
sensors

Article

Frequency Domain Analysis of Sensor Data for Event
Classification in Real-Time Robot Assisted Deburring

Bobby K Pappachan 1, Wahyu Caesarendra 1, Tegoeh Tjahjowidodo 2,* and Tomi Wijaya 1

1 Rolls-Royce @ NTU Corporate Lab, 65 Nanyang Avenue, Singapore 637460, Singapore;
kbobby@ntu.edu.sg (B.K.P.); wcaesarendra@ntu.edu.sg (W.C.); twijaya@ntu.edu.sg (T.W.)

2 School of Mechanical and Aerospace Engineering, Nanyang Technological University,
Singapore 639798, Singapore

* Correspondence: ttegoeh@ntu.edu.sg; Tel.: +65-6790-4952

Academic Editor: Xue Wang
Received: 30 March 2017; Accepted: 26 May 2017; Published: 30 May 2017

Abstract: Process monitoring using indirect methods relies on the usage of sensors. Using sensors to
acquire vital process related information also presents itself with the problem of big data management
and analysis. Due to uncertainty in the frequency of events occurring, a higher sampling rate is often
used in real-time monitoring applications to increase the chances of capturing and understanding
all possible events related to the process. Advanced signal processing methods are used to further
decipher meaningful information from the acquired data. In this research work, power spectrum
density (PSD) of sensor data acquired at sampling rates between 40–51.2 kHz was calculated and the
corelation between PSD and completed number of cycles/passes is presented. Here, the progress
in number of cycles/passes is the event this research work intends to classify and the algorithm
used to compute PSD is Welch’s estimate method. A comparison between Welch’s estimate method
and statistical methods is also discussed. A clear co-relation was observed using Welch’s estimate
to classify the number of cycles/passes. The paper also succeeds in classifying vibration signal
generated by the spindle from the vibration signal acquired during finishing process.
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1. Introduction

In machining processes, ensuring the quality of a finished product is crucial and with advances
in manufacturing technology, a need exists to integrate in-process monitoring technology into the
production environment, so as to avoid manufacturing induced anomalies [1–3]. Advanced process
monitoring technology coupled with an intelligent decision making support system can reduce the
time taken to otherwise perform rework on finished components with defects. This will save costs and
also reduce the dependency on skilled operators. A report released by the Federal Aviation Authority
(FAA) in partnership with the Aerospace Industries Association (AIA) Rotor Manufacturing (RoMan)
project team in the year 2006, stresses the importance of incorporating advance process monitoring and
control technology in manufacturing processes especially for critical aerospace components [4]. Process
monitoring is generally classified into direct and indirect methods. In direct method, the quantity
of the output variable is measured or monitored directly whereas in indirect method, the output
variable is deduced through monitoring the quantity of process variables such as vibration, speed [5].
While direct method is known for its accuracy, indirect method is widely accepted since they are more
realistic to be implemented in an industrial environment as the cost incurred is comparatively less
than direct method. Indirect process monitoring is performed by capturing these process variables
with the means of sensor systems e.g., accelerometer, dynamometer, temperature sensor etc. Standard
data acquisition (DAQ) systems are then used to acquire, sample and log the data. The data is further
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analysed to identify any significant and/or persisting trend/patterns. Subsequently, the analysed data
can be used to deduce the required output variable. This analysis can also be performed real-time
making indirect method more efficient than direct methods.

Indirect process monitoring requires an intelligent method to analyze big data generated by the
sensors. An important step involved in intelligent data analysis is to identify the signal signature
and used the signatures in the learning method. The signatures of the raw vibration signal can be
obtained by the feature extraction methods in either time-domain, frequency-domain or time-frequency
domain [6]. A number of literatures has presented the learning methods for mechanical sensor
data analysis especially for vibration signals [7–9]. For example, Lei et al. [7] present an analysis
of mechanical big data using unsupervised feature learning method. The method consist of two
learning stages i.e., sparse filtering with two-layer neural network and softmax regression. Recently,
the concept of intelligent method has also applied in manufacturing process for indirect surface quality
monitoring [10–12].

This paper focuses on identifying a relevant signature in frequency domain that gives direct
information of the progress of machining process. In the following sections, an overview of
sensor-based monitoring and signal processing methods in machining applications is presented.
Sections 3 and 4 cover the experiment setup under which this research work was performed, the results
obtained and inferences deduced from the results.

