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Abstract: The relevance of coupling droplet-based Photonic Lab-on-a-Chip (PhLoC) platforms and
Small-Angle X-Ray Scattering (SAXS) technique is here highlighted for the performance of high
throughput investigations, related to the study of protein macromolecular interactions. With this
configuration, minute amounts of sample are required to obtain reliable statistical data. The PhLoC
platforms presented in this work are designed to allow and control an effective mixing of precise
amounts of proteins, crystallization reagents and buffer in nanoliter volumes, and the subsequent
generation of nanodroplets by means of a two-phase flow. Spectrophotometric sensing permits
a fine control on droplet generation frequency and stability as well as on concentration conditions,
and finally the droplet flow is synchronized to perform synchrotron radiation SAXS measurements
in individual droplets (each one acting as an isolated microreactor) to probe protein interactions.
With this configuration, droplet physic-chemical conditions can be reproducibly and finely tuned,
and monitored without cross-contamination, allowing for the screening of a substantial number of
saturation conditions with a small amount of biological material. The setup was tested and validated
using lysozyme as a model of study. By means of SAXS experiments, the proteins gyration radius
and structure envelope were calculated as a function of protein concentration. The obtained values
were found to be in good agreement with previously reported data, but with a dramatic reduction of
sample volume requirements compared to studies reported in the literature.

Keywords: Photonic Lab-on-a-Chip; spectrophotometric detection; SAXS; microfluidics; protein
interactions

1. Introduction

Small-Angle X-ray scattering (SAXS) is known to provide very useful information to investigate
the structure of soft matter and biological macromolecules at the nanometer scale [1,2]. It has
been proven to be a powerful technique in a vast number of applications, ranging from nucleation
studies [3,4] to macromolecular interactions, leading to the determination of protein molecular
weight [5], structural information [6], or protein conformational changes [7]. However, due to the

Sensors 2017, 17, 1266; doi:10.3390/s17061266 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17061266
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 1266 2 of 12

large number of experiments required to obtain reliable statistical information, this technique usually
becomes less convenient when working with high value compounds.

The miniaturization of the experimental setups (and therefore of sample requirements) for
SAXS measurements presents obvious advantages, and few recent studies have proposed the use of
continuous flow microfluidic platforms to perform studies with macromolecules and other expensive
compounds [8–10]. Here, the use of droplet-based microfluidic platforms, although sparsely reported
at the present time [11–13], is clearly advantageous. Droplet-based microfluidics essentially consists in
the co-flow of two immiscible liquid phases in a microfluidic channel [14]. This co-flow causes the
alternate generation of droplets of the two phases and, in contrast to continuous phase flows (where all
reagents and products of reaction are able to diffuse in the channels, thus affecting the whole system),
this permits the creation of thousands of independent monodisperse experiments in a short period of
time. Each droplet thus acts as an isolated reactor with the advantage of using a very low quantity of
reagents. This is particularly convenient, not only for high value products, but also when considering
working with hazardous materials.

In the abovementioned context, the possible integration of transducers at the microfluidic
scale, yet unexplored, can provide extremely valuable experimental information. Among the
different transduction systems (such as magnetic [15], electrochemical [16], or photonics [17]), optical
transducers, leading to the Photonic Lab-on-a-Chip (PhLoC) paradigm, have demonstrated to be one
of the most sensitive and selective analytical detection methods, while providing the advantageous
property of preserving sample properties (such as sterility, of high relevance for biological applications)
due to its noncontact measurement principle [18]. In this regard, the non-invasive on-chip
characterization of biological and chemical responses by UV-Vis spectrophotometry has led to
numerous PhLoC and optofluidic sensors [19,20]. These systems have been proposed for a wide
range of applications, from cell culturing and cell analysis [21–24] to heavy metal ion detection [25,26],
enzymatic catalysis for different applications [27,28], and protein concentration measurements [29].
More particularly, this technology can be of special interest to investigate reactions involving
radioactive elements, (e.g., for nucleation studies [30], mass transfer [31], etc.). Therein, and thanks to
the on-chip sensor integration, the readout can be advantageously remote from the measured zone
and be connected to the PhLoC, minimizing any risk related to radiation [32].

