complex random variable.
The signal would be called the circular source if its statistical characteristic has the rotational invariance
characteristic, otherwise, it would be called the noncircular source. The work in [31] introduces the
circularity and noncircularity in detail. Based on this, we only consider the rotational invariance
characteristic of the first- and second-order statistical properties of the sources. For a complex random
signal sk, k = 1, 2, ..., K, we defined E[sk], E[sksk

∗] and E[sk
2] as the mean, the covariance and

the elliptic covariance of the signal sk, respectively. If the source’s first- and second-order statistical
properties are rotational invariant for an arbitrary phase ϕk as follows:

E[skejϕ] = E[sk] (4)

E[skejϕk (skejϕk )∗] = E[sksk
∗] (5)
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E[skejϕk · skejϕk ] = E[sk
2] (6)

The signal sk will be called the circular source. Conversely, the signal sk will be noncircular if the
first- and second-order statistical properties are not rotational invariant.

Figure 1. Geometry of a uniform rectangular array (URA) with N ×M sensors.

Beyond that, reference [32] proposes a model to describe signal sources with arbitrary
second-order non-circularity. The source sk is defined as follows:

sk = ejϕk

(√
1 + ηk

2
sIk + j

√
1− ηk

2
sQk

)
, k = 1, 2, ...K (7)

where ϕk is the rotation phase, ηk (0 ≤ ηk ≤ 1) denotes the non-circularity coefficient and sIk and sQk

represent the in-phase and quadrature components of the complex signal sk, respectively. Therefore,
sk will represent a circular source if ηk = 0, where the rotation phase ϕk is irrelevant and undetermined.
If ηk = 1, sk will represent a strictly non-circular signal.

Based on the above research, we defined the strictly non-circular signal as sn,kn(t) = bn,kn s̄n,kn(t),
where s̄n,kn(t) is a real signal and bn,kn = ejϕkn (kn = 1, 2, . . . , Kn) is an arbitrary phase shift for
the signal. Due to the phase information of circular source being irrelevant, it can be represented as
sc,kc(t), kc = 1, 2, . . . , Kc. Therefore, the mixed source signal vector can be modeled as s̃(t) = Bs(t).
B can be expressed as:

B = diag

bn,1, . . . , bn, Kn , 1, . . . , 1︸ ︷︷ ︸
Kc

 =

[
B1 0
0 B2

]
(8)

where B1 = diag[bn,1, . . . , bn, Kn ], B2 = IKc , and s(t) is denoted as:

s(t) = [s̄n,1(t), . . . , s̄n,Kn(t), sc,1(t), . . . , sc,Kc(t)]
T (9)

A new data vector f (t) is defined by concatenating the received data vectors x1(t), x2(t), ... , and
xN(t) as follows:

f (t) =


x1(t)
x2(t)

...
xN(t)

 =


A(θ)G1(β)

A(θ)G2(β)
...

A(θ)GN(β)

Bs(t) +


n1(t)
n2(t)

...
nN(t)


= C(θ, β)Bs(t) + n(t)

(10)



Sensors 2017, 17, 1269 5 of 22

where C(θ, β) is the extend steering vector, and:

C = [C1(θn, βn)C2(θc, βc)] (11)

In order to simplify the notation, the pair of angles (θ, β) and t is omitted. In Equation (11),

C1 =


a(θn,1)υ1(βn,1)

a(θn,1)υ2(βn,1)
...

a(θn,1)υN(βn,1)

· · ·

a(θn,Kn)υ1(βn,Kn)

a(θn,Kn)υ2(βn,Kn)
...

a(θn,Kn)υN(βn,Kn)



=


an,1υ1n,1

an,1υ2n,1
...

an,1υNn,1

· · ·

an,Kn υ1n,Kn

an,Kn υ2n,Kn
...

an,Kn υNn,Kn


(12)

C2 =


a(θc,1)υ1(βc,1)

a(θc,1)υ2(βc,1)
...

a(θc,1)υN(βc,1)

· · ·

a(θc,Kc)υ1(βc,Kc)

a(θc,Kc)υ2(βc,Kc)
...

a(θc,Kc)υN(βc,Kc)



=


ac,1υ1c,1

ac,1υ2c,1
...

ac,1υNc,1

· · ·

ac,Kc υ1c,Kc

ac,Kc υ2c,Kc
...

ac,Kc υNc,Kc


(13)

C1 is a NM× Kn matrix of noncircular signals and C2 is a NM× Kc matrix of circular signals.
As a classical procedure for existing noncircular DOA estimation algorithms [27,33,34], we can

construct a new augmented data matrix
^

f by combining the vector f and its conjugate counterpart f ∗

as follows:
^

f =

[
f
f ∗

]
=

[
CBs

C∗B∗s∗

]
+

[
n
n∗

]
=

^

C^s +
^n (14)

The procedure can extend the array virtually and enlarge the aperture of the array antenna,
and the estimating precision of DOA can be improved by utilizing the noncircularity of signals.