2. Process Monitoring in Machining

Machining is the term used for manufacturing processes that involves varying ranges of material
removal rate (MRR). Machining performed with hard tools has higher material removal rates compared
to finishing processes, wherein compliant abrasive tools like brushes/belts are used. In a machining
process monitoring system as shown in Figure 1 the cutting region involves several process variables,
such as vibrations, cutting forces, acoustic emission, temperature and surface finish. The various
factors that influence these process variables include the state of the cutter/tool, coolant flow, chip
packing and other material removal process conditions.
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Figure 1. Building blocks of machining process monitoring (indirect).

By using appropriate physical sensors, the variable that needs to be measured can be continually
monitored and variations can be logged [13]. The data acquired is processed with the aim to identify
patterns, trends or abnormal process conditions. Further analysis is performed on the acquired data
with the help of machine learning algorithms such as neural networks and fuzzy logic [14]. Upon
detection of any process related information or process faults, the information is communicated either
to the operator or fed directly to robot controller to take relevant corrective/adaptive actions.
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A majority of past research works on process monitoring was performed on processes involving
hard tool, e.g., milling, turning. In most cases the focus of the work is inclined towards tool condition
monitoring [15]. The focus of this research work is to identify information that has some co-relation
with the completed number of passes in a robot assisted finishing process. This was achieved by
analyzing the corresponding magnitude levels of signal in frequency domain from different passes
and belonging to a fixed frequency band. Further details on the experiment are mentioned in Section 3.

2.1. Sensors and Signal Processing

Some potential measurable process phenomena in a robotic machining environment are shown in
Figure 2. Power and current flow of the spindle delivers the required cutting force. Hence monitoring
the power intake and current flow in motors that drive the spindle can be used to understand the
MRR [16,17]. However, in robot assisted finishing processes, monitoring and implementing spindle
drive control is impractical due to complex architecture compared with traditional milling or turning
machines or numerical control (NC) machines. As shown in Figure 2 monitoring the measurable
phenomena which are closer to the machining area is a better alternative to understand and analyze
the nature of the process. This include acoustic emission (AE), force/torque exerted by the tool on the
workpiece, vibration and spindle motion displacement.
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Signal signatures often consist of embedded information which can be co-related to a process
variable itself. Signal processing plays a pivotal role in performing this task by extracting the relevant
signatures and also for identifying trends/patterns. A wide range of signal processing techniques exist
and choosing an ideal technique relies heavily on the type of application.

The acoustic emission (AE) sensor is known for its susceptibility towards high frequency signals
(above 20 kHz) and clearly seems to be a favorite choice in most machining process monitoring
applications. Using an AE sensor also reduces the requirement to perform further signature extraction
as the AE signal has a relatively higher signal to noise (S/N) ratio and improved frequency response
for high frequencies [18]. However, in applications that involve a low material removal rate (MRR),
the magnitude of elastic waves produced by tool-workpiece interaction is much lower compared to
processes like turning, milling, drilling, etc. In such cases, other sensing systems must be relied upon to
give meaningful information regarding the process (e.g., vibration sensor). Table 1 gives a summary of
past literature on types of sensing systems and signal processing used, classified based on monitoring
aspect. An exhaustive review on process monitoring including the types of sensors used and signal
processing methods is given in [6]. In our experiments we have employed a tri-axial accelerometer to
capture vibration data.
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Table 1. Process monitoring using sensors classified based on the monitored variable.

Monitoring Aspect Sensor System Used Signal Processing Process

Process: Faults and
Conditions, Chatter

AE, Vibrations,
Cutting Force

Frequency domain
analysis, Wavelet

transform, Statistical
Milling, Turning, Other

Tool: Wear, Breakage AE, Vibrations, Cutting
force, Camera

Frequency domain
analysis, Wavelet

transform, Image analysis

Milling, Band
sawing, Broaching,
Turning, Tapping

Surface Quality: Surface
finish and roughness,

Surface geometry

AE, Vibrations,
Cutting force

Frequency domain
analysis, Statistical

Milling, Turning,
Hand Machining

Other: Spindle,
Surface integrity Vibrations Frequency domain

analysis Turning

2.2. Frequency Domain Analysis

Signal processing techniques can be broadly classified as time domain and frequency domain.
Several studies have used both techniques in applications involving tool wear/breakage detection
and indirect surface integrity detection. For instance, in [19], kurtosis (time domain) and frequency
domain analysis is used successfully to understand tool properties in a drilling process. In time domain
analysis, statistical methods are used to distinguish persisting patterns/trends. This includes skewness,
kurtosis, co-relation coefficient, etc. In frequency domain analysis, a captured signal is analyzed in
the frequency domain and changes to individual frequency components are often indicative of the
changes in process variables.