In a previous work, we recently demonstrated the convenience of coupling SAXS and high
throughput microfluidic techniques to study protein crystallization from solution [11]. In this work,
we propose a further improvement on this methodology by taking advantage of photonic sensing
implementation by means of Photonic Lab-on-a-Chip technology. Hence, the coupling of (i) high
throughput droplet-based microfluidics, (ii) on-chip spectrophotometric detection for real-time protein
concentration measurements, and (iii) SAXS, for the realization of molecule and molecular interactions
studies, is here proposed by means of a PhLoC platform. To validate both setup and methodology,
lysozyme, a well-known protein widely characterized in the literature, is proposed as a model of study.
The implementation of photonic detection provides a two-fold function in this setup. First, it allows for
the transformation of the biological/chemical information contained in each droplet into a quantifiable
concentration signal and, second, also provides complementary and useful data regarding droplet size,
stability, and generation frequency, thus facilitating subsequent SAXS measurements synchronization
and data interpretation.

2. Materials and Methods

2.1. Reagents

Lysozyme was purchased from Sigma-Aldrich (dialyzed and lyophilized 629710). Initial protein
solutions were prepared by solving lysozyme in sodium acetate buffer (50 mM sodium acetate, pH 4.4)
prepared with Milli-Q water (Millipore, Billerica, MO, USA). Prior to use, the lysozyme solutions were
prepared using lysozyme, crystallized and dialyzed four times, either through a preparative column or
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filtered through Amicon ultra filters, in order to remove any unwanted aggregates present in most of the
commercially available lysozyme preparations [33]. Water-in-oil droplets of protein solution at different
concentrations (by on-chip dilution of a mother solution using acetate buffer) were generated and
transported by an immiscible fluorous oil (Krytox GPL100, DuPont, Wilmington, DE, USA) containing
2% w/w of fluorinated surfactant (tri-block copolymer, PFPE-PEG-PFPE, purchased from RAN
Biotechnologies, Beverly, MD, USA) in order to stabilize the droplets interface. The selection of both
oil and surfactant was made considering a compromise between good resistance to X-ray radiation
damage, an optimal viscosity, and immiscibility with the aqueous phase, as previously reported [11].

2.2. PhLoC Design and Fabrication

PhLoC platforms, with rectangular channels of cross section of 280 × 300 µm2, were fabricated
using standard soft lithography and cast molding techniques. An inexpensive multilevel negative
tone photoresist dry film (WBR2000 series, DuPont, Wilmington, DE, USA) was laminated on a glass
substrate (Thermo Scientific Menzel-Glaser, Braunschweig, Germany) following a procedure described
elsewhere [34]. Summarizing, the designed PhLoC configuration was patterned by UV exposure
(UV-KUB2, Kloé, Montpellier, France) through a low cost emulsion mask, and structures were
subsequently developed using sodium carbonate (Na2CO3) 1% and rinsed by an aqueous solution
of magnesium sulfate (MgSO4) 0.5%. In addition, the dry film structures were treated with toluene
to achieve hydrophobic surface properties before PhLoC replicas were obtained by casting PDMS
(Sylgard 184 elastomer kit, supplied by Dow Corning, MI, USA) in the dry film master mold. Finally,
PDMS surfaces were activated using a corona treater (BD-20AC, Electro-Technic Products Inc., Chicago,
IL, USA) and bonded to a glass substrate, thus sealing the microfluidic structures [35].