In Equation (14),
^

C is a 2NM × (Kn + 2Kc) matrix, which contains the new steering vectors of the
impinging sources. ^s is a (Kn + 2Kc)× 1 matrix of signals.

^

C = [
^cn,1, . . . , ^cn,Kn , ^c c,1, . . . , ^c c,Kc ] (15)

where ^cn,kn and ^c c,kc are the new steering vectors of non-circular signals and circular signals,
respectively.

^cn,kn =



bn,kn


an,kn υ1n,kn

an,kn υ2n,kn
...

an,kn υNn,kn



b∗n,kn


a∗n,kn

υ∗1n,kn

a∗n,kn
υ∗2n,kn
...

a∗n,kn
υ∗Nn,kn




(16)
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kn = 1, 2, . . . , Kn, which is a 2NM× 1 vector,

^c c,kc =



ac,kc υ1c,kc

ac,kc υ2c,kc
...

ac,kc υNc,kc

0M×1

0M×1
...

0M×1

0M×1

0M×1
...

0M×1

a∗c,kc
υ∗1c,kc

a∗c,kc
υ∗2c,kc
...

a∗c,kc
υ∗Nc,kc


(17)

kc = 1, 2, . . . , Kc, which is a 2NM× 2 matrix,

^s(t) = [sn,1(t), · · · , sn,Kn(t), sc,1(t), s∗c,1(t), · · · , sc,Kc(t), s∗c,Kc
(t)]T (18)

which is a (Kn + 2Kc)× 1 matrix of signals, and:

^n =

[
n
n∗

]
(19)

which is a 2NM× 1 vector of noise.
The covariance matrix of

^

f is calculated by:

^

R = E[
^

f
^

f
H
] =

^

C
^

Rs
^

C
H
+ σ2I2NM (20)

where
^

Rs = E[^s^s
H
] is the covariance matrix of ^s .

^

Rs is a full-rank matrix, since the incident signals

are uncorrelated with each other. Then, the eigenvalue decomposition of
^

R is:

^

R = EsΣsEH
s + EnΣnEH

n (21)

where the 2NM × (Kn + 2Kc) matrix Es and the 2NM × (2NM − Kn − 2Kc) matrix En

are the signal subspace and noise subspace, respectively. The (Kn + 2Kc) × (Kn + 2Kc)

matrix Σs = diag(λ1, λ2, . . . , λK) and the (2NM − Kn − 2Kc) × (2NM − Kn − 2Kc) matrix
Σn = diag(λK+1, λK+2, . . . , λ2NM) are diagonal matrices, where λ1 ≥ λ2 ≥ · · · ≥ λK > λK+1 =

· · · = λ2NM = σ2 are the eigenvalues of
^

R.

Remark 1. In practice, the available observed data are finite. Thus,
^

R can be approximated by:

ˆ̂
R =

1
L

L

∑
t=1

^

f (t)
^

f
H
(t) (22)

where L is the number of available data snapshots. Then, the eigenvalue decomposition of
ˆ̂
R is:

ˆ̂
R = ÊsΣ̂sÊ

H
s + ÊnΣ̂nÊH

n (23)

therefore, the noise subspace En and signal subspace Es can be approximated by Ên and Ês, respectively.
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3. The Proposed Algorithm

In this section, we propose a 2D DOA estimation algorithm to solve the problem of estimating
and distinguishing the mixed signals that are circular and non-circular in detail. Firstly, the method for
estimating the mixed sources that are circular and noncircular is proposed; secondly, the algorithm,
which only detects the circular signals, is proposed; and finally, we study how to distinguish these two
kinds of sources.

Because both
^

C and Es have the same signal subspace, orthogonal to the noise subspace spanned
by the matrix En, we devise estimators to obtain the 2D DOAs of noncircular and circular signals using
the rank-reduction-based Root-MUSIC method.

3.1. 2D DOA Estimation for Non-Circular Sources

Because the noise subspace En is orthogonal to ^cn,kn (the steering vectors of non-circular signals),
the following equation can be obtained directly:

EH
n

^cn,kn = 0 (24)

Then, together with Equations (16) and (24), we can get the following equation:

EH
n

^cn,kn = EH
n



bn,kn


an,kn υ1n,kn

an,kn υ2n,kn
...

an,kn υNn,kn



b∗n,kn


a∗n,kn υ∗1n,kn

a∗n,kn υ∗2n,kn
...

a∗n,kn υ∗Nn,kn




= EH

n blkdiag[an,kn , an,kn , . . . , an,kn , a∗n,kn
, a∗n,kn

, . . . , a∗n,kn
].

υ1n,kn
0

υ2n,kn
...

υNn,kn

0
...
0

0 υ∗1n,kn

0
...
0

υ∗2n,kn
...

