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Abstract: This paper suggests a method of classifying Korean pop (K-pop) dances based on 
human skeletal motion data obtained from a Kinect sensor in a motion-capture studio 
environment. In order to accomplish this, we construct a K-pop dance database with a total of 800 
dance-movement data points including 200 dance types produced by four professional dancers, 
from skeletal joint data obtained by a Kinect sensor. Our classification of movements consists of 
three main steps. First, we obtain six core angles representing important motion features from 25 
markers in each frame. These angles are concatenated with feature vectors for all of the frames of 
each point dance. Then, a dimensionality reduction is performed with a combination of principal 
component analysis and Fisher’s linear discriminant analysis, which is called fisherdance. Finally, 
we design an efficient Rectified Linear Unit (ReLU)-based Extreme Learning Machine Classifier 
(ELMC) with an input layer composed of these feature vectors transformed by fisherdance. In 
contrast to conventional neural networks, the presented classifier achieves a rapid processing time 
without implementing weight learning. The results of experiments conducted on the constructed 
K-pop dance database reveal that the proposed method demonstrates a better classification 
performance than those of conventional methods such as KNN (K-Nearest Neighbor), SVM 
(Support Vector Machine), and ELM alone. 

Keywords: dimensionality reduction; extreme learning machine; fisherdance; K-pop dance 
movements; skeletal joint data 

 

1. Introduction 

The past decade has witnessed rapid growth in the number of motion capture applications, 
ranging from sports sciences and motion analysis to motion-based video games and movies [1–5]. 
Generally defined, motion capture is the process of recording the movements of humans. It refers to 
recording the actions of human actors and using that information to animate digital character 
models in 2D or 3D computer animation sequences. Recently, we have also witnessed the 
popularity of Korean pop (K-pop) music spread throughout the world. K-pop is a musical genre 
originating from South Korea that is characterized by a wide variety of audiovisual elements. 
Although it includes all genres of popular music in South Korea, the term is more often used in a 
narrower sense to describe a modern form of South Korean pop music covering a range of styles 
including dance-pop, pop ballads, electro-pop, rock, jazz, and hip-pop. One possible reason that 
K-pop has become so popular globally is that other aspiring dancers may feel inclined to view 
skilled young K-pop dancers as role models and to copy their dance styles. This can lead to 
plagiarism issues in both dance and music, which is our main motivation for classifying K-pop 
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dance movements for the development of both video-based retrieval systems and dance training 
systems. 

There are three main types of motion capture systems: optical systems, non-optical systems, 
and markerless systems. Optical systems use the data captured from optical sensors to detect the 3D 
positions of a subject located between two or more cameras that are calibrated to provide 
overlapping projections. Data acquisition is traditionally implemented by attaching special markers 
to the actor. Optical capture systems are used with several types of markers, including passive 
markers, active markers, time modulated active markers, and semi-passive imperceptible markers. 
Non-optical capture systems include inertial systems, mechanical motion systems, and magnetic 
systems. Among these, inertial motion capture is the best-known capture system. Inertial motion 
capture technology includes inertial sensors, biomechanical models, and sensor fusion algorithms. 
Inertial motion-sensor data are often transmitted wirelessly to a computer, where the motion is 
recorded or viewed. Finally, the markerless capture method is currently assisting the rapid 
development of the markerless approach to motion capture in the area of computer vision. 
Markerless systems do not require subjects to wear special equipment for tracking. Several studies 
related to markerless systems have been performed via motion analysis of data obtained from the 
well-known Kinect sensor [6–15]. 