2.3. Experimental Setup and PhLoC Configuration

Figure 1a depicts a schematic of the experimental setup. The operation of the PhLoC platform
envisages the injection of up to 3 different aqueous solutions (A, B, and C in Figure 1a,b) together with
an inert and immiscible continuous phase to generate droplets. Reagent solutions (protein solution
and buffer) were injected into the PhLoC at controlled flow rates by means of high precision syringe
pumps (neMESYS Cetoni, Korbußen, Germany) coupled to 1 mL syringes (Hamilton, Reno, NV, USA).
Different flow rates ratios provide droplets with different protein concentrations. After generation,
droplets are quickly homogenized by means of a passive zigzag mixer, and spectrophotometrically
monitored (Figure 1b-1) before and after droplets storage for tempering into the PhLoC serpentine
channel (Figure 1b-2). This detection configuration allows for monitoring of any possible phase
transition (in case of crystallization if supersaturated solutions are analyzed) and for the droplet
stability to be checked after the serpentine. For this purpose, optical interrogation areas were located
perpendicularly to the microfluidic channel. The coupling of light to the microfluidic structure was
achieved by means of pig-tailed 220 µm solarization-resistant fiber optics (Thorlabs, Newton, NJ, USA,
NA = 0.22). Self-alignment elements were designed for fiber optics accurate positioning enabling an
optimal light coupling–decoupling to the system. A 5 W halogen AvaLight-D(H)-S light source and
an Avaspec 2048-USB2 spectrometer (Avantes, Apeldoorn, Netherlands) were used for light coupling
and subsequent spectrum analysis, and absorbance measurements were performed at λ = 280 nm to
determine protein concentration [29]. In order to obtain a spectrophotometric time-resolution allowing
for a correct monitoring of droplets flowing through the PhLoC microfluidic channels, spectra were
collected at the shortest possible integration times. Hence, to ensure an adequate signal-to-noise ratio,
micro-lenses for light beam collimation were excluded for this detection configuration, thus enhancing
light coupling efficiency: considering the short optical paths for analyte interrogation and the small
numerical aperture of the fiber optics, the light losses caused by Fresnel reflections in any microlens
are found to be more important than the dispersion of light due to beam divergence [34].
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For a precise control of the molecule saturation state in the droplets, the PhLoC platform was
held in a Peltier-based thermostated plate. By thermostatizing the serpentine structure, it is possible to
tune droplets reaction times (induction times for crystallization in case of supersaturated solutions)
after quenching, before their analysis. The PhLoC integrates lateral openings for temperature probes
insertion (Figure 1b-3) controlling the temperature in the thermostated plate within the range from 0
to 50 ◦C.

Links between the PhLoC platform and the SAXS sample holder were made by connecting
a flexible fused silica capillary (ID 280 µm, OD 360 µm, Postnova Analytics, Landsberg am Lech,
Germany, depicted in red in Figure 1a) directly to the exit of the microfluidic platform and to the quartz
capillary (OD 300 µm, wall thickness 10 µm) of the sample holder. The latter was hermetically sealed
in order to keep vacuum at a residual pressure ~10−2 mBar for obtaining high-quality SAXS data.
Droplets stored in the PhLoC serpentine channel were sent to the SAXS detection area at a desired
speed (and through the fused silica capillary), by injecting continuous phase into the PhLoC platform
at a controlled flow rate. Temperature was also maintained constant along the connecting capillary by
means of a thermostated bath and external tubing surrounding the capillary.Sensors 2017, 17, 1266 5 of 12 
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Figure 1. (a) Schematics of the PhLoC-SAXS configuration. Protein solution droplets at different
concentrations are generated and monitored by continuous sensing in the PhLoC platform.
Subsequently, they are sent to the SAXS sample holder, where measurements are synchronized
with the droplets in movement by actuating in the beam shutter. (b) Picture and details of the
PhLoC platform showing (1) interrogation areas for photonic detection, comprising two self-alignment
elements for pig-tailed fiber optics positioning, (2) serpentine channel for droplet storage, and (3) inlets
for temperature probes. Inset show details of the mixing and droplet generation area, comprising
3 channels for reagent injection (A, B, C), an extra channel for continuous phase injection, and a passive
zigzag mixer allowing effective and fast droplet homogenization.