υ∗Nn,kn



[
bn,kn

b∗n,kn

]
= 0

(25)

Defining a vector pn(l) = [1, l, ..., lM−1]T , which is only related to l, where l = e−j(2π/λ)dx cos θn,kn .
Therefore, we can obtain the formula pn(l) = an,kn and pn(l

−1) = a∗n,kn , then define a 2NM× 2N
matrix Ω(l), which is only related to l,

Ω(l) = blkdiag[pn(l), pn(l), · · · , pn(l), pn(l
−1), pn(l

−1), · · · , pn(l
−1)]

= blkdiag[an,kn , an,kn , · · · , an,kn , a∗n,kn
, a∗n,kn

, · · · , a∗n,kn
]

(26)

and define a 2N × 2N matrix:

Qn(l) = lM−1ΩT(l−1)EnEH
n lM−1Ω(l) (27)
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Note that if (2NM− Kn − 2Kc) ≥ 2N and θ is not the true angle of the non-circular signal, Qn(l)
is of full rank because in this case, the column rank of En is not less than 2N. Then, Equation (25) holds
true only when θ equals the true angle of the signal (Qn(l) drops rank). Since the covariance matrix

of
^

f is obtained from a finite number of samples, the reduction of the rank of Qn(l) can roughly be
replaced by the minimum of the determinant of Qn(l). Therefore, we get the estimator of θ about
non-circular signals as follows:

fn(l) = det(Qn(l)) = det(lM−1ΩT(l−1)EnEH
n lM−1Ω(l)) (28)

Notice that fn(l) is a 2× 3N(M− 1) order polynomial, showing that there are 3N(M− 1) pairs
of conjugated roots. The estimates Kn signal DOAs of θ can be obtained by finding the closest roots of
the unit circle, which are given by:

θ̂kn = arccos
[
− λ

2πdx
arg(lkn)

]
, kn = 1, ..., Kn (29)

where lkn , kn = 1, ..., Kn are the roots closest to the unit circle. Then, we take the estimated θ̂kn of
non-circular source into Equation (25) to get the estimator of β:

f ′n(u) = det(Q′n(u)) (30)

where:
Q′n(u) = u(N−1)ΘT(u−1)ΩT(l−1)EnEH

n Ω(l)u(N−1)Θ(u) (31)

u = ej(2π/λ)dy cos βn,kn ; it means that υmn,kn
= um−1, m = 1, · · ·N and:

Θ(u)=



1 0
u
...

uN−1

0
...
0

0 1
0
...
0

u∗
...

u∗N−1


=



υ1n,kn
(β) 0

υ2n,kn
(β)

...
υNn,kn

(β)

0
...
0

0 υ∗1n,kn
(β)

0
...
0

υ∗2n,kn
(β)

...
υ∗Nn,kn

(β)


(32)

To achieve the estimate of β, we need to solve the roots of f ′n(u). Due to f ′n(u) being
a 2 × 3(N − 1)-order polynomial, it means there are 3(N− 1) pairs of conjugated roots. The estimate
of β can be obtained by finding the closest roots of the unit circle; in this way, we can automatically
pair the closest roots u1, u2, ..., uKn corresponding to θ̂1, θ̂2, . . . , θ̂Kn , respectively, and the DOAs of β

are given by:

β̂kn = arccos
[

λ

2πdy
arg(ukn)

]
, kn = 1, ..., Kn (33)

where ukn , kn = 1, ..., Kn are the roots closest to the unit circle, respectively.
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3.2. 2D DOA Estimation for Circular Sources

Because the noise subspace En is also orthogonal to ^c c,kc (the steering vectors of circular signals),
we can get the equation as follows:

EH
n

^c c,kc = EH
n



ac,kc υ1c,kc
0M×1

ac,kc υ2c,kc
0M×1

...
...

ac,kc υNc,kc
0M×1

0M×1 a∗c,kc
υ∗1c,kc

0M×1 a∗c,kc
υ∗2c,kc

...
...

0M×1 a∗c,kc
υ∗Nc,kc


= 0 (34)

from Equation (34), we can get:

EH
n



ac,kc υ1c,kc

ac,kc υ2c,kc
...

ac,kc υNc,kc

0M×1

0M×1
...

0M×1


= 0 (35)

EH
n



0M×1

0M×1
...

0M×1

a∗c,kc υ∗1c,kc

a∗c,kc υ∗2c,kc
...

a∗c,kc υ∗Nc,kc


= 0 (36)

Partitioning the noise subspace En into En =

[
En1

En2

]
, where En1 and En2 are two submatrices of

the same size NM× (2NM− Kn − 2Kc), Equations (35) and (36) can be changed to:
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
ac,kc υ1c,kc

ac,kc υ2c,kc
...

ac,kc υNc,kc


H

En1EH
n1


ac,kc υ1c,kc

ac,kc υ2c,kc
...

ac,kc υNc,kc



=


υ1c,kc

υ2c,kc
...

υNc,kc


H

blkdiag[ac,kc , ac,kc , · · · , ac,kc ]
H .