Frequency domain analysis also helps to visualize the effect of noise filtering and various other
windowing and filtering techniques. As the sampling frequencies in this experiment fall in the range of
40–51.2 kHz, performing time domain analysis has proved to be challenging due to the size of the data
captured and hence frequency domain analysis is effective to understand process characteristics. Signal
power also contains pertinent information regarding the source of signal generation. Conventionally,
fast Fourier transform (FFT) has been in use to determine power spectra. In stochastic processes,
performing FFT will not be useful to segregate the noise embedded in the signal, as the frequency of
interest might be eclipsed by the sidelobes created by higher frequency content. Hence some averaging
needs to be performed to increase the S/N ratio and to also make all embedded frequencies visible.
Welch’s power spectrum estimate essentially does this by calculating the power spectrum using FFT,
coupled with averaging. This helps to minimize the signal power caused by random variations.
FFT do not account in for discontinuities between successive periods as the data captured is assumed
to be of a single period of a periodically repeating waveform and this phenomenon is referred to
as spectral leakage. Figure 3 below shows this effect demonstrated on a set of data recorded from
an accelerometer during a finishing process. As shown in Figure 3, the power spectrum calculated
using Welch’s estimate contains comparatively lesser clustered information than with the FFT method.
Applying Welch’s estimate method thus also helps to reduce spectral leakage and reduces the effect
caused by undesired frequencies.
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Welch’s method to compute PSD is performed by dividing time series data into segments that are
successive and averaging the periodograms of each segments or frames. Consider xm(n) to be the input
signal where m = 0, 1, . . . , K, K = total number of frames and n = 0, 1, . . . , M − 1, periodogram of
mth frame is given by:

Pxm, M(k) =
1
M

∣∣∣∑N−1
n=0 xm(n) e−

2πnk
N

∣∣∣2 (1)

then Welch’s power spectrum estimate is computed as:

Sx(wk) =
1
K ∑K−1

m=0 P xm, M(k) (2)

Upon analyzing the power readings of certain frequency components, it was noted that the
changes observed corresponded to the completed number of passes. Analyzing the frequency
components of the vibration signal is imperative to finishing processes as the fundamental frequency
and its harmonics contain coherent information which can be attributed to spindle behavior and also
the finishing of the component. Shop floor operators require systems that are less sophisticated and
adopting a frequency domain analysis method gives that flexibility as opposed to other machine
learning algorithms or statistical methods. Welch’s estimate method is preferred as an easier method
to implement in such cases as it gives a more visual means of interpretation.

2.3. Event Classification

Extracting coherent information from frequency domain signal requires proper understanding
of the process. The frequency content shown in the spectrum often has direct connection to process
associated events. It is also crucial to separate low frequency noise created by voltage fluctuations.
To address this, a band pass filter with low and upper cut-off frequency of 100 Hz and 20,000 Hz
respectively was employed during data acquisition. In finishing processes, another major source
of vibration signal is the finishing tool. The drive system for this tool acts as source for different
frequency content. Hence identifying as much as background information regarding the process and
equipment involved, is vital for interpreting frequency domain data. The spindle mounted on to
robot end-effector is controlled by a variable frequency drive (VFD) capable of delivering an output
frequency range up to 400 Hz or 24,000 RPM. This VFD can be programmed to operate at required
RPM and in our experiment, the frequency was set at between 150–170 Hz to drive the tool at an RPM
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of 10,000. If information pertaining to finishing alone has to be derived, all other frequencies associated
to process under consideration must be identified. To accomplish this, vibration signal generated by
the spindle when there is no finishing is under progress was acquired. Figure 4 shows this signal as
acquired from the accelerometer. The Figure 4 shows a dominant peak at 155 Hz and is interpreted as
the frequency generated by the rotating tool.
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Figure 4. Vibration signal from spindle.

This interpretation helps to identify frequencies corresponding to finishing process and allows
one to co-relate effectively with the event needed to be classified. Latching a co-relation algorithm
on spindle frequency is unreliable as the spindle performance may vary non-linearly or remain the
same throughout. This uncertainty left unaccounted for will cause the classification algorithm to give
an erroneous output.