2.4. SAXS Experiments

Synchrotron SAXS measurements were performed on the beamline BM29 at the European
Synchrotron Radiation Facility (ESRF) in Grenoble, France [36]. A 1 M Pilatus detector was used to
record the two-dimensional SAXS patterns at an experimental X-ray wavelength of 0.0991 nm and
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a distance sample-to-detector of 2.87 m. In this configuration, the scattering vector q = 4πsinθ/λ
covered a range of 0.03–4.5 nm−1. A 90 µm (vertically) × 165 µm (horizontally) beam cross section,
ensuring an interrogation area smaller than the droplets generated by the PhLoC platform, was defined
by slits at the sample plane. The sample holder can be translated with respect to the X-ray beam by
a few millimeters with a precision of ten microns, thus allowing a perfect alignment of the capillary.
In order to minimize radiation damage and temperature changes in the protein solution, and collecting
only SAXS measurements from the center of each droplet, the X-ray beam shutter was synchronized
with the droplets, flowing through the quartz capillary, by means of a CCD camera and real time
image processing, using an ad-hoc MATLAB application connected to a TLL pulse generator. Due to
the small beam size, the exposure time used in the experiments (100 ms for each SAXS acquisition),
and the nature of the aqueous sample, temperature fluctuations during measurements, due to the
highly energetic nature of the beam, could be considered negligible in our experimental setup [37].

3. Results and Discussion

3.1. On Chip Real-Time Spectrophotometric Detection

Figure 2a shows the typical intensity spectrum collected when a solution containing NaAc 50 mM
buffer pH 4.5 (reference blank for lysozyme absorbance measurements measured at λ = 280 nm)
was injected generating monodisperse droplets with the continuous immiscible phase. In this
spectrum, we can observe both continuous and aqueous phase, giving a very constant intensity values
(measured at the center of the droplets), and maximum and minimum light intensity peaks due to light
beam interaction with the meniscus corresponding to the aqueous/oil interface. Additionally, it is also
possible to observe the droplets as a function of time, obtaining a good measurement of droplet size
(once flow rates are determined and fixed) and droplet generation frequency. Moreover, the stability
of this pattern described by the intensity spectra allows to discriminate when droplets generation
is unstable (mainly when flow rates are not stabilized) or when droplets are steadily generated
(Figure 2b), thus leading to homogenous droplets, which population number and concentration can be
straightforwardly determined. According to the protein concentration range to be measured, it becomes
necessary to consider a minimum optical path ensuring enough sensitivity. However, additionally,
in accordance to the Beer–Lambert law, when decreasing the optical path, absorbance signal decreases
as well, so it is also possible to extend the absorbance linear range at higher concentrations [29]. Hence,
for the work here presented, in which protein interactions for lysozyme at mid to high concentrations
are explored, PhLoCs with two different optical paths for droplet interrogation have been considered.
The first one was designed with a constant channel width of 280 µm, while the second one was provided
with a gradually shrinking channel to reach an interrogation optical path of 150 µm (inset in Figure 1b).
Figure 2c shows the corresponding calibration plots for lysozyme. Each absorbance point in this plot
represents an average of 20 droplets, revealing in each case a very high reproducibility, with a standard
deviation of ~0.001 absorbance units. As can be observed, a decrease in the optical paths provides a
decrease in the absorbance signal for the same measured concentrations, with a consequent extension
in the linear range.