In this paper, we focus on a markerless capture method based on the skeletal joint data of 
human motion utilizing a Kinect camera in a motion-capture studio environment for the 
classification of K-pop dance movements. The previous works have been focused on ballet analysis 
[16,17], video recommendation based on dance styles [18], dance pose estimation [19,20], dance 
animation [21], and e-learning of dance [22]. While some ballet movements and dance pose 
estimation have previously been studied in various aspects [16–26], nobody has yet performed 
research on K-pop dance movements using Kinect sensors to address the problem of dance 
plagiarism. In order to accomplish this, a K-pop dance database is constructed from the motions of 
professional dancers. The process of dance movement classification comprises feature extraction, 
dimensionality reduction, and, finally, the classification itself. In the first step, features are extracted 
from 25 markers of skeletal joint data. We use six features representing the important motion angles 
in each frame. These features are connected in the form of a feature vector for all of the frames. Next, 
a combination of principal component analysis (PCA) [27] and linear discriminant analysis (LDA) 
[28], referred to in this paper as “fisherdance”, is performed to reduce the dimensionality of the 
dance movements. In the last step, an extreme learning machine classifier (ELMC) is designed 
based on a rectified linear unit (ReLU)-based activation function. The characteristics of the 
ReLU-based ELMC are high accuracy, low user intervention, and real-time learning that occurs in 
seconds or milliseconds. Conventional ELMs have homogenous architectures for compression, 
feature learning, clustering, regression, and classification. Research has been conducted on the use 
of ELMs in various applications, including image super-resolution [29], real operation of wind 
farms [30], electricity price forecasting [31], remote control of a robotic hand [32], human action 
recognition [33], and 3D shape segmentation and labeling [34]. A considerable number of studies 
have been conducted on ELM variants [35–40]. The results of experiments performed on the 
constructed database demonstrate that the classification performance of the proposed method 
outperforms those employed in these studies. 

This paper is organized in the following manner. Section 2 describes the generation of the 
concatenated vectors from the six core angles of each frame as well as the dimensionality reduction 
method utilized in this study. Section 3 describes the techniques used in dance movement 
classification realized via the ReLU-ELMC. Section 4 covers the results of simulations performed on 
the K-pop dance databases available at the Electronics and Telecommunications Research Institute 
(ETRI). Finally, Section 5 includes our concluding comments.  

2. Dimensionality Reduction of Concatenated Vectors 

In this section, we describe a dimensionality reduction method using both PCA and LDA. The 
dimensional reduction exploited here consists of a three-phase development process. First, 
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concatenated vectors are produced from six important angles specifying K-pop dance movements. 
Next, the PCA is performed by projecting the high-dimensional vectors into lower-dimensional 
spaces. Finally, feature vectors with discriminating capabilities are obtained by the LDA. 

2.1. Generating Concatenated Vectors 

In the first stage of our analysis, concatenated vectors are generated. Figure 1 illustrates the six 
core angles that distinguish each dance movement. As shown in Figure 1, these angles are related to 
the positions of both elbows, both knees, and both shoulders. Figure 2 illustrates an angle between 
two joints. This angle is calculated with the following equations: 

( , , )a b a b a bab x x y y z z


     (1) 

( , , )c b c b c bbc x x y y z z


     (2) 

1cos
ab bc

ab bc
  




 
   (3) 

 
Figure 1. Six core angles distinguishing each dance movement. 

 
Figure 2. Angle between two neighboring joints. 

The total concatenated angles are generated by connecting these values within each frame, as 
shown in Figure 3. In general, the frame lengths of dance movements differ according to the dance 
type. To solve this problem, we perform a zero-padding method to set the frame sizes to the same 
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size as the largest frame. For example, if the number of frames in a certain dance movement is 200, 
the size of the concatenated vector for each dance movement is 6 × 200 frames. 

 
Figure 3. Architecture of the proposed method. 

2.2. Combination of PCA and LDA for Dimensional Reduction 

The method combining PCA and LDA for dimensional reduction is insensitive to large 
variations in movement. By maximizing the ratio of the between-scatter matrix to the within-scatter 
matrix, LDA produces well-separated dance movement categories in a low-dimensional subspace. 
In what follows, we briefly describe the method referred to as “fisherdance” in this work as the 
well-known fisherface method [19]. This method consists of the two steps shown in Figure 3. In the 
first step, the PCA projects the concatenated vectors from a high-dimensional image space into a 
lower-dimensional space. In the second step, the LDA finds the optimal projection from a 
classification perspective, which is known as a class-specific method. Therefore, we can perform this 
step by first projecting the K-pop dance movement into a lower-dimensional space using the 
combination of PCA and LDA, so that the resulting within-class scatter matrix is nonsingular, before 
computing the optimal projection.  