En1EH
n1blkdiag[ac,kc , ac,kc , · · · , ac,kc ]


υ1c,kc

υ2c,kc
...

υNc,kc

=0

(37)


a∗c,kc υ∗1c,kc

a∗c,kc υ∗2c,kc
...

a∗c,kc υ∗Nc,kc


H

En2EH
n2


a∗c,kc υ∗1c,kc

a∗c,kc υ∗2c,kc
...

a∗c,kc υ∗Nc,kc



=


υ∗1c,kc

υ∗2c,kc
...

υ∗Nc,kc


H

blkdiag[a∗c,kc , a∗c,kc , · · · , a∗c,kc ]
H .

En2EH
n2blkdiag[a∗c,kc , a∗c,kc , · · · , a∗c,kc ]


υ∗1c,kc

υ∗2c,kc
...

υ∗Nc,kc

=0

(38)

As proven in [27], Equations (37) and (38) are equivalent to each other; therefore, the estimator
over θ, which corresponds to circular signals, can obtained based on Equation (37). Since:

υ1c,kc

υ2c,kc
...

υNc,kc

 6= 0 (39)

Defining a vector pc(l̃) = [1, l̃, ..., l̃M−1]T only related to l̃, where l̃ = e−j(2π/λ)dx cos θc,kc . Therefore,
we can get formula pc(l̃) = ac,kc , then defining a NM× N matrix Λ(l̃) only related to l̃,

Λ(l̃)=blkdiag[pc(l̃), pc(l̃), · · · , pc(l̃)] = blkdiag[ac,kc , ac,kc , · · · , ac,kc ] (40)

and:
Qc(l̃) = l̃M−1ΛT(l̃−1)En1EH

n1Λ(l̃) (41)

Note that if (2NM− Kn − 2Kc) ≥ N and when θ is not the true angle of circular signal, Qc(l̃) is of
full rank because in this case, the column rank of En1 is not less than N. Then, Equation (37) holds true
only when θ equals the true angle of circular signal (Qc(l̃) drops rank). Since the covariance matrix

of
^

f is obtained from a finite number of samples, the reduction of the rank of Qc(l̃) can roughly be
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replaced by the minimum of the determinant of Qc(l̃). Therefore, we get the estimator of θ about
circular signals as follows:

fc(l̃) = det(Qc(l̃)) = det(l̃M−1ΛT(l̃−1)En1EH
n1Λ(l̃)) (42)

Notice that fc(l̃) is a 2× N(M− 1) order polynomial, which means that there are N(M− 1) pairs
of conjugated roots, and the estimated Kc signal DOAs of θ can be obtained by finding the closest roots
of the unit circle, which are given by:

θ̂kc = arccos
[
− λ

2πdx
arg(l̃kc)

]
, kc = 1, ..., Kc (43)

where l̃kc , kc = 1, ..., Kc are the roots closest to the unit circle. Then, we take the estimated θ̂kc of circular
signals into Equation (37) to get the estimator of β:

f ′c(ũ) = det(Q′c(ũ)) (44)

where:
Q′c(ũ) = ũ(N−1)ΨT(ũ−1)l̃M−1ΛT(l̃−1)En1EH

n1Λ(l̃)Ψ(ũ) (45)

ũ = ej(2π/λ)dy cos βc,kc ; this means that υmc,kc
= ũm−1, m = 1, · · · N and:

Ψ(ũ) =


1
ũ
...

ũN−1

 =


υ1c,kc

(β)

υ2c,kc
(β)

...
υNc,kc

(β)

 (46)

To obtain the estimate of β, we need to solve the roots of f ′c(ũ). According to f ′c(ũ) being
a 2× (N − 1)-order polynomial, this means there are N − 1 pairs of conjugated roots. The estimate of
β can be obtained by finding the closest roots of the unit circle. Therefore, we can automatically pair
the closest roots ũ1, ũ2, ..., ũKc corresponding to θ̂1, θ̂2, . . . , θ̂Kc , respectively, and the DOAs of β are
given by:

β̂kc = arccos
[

λ

2πdy
arg(ũkc)

]
, kc = 1, ..., Kc (47)

where ũkc , kc = 1, ..., Kc are the roots closest to the unit circle, respectively.

3.3. Identification of Circular and Noncircular Signals

In order to distinguish the 2D DOAs of circular and noncircular signals from the mixed signals,
Equation (34) can be changed into:
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EH
n

^c c,kc = EH
n



ac,kc υ1c,kc
0M×1

ac,kc υ2c,kc
0M×1

...
...

ac,kc υNc,kc
0M×1

0M×1 a∗c,kc
υ∗1c,kc

0M×1 a∗c,kc
υ∗2c,kc

...
...

0M×1 a∗c,kc
υ∗Nc,kc


= EH

n blkdiag[ac,kc , ac,kc , · · · , ac,kc , a∗c,kc
, a∗c,kc

, · · · , a∗c,kc
].