It is worth emphasizing that this methodology, based on light extinction measurements
(absorbance in this case), can be applied not only for measuring protein concentration at the UV,
but also for droplet monitoring of any system displaying absorption and/or scattering properties in
the UV-Vis spectrum. Both versatility and sensitivity of the technique are straightforwardly tunable by
selecting the most convenient optical paths and wavelength(s) to monitor a given analyte [29].
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between proteins and other molecules in solution, either below saturation state or newly 
supersaturated, though not yet crystallized [39]. In order to validate the present experimental 
methodology, SAXS data obtained at different protein concentrations was analyzed to obtain the 
protein radius of gyration, Rg which is a numerical indicator of the protein structure compactness. Rg 
value has been previously reported for lysozyme (1.43 ± 0.04 nm) [34]. The latter was determined 
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Figure 2. (a) Typical intensity spectra collected at λ = 280 nm, when operating with the PhLoC
generating stable droplets, at constant flow rates. The continuous phase is observed at a constant
intensity value while the dispersed aqueous phase can present different intensity values as a function
of protein absorbance at the given wavelength. (b) Intensity spectrum resulting from monitoring
the first instants of droplet generation. Red dashed line separates the spectrum into two regions:
Left part shows the spectra of different unsteady droplets, leading to different intensity signals at
λ = 280 nm, in accordance to their protein concentration. Right part shows steady droplet generation
with homogeneous and reproducible protein concentration. (c) Absorbance calibration plots at
λ = 280 nm for lysozyme measured on chip through a 150 µm (red diamonds) and a 280 µm (blue circles)
optical paths. Lines depict the concentration linear range for each plot.

3.2. Macromolecular Interactions Characterization by SAXS

Small angle X-ray scattering has become a particularly convenient technique for preliminary
studies regarding protein shape and conformation [38]. It is also convenient to study the
interactions between proteins and other molecules in solution, either below saturation state or
newly supersaturated, though not yet crystallized [39]. In order to validate the present experimental
methodology, SAXS data obtained at different protein concentrations was analyzed to obtain the
protein radius of gyration, Rg which is a numerical indicator of the protein structure compactness.
Rg value has been previously reported for lysozyme (1.43 ± 0.04 nm) [34]. The latter was determined
using sample volumes up to three orders of magnitude higher than the ones required involving
microfluidic tools, as experimented here.
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where the intensity scattered in the absence of interactions is represented by the form factor I(0,
→
q ),

and the interactions are characterized by the solution structure factor, S(c,
→
q ) [40]. Within a smaller

→
q range, Equation (1) can also be considered valid for quasi-spherical and/or polydisperse particles.
Here, by theoretical simulation of the structure factors, we can determine the best-fit parameters
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of molecule/particle (protein) interaction potentials [30] and reconstruct the corresponding protein
molecular envelope, which gives an estimation of its overall fold and atomic structure. Figure 3 shows
the intensity curves, I(c,

→
q ), measured, as a function of the scattering vector. Each of these curves was

obtained considering an average of at least 100 individual nano-droplets, of reproducible volumes,
and exhibiting exactly the same lysozyme concentrations, as evidenced and guaranteed thanks to
the on-chip spectrophotometry monitoring preformed upstream of the SAXS beam. Subtracting the
(background) buffer signal, and scaling on the same relative value (by normalizing the intensity
curves as a function of their corresponding protein concentration, c, and direct beam intensity [40]),
the previously mentioned form factor of the protein can be determined using the intensity curves
recorded at the lowest concentrations.
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Here, the protein radius of gyration, Rg can be related to the form factor and the scattering
intensity at zero angle, I0, by means of the Guinier’s law [41]:

I
(

0,
→
q
)
∼= I0exp

−→q 2
R2

g

3

 (2)

Thus, the Rg value for lysozyme can be derived by plotting Ln (I
(

0,
→
q
)
) as a function of the square

of the scattering vector (Guinier plot). Additionally, by representing I0 as a function of the protein
concentration (Figure 4a), a range of concentrations in which a linear relation prevails is observed,
where the protein’s scattering intensity is proportional to the concentration, meaning that molecules do
not interact with each other (in this particular concentration ranges and given temperature conditions,
e.g., 20 ◦C). Hence, in this linear region, the higher the concentration, the higher the signal-to-noise
ratio of the background-subtracted data. When moving to higher concentrations, the distance between
individual molecules diminishes and becomes of the same order of magnitude as the intramolecular
distances, thus contributing to the scattering pattern (multibody interactions), which results in a loss
of linearity. Hence, to test the sensitivity of the technique, the lysozyme form factor was calculated
considering the experiences performed in the linear intensity range, which is close to the limit of
detection of the PhLoC optical paths configurations [29]. Subsequently, Rg was determined for each
form factor by a least squares fitting of the Guinier plot.
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Figure 4. (a) Scattered intensity at zero angle as a function of lysozyme concentration. Line represents
the region in which the intensity is proportional to protein concentration. (b) Least squares fitting of the
Guinier plot; Rg and R2 values calculated using three different protein concentrations in the scattered
intensity linear region.