We denote the training set of N  different dance movements as 1 2( , , , )NZ  z z z  and define 
the covariance matrix as follows: 

1

1
( )( )

N
T T

i i
i

R z z z z
N




    , (4) 

1

1 N

i
i

z z
N 

  , (5) 

where iz  is the concatenated vector of a dance movement. Then, both the eigenvalues and 
eigenvectors of the covariance matrix R  are calculated. Let 1 2( , , , )rE e e e   contain the 
eigenvectors corresponding to the largest eigenvalues. For a set of original dance movements Z , 
the corresponding reduced feature vectors, 1 2( , , , )NX  x x x , can be obtained by projecting Z  into 
the PCA-transformed space according to the following equation: 

( )T
i ix E z z  . (6) 

The second step, which is based on the use of the LDA, can be described as follows. Consider c 
classes with N samples each. Let the between-class scatter matrix be defined as 
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where iN  is the number of samples in the ith class iC , m  is the mean of all of the samples, and im  
is the mean of class iC . The within-class scatter matrix is defined as 

WS 
1 1

( )( )
i

k i

c c
T

k i k i W
i x C i

x m x m S
  

     , (8) 

where 
iW

S  is the covariance matrix of class iC . The optimal projection matrix, FLDW , is obtained as 

the matrix with orthonormal columns that maximize the ratio of the determinant of the projected 
samples’ between-class matrix to their determinant of the within-class scatter matrix, as in the 
following expression: 

 1 2arg max
T

B

FLD mTW
W

W S W
W w w w

W S W
   , (9) 

where  | 1, 2, ,iw i m   is the set of generalized discriminant vectors of both BS  and WS  

corresponding to the 1c   largest generalized eigenvalues  | 1, 2, ,i i m   , i.e., 

B i i W iS w S w     1, 2, ,i m  . (10) 

Thus, the feature vectors 1 2( , , , )NV v v v   for any dance movement iz  can be calculated as 
follows: 

( )T T T
i FLD i FLD iv W x W E z z   . (11) 

To complete the classification of a new dance pattern 'z , we compute the distance between 'z  
and a pattern in the training set z  such that  

' '( , )d z z v v  . (12) 

The measure '( , )d z z  is defined as the distance between the training dance movement z  and 

a given movement 'z  in the test set. Note that this distance is computed based on both v  and 'v , 
which are the LDA-transformed feature vectors of dance movements z and 'z , respectively. While 
the distance function   can be broadly interpreted, quite often we confine ourselves to the 
Euclidean distance. 

3. Design of ReLU-Based ELMC 

In this section, we design the ReLU-based ELMC based on the feature vectors obtained by the 
PCA and LDA. This classifier possesses the important characteristics of both a simple tuning-free 
network and a fast learning speed. Unlike those in conventional existence theories, the node 
parameters hidden in the design of an ELM are independent of the training data. Although hidden 
nodes are both important and critical, these nodes generally do not need to be tuned.  

ELMC 

Most studies on neural networks are performed based on conventional existence theories, 
including those of the adjustment and learning of hidden nodes. Many researchers have performed 
intensive research on developing good learning methods over the past few decades. In contrast to 
conventional neural networks, we develop an ELMC with real-time learning and high classification 
abilities for classifying dance movements. Figure 3 shows the architecture of the ELMC. Given 
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random hidden neurons that need not be either algebraic sums or other ELM feature mappings, 
almost all nonlinear piecewise continuous hidden nodes can be represented as follows: 

H ( ) ( , , )i i i iG bx a x , (13) 

where ia  and ib  are the weight and the bias between the input and hidden layers, respectively. 
Although we do not know true output functions of biological neurons, most of them are nonlinear 
piecewise continuous functions covered by ELM theories. The output function of a generalized 
single layer feedforward network is expressed as 

1
( ) ( , , )

L

L i i i i
i

f x G b


  a x . (14) 

The output function of the hidden layer mapping is as follows:  

 1 1 1H( ) ( , , ), , ( , , )L L LG b G bx a x a x . (15) 

The output functions of hidden nodes can be used in various forms. Many different types of 
learning algorithms exist, including sigmoid networks, radial basis function (RBF) networks, 
polynomial networks, complex networks, Fourier series networks, and wavelet networks, some of 
which are represented by: 

Sigmoid: ( , , ) ( )i i i iG b g b  a x a x  

RBF: ( , , ) ( )i i i iG b g b a x x a  

Fourier series: ( , , ) cos( )i i i iG b b  a x a x  

Random projection: ( , , )i i iG b  a x a x  

 

where conventional random projection is just a specific case of ELM random feature mapping when 
an additive linear hidden node is used. This not only proves the existence of the networks but also 
provides learning solutions. In this paper, we use the ReLU-based activation function that is 
utilized effectively in convolutional neural networks and is given as follows: 

( ) max(0, )f x x , (16) 

where x is the input to a neuron. In contrast to the sigmoid function, the major advantage of the 
ReLU function is in solving the vanishing gradient problem in neural network design. Furthermore, 
the constant ReLU function gradient results in faster learning.  