υ1c,kc
0

υ2c,kc
...

υNc,kc

0
...
0

0 υ∗1c,kc

0
...
0

υ∗2c,kc
...

υ∗Nc,kc


= 0

(48)

due to



υ1c,kc
0

υ2c,kc
...

υNc,kc

0
...
0

0 υ∗1c,kc

0
...
0

υ∗2c,kc
...

υ∗Nc,kc


6= 0, we can utilize method of noncircular to establish the estimator over

θ and β of circular signals as follows:

det(l̃M−1ΩT(l̃−1)EnEH
n l̃M−1Ω(l̃)) = 0 (49)

and:
det(ũ(N−1)ΘT(ũ−1)ΩT(l̃−1)EnEH

n Ω(l̃)ũ(N−1)Θ(ũ)) = 0 (50)

This means the noncircular method can also be applied to solve circular signals. Therefore, we can
achieve the 2D DOAs of both non-circular and circular sources from Equations (28)–(30) and (33) and
only obtain the 2D DOAs of circular sources from Equations (42)–(44) and (47). Then, the purpose of
distinguishing the circular and noncircular signals from the mixtures can be accomplished.

The proposed algorithm can be outlined as:

Step 1: Construct the new data vector
^

f and calculate its approximate covariance
ˆ̂
R from

Equations (14) and (22).

Step 2: Perform EVDto
ˆ̂
R and achieve the noise subspace Ên from Equation (23).

Step 3: Estimate the K 2D DOAs of the mixed signals from Equations (28)–(30) and (33).
Step 4: Obtain Ên1 by partitioning the matrix Ên.
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Step 5: Estimate the Kc 2D DOAs of the circular signals from Equations (42)–(44) and (47).
Step 6: Compare the estimate achieved by Step 3 and Step 5 to distinguish the Kn 2D DOAs of the

noncircular signals and the Kc 2D DOAs of the circular ones.

Remark 2. To calculate
ˆ̂
R, a computational complexity of O((2NM)2L) is needed. The computational

complexity of eigendecomposition operation is O((2NM)3). The proposed method employs
four 1D estimators of polynomial-rooting; therefore, the complexity for the proposed method is
O
(
(2NM)2L + (2NM)3 + 4NM× K + 2NM× Kc

)
. While the algorithm in [27] employs several

1D spatial spectrum search procedures to obtain the 2D DOAs of signals, by defining the scanning interval of
θ ∈ [0, π] with an interval of ∆θ and β ∈ [0, π] with an interval of ∆β, respectively, the complexity for the
algorithm in [27] is O((2NM)2L + (2NM)3 + π

∆θ (2NM)2 + K π
∆β (2NM)2 + π

∆θ (NM)2 + Kc
π

∆β (NM)2).
The algorithm in [16] employs two direct 2D spatial spectrum search procedures, whose complexity for
the method is O

(
(NM)2L + (NM)3 + π

∆θ
π

∆β (2NM)2 + π
∆θ

π
∆β (NM)2

)
. Therefore, the computational

complexity of the proposed method has been reduced greatly.

4. Theoretical Performance Analysis

The theoretical DOA estimation error is caused by the finite data effect, the sensor errors and the
unknown noise structure [31,35], and in this section, we will study the theoretical perturbation of the
proposed algorithm as a criterion for evaluation.

4.1. Theoretical Perturbation for Non-Circular Sources

According to Equation (25), defining an,kn = [1, l, ..., lM−1]T , υmn,kn
= um−1, m = 1, · · · , N

and bn,kn = z, where l = e−j(2π/λ)dx cos θn,kn , u = ej(2π/λ)dy cos βn,kn , z = ejϕn,kn , ϕn,kn is the non-circular
phase of non-circular sources. Therefore, Equation (25) can be changed into:

EH
n blkdiag[an,kn , an,kn , · · · , an,kn , a∗n,kn

, a∗n,kn
, · · · , a∗n,kn

]



1 0
u
...

uN−1

0
...
0

0 1
0
...
0

u∗
...

u∗N−1



[
z

z−1

]
= 0

(51)
Defining:

M(l, u, z) = blkdiag[an,kn , an,kn , · · · , an,kn , a∗n,kn
, a∗n,kn

, · · · , a∗n,kn
].