Rg values are presented in Figure 4b, together with the corresponding least squares coefficient
of determination, R2, with a view to quantify data dispersion in each experience. As expected,
the dispersion of data increases as we approach to the minimal measured protein concentration
(1.05 mg/mL) due to the decrease of the signal-to-noise ratio in the data. Nevertheless, all the calculated
Rg values exhibit very good agreement with the data previously reported in the literature [42], therefore
validating our high-throughput droplet-based PhLoC methodology.

Beyond the experimental methodology validation, it remains to be demonstrated that the
data acquired using minute amounts of protein are convenient to calculate the protein’s low
resolution ab initio structures (i.e., the molecular envelope). Indeed, molecular envelopes can give
valuable information regarding protein folding conformation, as well as for crystallographic structure
resolution [6,43]. For this purpose, the scattered intensity we obtained for concentrations ranging
from 1.05 to 10.13 mg/mL were simulated using CRYSOL software [44] from the atomic coordinate
of lysozyme (obtained from the Protein Data Bank structure file 1dpx.pdb). The resulting curves
are compared to the experimental ones in Figure 5. A poor agreement is observed for the lowest
and the higher concentrations. For the lowest concentration, the signal-to-noise ratio is too low to
provide a good fit (χ2 = 2.87). For the highest concentration, in the lower q region (i.e., q < 0.5 nm−1),
the form factor of the lysozyme is higher than the obtained scattering intensity. This means that,
at this concentration, the lysozyme solution cannot be considered a diluted solution and that the
obtained scattering intensity results from multibody interactions, as observed in Figure 4a. As the
experimentally obtained scattering intensity is lower than the form factor, the interactions between
lysozyme are repulsive.

The best χ2 value (closest to 1) was obtained for the concentration of 4.36 mg/mL (χ2 = 0.91).
For this concentration, the scattering intensity was used to calculate the low resolution ab initio
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structure (i.e., the molecular envelope) using DAMMIF [45] and DAMAVER [46] software embedded
in ATSAS program. The resulted envelope, looking consistent with the actual structure of lysozyme,
is presented, together with the protein structure, in the inset of Figure 5.
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Figure 5. Experimental and calculated scattering intensity using CRYSOL for different protein
concentrations. Inset shows the calculated low resolution molecular structure of lysozyme (χ2 = 0.75),
obtained from the scattering data for a concentration of 4.36 mg/mL, depicted in orange in the graph.

4. Conclusions

The combination of Small-Angle X-Ray Scattering (SAXS), spectrophotometric detection
techniques and high throughput, droplet-based microfluidics, is here demonstrated as a powerful
tool to investigate molecular and particle interactions. A PhLoC platform was designed for droplet
generation, allowing for the monitoring of protein concentration in each monodisperse droplet as
well as droplet generation frequency. The droplet flow was synchronized to perform synchrotron
radiation SAXS measurements in individual droplets, each one acting as an isolated microreactor,
to probe protein interactions while minimizing radiation damage. Additionally, the whole setup
was thermostated in order to reach a fine control on molecule saturation state in solution. The setup
performances were demonstrated using lysozyme as a model of study, and the sensitivity of the system
was tested by determining protein gyration radius and molecular envelope, calculated as a function
of protein concentration (obtained by on-chip on-line spectrophotometric measurements) and SAXS
experiments. Obtained values were found to be in good agreement with data previously reported
in the literature, thus validating the proposed methodology, which provides a dramatic reduction of
sample volume requirements and therefore of biological material (or, potentially, other compounds
of interest).

Based on these results, and due to the evident advantages provided by volume reduction in terms
of sample consumption and high throughput, the methodology appears promising for the study of
other systems involving high value or radioactive materials.
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