Given a training set  ( , ) , , 1, 2, ,d m
i i i it t i N  x x R R  , the hidden node output function 

( , , )G ba x , and the number of hidden nodes L, the ELM determines both the hidden node 
parameters and the output weights using the following three-steps: 

[Step 1] Assign the hidden node parameters randomly ( , ), 1,2, ,i ib i Na   

[Step 2] Calculate the hidden layer output matrix 
1( )

( )N

h

H

h

 
   
  

x

x
  

[Step 3] Calculate the output weights   using the least square estimate with  

†Η T  , (17) 

where †H  is the Moore-Penrose generalized inverse of matrix H . When TH H  is nonsingular, 
† T 1 TH (H H) H . The significant features of ELM are summarized in the following. 
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First, the hidden layer does not need to be tuned. Second, the hidden layer mapping h(x) 
satisfies universal approximation conditions. Third, the parameters of ELM are minimized as 
follows: 

H T
p

  . (18) 

ELM satisfies both the ridge regression theory and the neural network generalization theory. 
Finally, it fills the gaps and builds bridges among neural networks, SVMs, random projections, 
Fourier series, matrix theories, and linear systems. 

Figure 4 shows the point-dance classification process flow regarding angle calculation between 
joints, frame normalization, dimensional reduction, and ELM classifiers.  

 
Figure 4. Point dance classification process flow. 

4. Experimental Results  

This section reports on a comprehensive set of comparative experiments performed to evaluate 
the performance of the proposed approach. 

4.1. Construction of K-Pop Dance Database  

A K-pop dance database was constructed containing 200 point-dance movements from four 
professional dancers (two men and two women) obtained by a motion capture system that 
produced skeletal forms. Thus, there were 800 dance-movement data points in total. In order to 
construct this database, we recorded the skeletal information of these point-dances using a Kinect 
v2 sensor. The point-dances included in the K-pop dance database were composed of movements 
lasting for 4–9 s, and there were 25 skeletal joints considered. Among these joints, we selected 13 to 
obtain six core angles. The longest and shortest dance movements captured contained 147 and 276 
frames, respectively. As mentioned in the previous section, we used a zero-padding method to 
produce frames of the same size. Zero padding padded the concatenated vector with zeros on both 
sides. Thus, the size of a point dance motion resultant vector was 6 × 276 elements. In this paper, we 
perform two different experiments. In the first experiment, the 800 total dance movements were 
divided into training and test sets of 400 movements each (one man and one woman). The total size 
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of the training data set was 400 × 1656 elements. Here we used the data sequences showing the best 
results. In the second experiment, we performed 4-fold cross validation to test if the algorithm was 
independent from the dancer. Here we obtained the average rate of four classification results. 
Furthermore, we also performed the experiments regarding the normalized coordinates of shoulder, 
elbow, and knee joints. Figure 5 shows the environment of database construction using a Kinect 
camera. Figure 6 illustrates three examples of dance movements with sequential images. 

 
Figure 5. Database construction environment.  

   
(a) (b) 

(c) 

Figure 6. Three examples of dance movements (a) dance 1; (b) dance 2; (c) dance 3. 

4.2. Experiments and Results 

In the first experiment, we compared the proposed method with conventional methods, such 
as the uses of KNN, SVM, and ELM alone. Figure 7 shows the right elbow and right knee angles, 
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which were among the six angles representing a point-dance movement in each frame. After 
obtaining the concatenated vector, we selected r eigenvectors referring to the maximal recognition 
rate produced by the PCA method. Next, we determined the numbers of discriminant vectors m as 
the number of features in the LDA method increased. As a result, we selected the 100 eigenvectors 
that corresponded to the maximum recognition rate. From the obtained eigenvectors, we were able 
to determine that the use of 40 discriminant vectors provided the maximum recognition rate, as 
shown in Figure 8.  

(a) (b) 

Figure 7. Right elbow and right knee angles (a) right elbow; (b) right knee. 