1 0
u
...

uN−1

0
...
0

0 1
0
...
0

u∗
...

u∗N−1



[
z

z−1

]
(52)

Then, we can define the equation as follows:

f (l, u, z) = MH(l, u, z)EnEH
n M(l, u, z) (53)



Sensors 2017, 17, 1269 14 of 22

In practical situations, due to the influence of noise, the sensor errors and the finite data
effect, we can only achieve Ên, the approximation of En, according to Equation (53), we can get
the following formula:

f̂ (l, u, z) = MH(l, u, z)ÊnÊH
n M(l, u, z) (54)

The locations of the local minima of either the noise-free or perturbed spectral polynomials
are obtained when the first derivative equal to zero. In other words, the roots of the derivative of
f̂ (l, u, z) give the locations of the relative minima of f̂ (l, u, z). Thus, to find the perturbations of
the DOAs (which correspond to minima of f̂ (l, u, z)), we must calculate the perturbations of the
roots of the derivative of f̂ (l, u, z). Define (l̂kn , ûkn , ẑkn) as the estimate of (l, u, z) when the true
angle is θ = θn,kn , β = βn,kn , and ϕ = ϕn,kn . Therefore, the first-order partial derivatives of f̂ (l, u, z)
at (l̂kn , ûkn , ẑkn) are zeros. Approximating the perturbation of DOAs uses the first two terms in the
Taylor series expansion of the first-order partial derivative of f̂ (l, u, z) about the true angles of arrival.

f̂ ′l (kn) + ∆lkn f̂ ′′l,l(kn) + ∆ukn f̂ ′′l,u(kn) + ∆zkn f̂ ′′l,z(kn) = 0 (55)

f̂ ′u(kn) + ∆lkn f̂ ′′u,l(kn) + ∆ukn f̂ ′′u,u(kn) + ∆zkn f̂ ′′u,z(kn) = 0 (56)

f̂ ′z(kn) + ∆lkn f̂ ′′z,l(kn) + ∆ukn f̂ ′′z,u(kn) + ∆zkn f̂ ′′z,z(kn) = 0 (57)

where ∆lkn = l̂kn − lkn , ∆ukn = ûkn − ukn and ∆zkn = ẑkn − zkn are the perturbations of lkn , ukn and zkn ,
respectively. Together with Equations (55)–(57), solve the set of equations as follows:

∆lkn = 1
δ

∣∣∣∣∣∣∣
− f̂ ′l (kn) f̂ ′′l,u(kn) f̂ ′′l,z(kn)

− f̂ ′u(kn) f̂ ′′u,u(kn) f̂ ′′u,z(kn)

− f̂ ′z(kn) f̂ ′′z,u(kn) f̂ ′′z,z(kn)

∣∣∣∣∣∣∣
= 1

δ · { f̂ ′l (kn)[( f̂ ′′u,z(kn))2 − f̂ ′′u,u(kn) f̂ ′′z,z(kn)] + f̂ ′u(kn)[ f̂ ′′l,u(kn) f̂ ′′z,z(kn)− f̂ ′′l,z(kn) f̂ ′′u,z(kn)]

+ f̂ ′z(kn)[ f̂ ′′l,z(kn) f̂ ′′u,u(kn)− f̂ ′′l,u(kn) f̂ ′′u,z(kn)]}

(58)

∆ukn = 1
δ

∣∣∣∣∣∣∣
f̂ ′′l,l(kn) − f̂ ′l (kn) f̂ ′′l,z(kn)

f̂ ′′u,l(kn) − f̂ ′u(kn) f̂ ′′u,z(kn)

f̂ ′′z,l(kn) − f̂ ′z(kn) f̂ ′′z,z(kn)

∣∣∣∣∣∣∣
= 1

δ · { f̂ ′l (kn)[ f̂ ′′u,l(kn) f̂ ′′z,z(kn)− f̂ ′′u,z(kn) f̂ ′′z,l(kn)] + f̂ ′u(kn)[( f̂ ′′l,z(kn))2 − f̂ ′′l,l(kn) f̂ ′′z,z(kn)]

+ f̂ ′z(kn)[ f̂ ′′l,l(kn) f̂ ′′u,z(kn)− f̂ ′′l,z(kn) f̂ ′′u,l(kn)]}

(59)

where:

δ =

∣∣∣∣∣∣∣
f̂ ′′l,l(kn) f̂ ′′l,u(kn) f̂ ′′l,z(kn)

f̂ ′′u,l(kn) f̂ ′′u,u(kn) f̂ ′′u,z(kn)

f̂ ′′z,l(kn) f̂ ′′z,u(kn) f̂ ′′z,z(kn)

∣∣∣∣∣∣∣ (60)

According to the expressions for Equation (54), the first derivative, f̂ ′η(kn)(η = l, u, z), and the
second derivative, f̂ ′′τ,κ(kn)(τ, κ = l, u, z), can be achieved, respectively. Using the value of
(lkn , ukn , zkn) and Equations (58) and (59), we can obtain the perturbation ∆l and ∆u. Then, the
perturbation of θ and β can be achieved from ∆l and ∆u, respectively. The relation between an arrival
angle and a signal root is given in [36]:

∆θn,kn = Cθ,kn Im
[

∆lkn

lkn

]
(61)

∆βn,kn = Cβ,kn Im
[

∆ukn

ukn

]
(62)

where Cθ,kn = λ
2πdx sin θn,kn

and Cβ,kn = − λ
2πdy sin βn,kn

. Therefore, the theoretical perturbation of θn,kn

and βn,kn can be obtained from Equations (61) and (62).
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4.2. Theoretical Perturbation for Circular Sources

Similar to the noncircular method, defining ac,kc = [1, l̃, ..., l̃M−1]T and υmc,kc
= ũm−1,

m = 1, · · ·N, where l̃ = e−j(2π/λ)dx cos θc,kc and ũ = ej(2π/λ)dy cos βc,kc . Equation (35) can be changed to:

EH
n1


ac,kc

ac,kc
. . .

ac,kc




1
ũ
...

ũN−1

=0 (63)

defining:

M(l̃, ũ) =


ac,kc

ac,kc
. . .

ac,kc




1
ũ
...

ũN−1

 (64)

therefore, the equation can be defined as follows:

f (l̃, ũ) = MH(l̃, ũ)En1EH
n1M(l̃, ũ) (65)

In practical application, we can only achieve Ên1, the approximation of En1; according to
Equation (65), we can get the following equation:

f̂ (l̃, ũ) = MH(l̃, ũ)Ên1ÊH
n1M(l̃, ũ) (66)

the roots of the derivative of f̂ (l̃, ũ) give the locations of the relative minima of f̂ (l̃, ũ). Define ( ˆ̃lkc , ˆ̃ukc)

as the estimate of (l̃, ũ) when the true angle is θ = θc,kc and β = βc,kc . Therefore, the first-order partial
derivatives of f̂ (l̃, ũ) at ( ˆ̃lkc , ˆ̃ukc) are zeros. Approximating the perturbation of DOAs uses the first two
terms in the Taylor series expansion of the first-order partial derivative of f̂ (l̃, ũ) at the true angles
of arrival.

f̂ ′l̃ (kc) + ∆l̃kc f̂ ′′l̃,l̃(kc) + ∆ũkc f̂ ′′l̃,ũ(kc) = 0 (67)

f̂ ′ũ(kc) + ∆l̃kc f̂ ′′ũ,l̃(kc) + ∆ũkc f̂ ′′ũ,ũ(kc) = 0 (68)

where ∆l̃kc =
ˆ̃lkc − l̃kc and ∆ũkc = ˆ̃ukc − ũkc are the perturbations of l̃kc and ũkc , respectively. Together

with Equations (67) and (68) to solve the set of equations as follows:

∆l̃kc =
1
δ̃

∣∣∣∣∣ − f̂ ′
l̃
(kc) f̂ ′′

l̃,ũ
(kc)

− f̂ ′ũ(kc) f̂ ′′ũ,ũ(kc)

∣∣∣∣∣ = 1
δ̃
· [ f̂ ′ũ(kc) f̂ ′′

l̃,ũ
(kc)− f̂ ′

l̃
(kc) f̂ ′′ũ,ũ(kc)] (69)

∆ũkc =
1
δ̃

∣∣∣∣∣ f̂ ′′
l̃,l̃
(kc) − f̂ ′

l̃
(kc)

f̂ ′′
ũ,l̃
(kc) − f̂ ′ũ(kc)

∣∣∣∣∣ = 1
δ̃
· [ f̂ ′

l̃
(kc) f̂ ′′

ũ,l̃
(kc)− f̂ ′ũ(kc) f̂ ′′

l̃,l̃
(kc)] (70)

where:

δ̃ =

∣∣∣∣∣ f̂ ′′
l̃,l̃
(kc) f̂ ′′

l̃,ũ
(kc)

f̂ ′′
ũ,l̃
(kc) f̂ ′′ũ,ũ(kc)

∣∣∣∣∣ (71)

According to the expressions for Equation (66), the first derivative, f̂ ′η̃(kc)(η̃ = l̃, ũ) and the

second derivative, f̂ ′′τ̃,κ̃(kc), (τ̃, κ̃ = l̃, ũ) can be achieved, respectively. Using the value of (l̃kc , ũkc) and
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Equations (69) and (70), we can obtain the perturbation ∆l̃ and ∆ũ. Then, the relation between an
arrival angle and a signal root is as follows:

∆θc,kc = Cθ,kc Im

[
∆l̃kc

l̃kc

]
(72)

∆βc,kc = Cβ,kc Im
[

∆ũkc

ũkc

]
(73)

where Cθ,kc =
λ

2πdx sin θc,kc
and Cβ,kc = −

λ
2πdy sin βc,kc

; therefore, the theoretical perturbation of θc,kc and
βc,kc can be obtained.