 
Figure 8. Classification rates based on PCA (Principal Component Analysis) + LDA (Linear 
Discriminant Analysis) (Euclidean distance). 

Figure 9 shows the variation in classification rates as the number of hidden nodes in the 
ReLU-based ELMC design increases after the fisherdance method had been performed. We 
obtained a maximum classification rate of 96.5% when there were 120 hidden nodes. Table 1 
compares the classification performance results of both the proposed method and the conventional 
methods. As listed in Table 1, the proposed method generally led to better classification results than 
the KNN, SVM, and ELM methods alone. Noticeably, the conventional ELM showed a worse 
performance than those of the conventional machine learning methods. Figure 10 shows fisherdance 
images representing the discriminant vectors defined in Equation (9). Here we visualize 20 
discriminant vectors with the size of 1650 × 20. Each discriminant vector is converted into an image 
with a 24 × 69-pixel array with gray levels ranging from 0–255. 
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Table 1. Comparison of classification performance results. 

Method Dimensionality Reduction Classification Rate (%) 

KNN 
— 77.75 

PCA + LDA 92.25 

SVM 
— 84.50 

PCA + LDA 92.75 

ELM-1 (sigmoid) 
— 43.00 

PCA + LDA 84.25 

Proposed method 
— 71.00 

PCA + LDA 96.50 

 
Figure 9. Classification rate according to the number of hidden nodes in the design of the ELMC. 

 
Figure 10. Fisherdance images. 

In the second experiment, we performed 4-fold cross validation to test if the proposed method 
is independent from the dancer. That is, we used four data sets with 200 dance movements 
constructed by each professional dancer. Here, we also performed the experiments regarding the 
normalized coordinates of shoulder, elbow, and knee joints. Figure 11 visualizes the classification 
rates obtained by 4-fold cross validation. Table 2 lists the average rate of four classification results 
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for the 4-fold cross validation method. As shown in Figure 11 and Table 2, it was found from the 
results that the proposed method showed a good performance in comparison with the SVM, KNN, 
and ELM methods with sigmoid and hard limit activation function. Table 3 lists the average 
classification rates for the 4-fold cross validation method with normalized coordinates. The results 
indicated that the normalization method in this study did not show a good performance in 
comparison with the general method without normalization. 

 
Figure 11. Each classification rate obtained by 4-fold cross validation. 

Table 2. Comparison of the classification performance results for 4-fold cross validation. 

Method Dimensionality Reduction Classification Rate (%) 

KNN 
— 53.81 

PCA + LDA 85.66 

SVM 
— 87.00 

PCA + LDA 93.92 

ELM-1 (sigmoid) 
— 50.37 

PCA + LDA 93.12 

ELM-2 (hard-limit) 
 50.99 

PCA + LDA 92.5 

Proposed method 
— 77.61 

PCA + LDA 97.00 

Table 3. Comparison of the classification performance results for 4-fold cross validation 
(normalization). 

Method Dimensionality Reduction Classification Rate (%) 

KNN 
— 88.12 

PCA + LDA 92.50 

SVM 
— 62.75 

PCA + LDA 84.37 
ELM-1 

(sigmoid) 
— 49.88 

PCA + LDA 91.12 
ELM-2 

(hard-limit) 
 48.63 

PCA + LDA 90.75 
ReLU-based 

ELMC 
— 75.49 

PCA + LDA 95.62 
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5. Conclusions 

We performed a point-dance movement classification via a combination of the fisherdance 
method and the ReLU-based ELMC. Furthermore, we constructed the first K-pop dance database 
with a total of 800 dance movements including 200 dance types obtained from four professional 
dancers by a Kinect sensor. The experimental results revealed that the proposed approach 
demonstrated a good performance in comparison with those of the methods used in previous 
works, including KNN, SVM, and ELM alone. Experimental results confirmed that the feature 
extraction of the concatenated vectors, the dimensional reduction performed by fisherdance, and 
the design of the proposed classifier were able to classify point-dance movements successfully. 
These results led us to the conclusion that the proposed method can be used effectively for various 
applications, such as dance plagiarism identification, dance training systems, and dance retrieval. In 
future research, we will analyze different sequential dance motions using DTW (Dynamic Time 
Warping) to solve the limitation of the fixed length of the feature vector. Furthermore, we will 
design a dance-movement classification system by integrating skeletal motion data with depth 
image sequences based on both a large dance movement database and deep learning. 
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