5. Simulation Results

In this section, simulation results are provided to demonstrate the performance of the proposed
algorithm. For Simulations (1)–(3), the URAs have N = 3 rows and M = 8 columns; both dx and dy are
half wavelength. For all simulations, we utilize BPSK and QPSK to represent the strictly non-circular
signal and the circular signal, respectively, and the sources can be realized base on (7). For instance,
if we take ηk = 0 and ϕk = 0, the QPSK signal sk ∈

(√
2

2 +
√

2
2 j,

√
2

2 −
√

2
2 j,−

√
2

2 +
√

2
2 j,−

√
2

2 −
√

2
2 j
)

can
be obtained. If we take ηk = 1 and ϕk = 0, the BPSK signal sk ∈ (−1,+1) can be acquired. The power of
additive white Gaussian noise is σ2

n , and the signal-to-noise (SNR) is defined as SNR = 10log10(σ
2
s /σ2

n).
We use the root mean square error (RMSE) to evaluate the estimation performance, which is defined as:

RMSE =

√√√√ 1
KMc

K

∑
k=1

Mc

∑
m=1

[(ε̂m,k − εk)
2] (74)

where Mc is the number of Monte Carlo simulations, K is the number of signals, ε̂m,k is the estimated
θk or βk in the m-th Monte Carlo simulation and εk is the true value for either θk or βk of the k-th signal.

5.1. The 2D DOAs’ Scattergram of the Estimators

To demonstrate the performance of the proposed algorithm, we examine the scattergram of 2D
θ and β of the method. Five BPSK signals and three QPSK signals are considered here. The BPSK
signals are from the directions (θ1 = 65◦, β1 = 50◦), (θ2 = 90◦, β2 = 105◦), (θ3 = 50◦, β3 = 60◦),
(θ4 = 125◦, β4 = 85◦) and (θ5 = 30◦, β5 = 115◦) and the QPSK signals from (θ6 = 105◦, β6 = 95◦),
(θ7 = 75◦, β7 = 40◦) and (θ8 = 115◦, β8 = 70◦). The SNR is 10 dB, and the number of snapshots is
500. Figure 2a,b indicates that the method can estimate and distinguish the 2D DOAs that are strictly
noncircular and circular successfully.

5.2. Performance versus SNR

In this part, the performance of the proposed algorithm is studied with a varying SNR from
−5 dB–15 dB. The number of snapshots is 500, and the number of Monte Carlo simulations is 500.
Five BPSK signals and one QPSK signal are considered. The BPSK signals are from the directions
(θ1 = 65◦, β1 = 50◦), (θ2 = 90◦, β2 = 105◦), (θ3 = 50◦, β3 = 60◦), (θ4 = 125◦, β4 = 85◦) and
(θ5 = 30◦, β5 = 115◦) and the QPSK signals from (θ6 = 105◦, β6 = 95◦).

The proposed algorithm in theoretical analysis and experimental results, the algorithm of
2D-MUSIC, the algorithm in [18], the algorithm in [27] and the deterministic CRB (Cramer–Rao
bound) in [37], are compared in terms of RMSE. Figure 3a,b shows that the proposed method is steadily
better than the other three algorithms, and the experimental values of the proposed algorithm overlap
together with the theoretical error ones.
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Figure 2. The estimators for noncircular and circular signals using the proposed algorithm when
SNR = 10 dB and the number of snapshots = 500.
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Figure 3. RMSE of versus SNR with the snapshots being 500.

5.3. Performance versus Snapshots

We study the performance of the proposed algorithm with a varying snapshot number from
30–850. The SNR is fixed at 10 dB; the number of Monte Carlo simulations and incident signals are the
same as in the second experiment. The RMSE results for angle estimation are shown in Figure 4a,b.
The proposed method is steadily better than the other three algorithms, and the experimental values
of the proposed algorithm overlap together with the theoretical error ones.
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Figure 4. RMSE of versus snapshots when SNR = 10 dB.

5.4. Performance versus the Number of Noncircular Mixed Signals

Finally, we consider the performance of the number of noncircular signals based on the proposed
algorithm. The URAs have N = 3 rows and M = 6 columns; the SNRs vary form 0 dB–30 dB;
the number of snapshots is 1200; and the number of Monte Carlo simulations is 1000. There are four
uncorrelated signals from directions (θ1 = 65◦, β1 = 50◦), (θ2 = 105◦, β2 = 95◦), (θ3 = 75◦, β3 = 40◦)
and (θ4 = 115◦, β4 = 70◦), and the total number of sources remains unchanged. We consider cases
about one, two, three and four BPSK signals, respectively. The results are shown in Figure 5a,b.
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Figure 5. RMSE of versus SNR in four cases.

We can see that the RMSE of the experimental values of the proposed algorithm will overlap
together with the theoretical error ones in a relatively high SNR, and the 2D DOA estimation
performance of the proposed method improves from Case 1 to Case 4 because the dimension of
the noise subspace has been extended by the increasing number of BPSK signals.

6. Conclusions

In this paper, a novel low-complexity 2D DOA estimation algorithm for mixed circular and
non-circular signals has been proposed based on the URAs; besides, the theoretical error of the
proposed algorithm is analyzed. As verified by the simulation results, the proposed method has
a lower computational complexity and a better DOA estimation performance than the existing methods
due to the usage of the noncircularity of the incoming signals.
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