After identifying known frequency ranges, co-relation can be performed with remaining dominant
frequencies. In Figure 5, a vibration signal acquired from a spindle is shown overlapped on the signal
acquired when finishing is under progress.
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In the vibration signatures acquired during finishing process, the frequency ranges between
1200 and 1400 Hz showed considerable activity when compared to vibration signal from the spindle.
This observation was validated by plotting the vibration signals from every other pass and the results
are shown in Figure 6. The identified frequency range is extracted afterwards to search for peculiar
behaviour with completed number of passes/cycles. Specifically, the vibration signature at 1.297 kHz
showed a good correlation with the completed number of passes/cycle and this feature is used for
co-relation and event classification in this research work. In any sensor-based process monitoring
system, which needs to use high sampling rates, performing spectral analysis on acquired signals has
thus proven beneficial to classify events occurring during the process and furthermore, it can be used
as an input for machine learning purposes.
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3. Experiment Setup

The experiment setup (Figure 7) comprises of an ABB IRB 6660 machining robot and PDS colombo
spindle. The representative work coupon used for machining is a boss hole of a combustor casing and
the objective is to remove the burrs until a chamfer is developed. As mentioned in Section 2, vibration
signatures were measured using a Kistler 8763B (IEPE) tri-axial accelerometer. The RPM of the spindle
was kept constant at 10,000 RPM and feed rate at 30 mm/s. The data acquisition devices used were NI
cDAQ-9184 and NI 9234 IEPE.
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3.1. Data Analysis and Results

Data was captured at a sampling rate of 40 kHz and for computational ease, pre-processed to
1000 samples per each iteration of Welch’s estimate calculation. A total of 12 experiment sets was
collected with eight being used for offline analysis and co-relation and another four for validation.
After each cycle of machining, the chamfer length was manually measured using laser measuring
device. In offline data analysis, co-relation between the measured values and variations in estimated
power spectrum is analyzed. The co-relation between the power spectrum and number of cycles
was subsequently validated in real-time. Figure 8 shows the process flow of how experiments
were conducted.
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skewness and root mean square (RMS) values for respective passes were calculated but it failed to
show any consistent trend or pattern with increasing number of passes. The skewness, kurtosis and
RMS calculation was performed on the entire time-series data of each pass and the results obtained are
shown in Table 2. It can be noted from the numbers that a pattern or trend is not obvious. This can
also be also understood from Figures 9–11. The result obtained after performing a Welch’s power
spectrum estimate is shown in Figure 12. Figures 13–15 shows the Welch’s power spectrum estimate at
1.297 kHz. As shown in Figures 13–15, the power values of vibration signal decreases with respect to
the increasing number of passes. The trend here when compared with kurtosis and skewness values is
more obvious to the naked eye. The decrease in signal magnitude is indicative of the strength of signal.
It is also understood that the decrease in strength of signal is caused due to the smoothening of edges
of boss hole with increasing number of passes (Table 3 shows the increase in chamfer radius with each
different pass).
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number of passes and the PSD at 1.297 kHz. This signal as explained in Section 2.3 is associated with 
the finishing process itself. The spindle RPM is controlled by a variable frequency drive (VFD) 
controller and the frequency is fixed at 165 Hz. This is however with the exception of Y axis 
measurement and is caused due to the orientation and placement of the sensor. Figure 16 shows the 
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Table 2. Skewness, kurtosis and RMS of vibration signal from 3-axes accelerometer.

Pass
Skewness Kurtosis RMS

X Y Z X Y Z X Y Z

1 −0.16 −0.06 −0.20 11.91 11.47 8.40 0.0294 0.0343 0.0333
2 −0.18 −0.09 −0.14 9.93 10.73 9.20 0.0284 0.0326 0.0315
3 −0.15 −0.06 −0.10 11.21 15.43 14.38 0.0287 0.0329 0.0315
4 −0.20 −0.07 −0.13 9.15 12.30 13.40 0.0288 0.0328 0.0314
5 −0.28 −0.10 −0.29 7.70 8.36 6.29 0.0289 0.0330 0.0315

Table 3. Increase in chamfer radius.

Pass
Chamfer Size (mm)

(Initial: 0.84 mm)

1 0.956
2 1.028
3 1.083
4 1.098
5 1.118

From the vibration signatures, it can be concluded that a co-relation exists with the different
number of passes and the PSD at 1.297 kHz. This signal as explained in Section 2.3 is associated with the
finishing process itself. The spindle RPM is controlled by a variable frequency drive (VFD) controller
and the frequency is fixed at 165 Hz. This is however with the exception of Y axis measurement and is
caused due to the orientation and placement of the sensor. Figure 16 shows the correlation between
magnitudes of the captured signal with increasing number of passes. From the Figure 16 it can be seen
that magnitude of vibration signal in Y axis is relatively low as compared to X and Z axis measurement
which further confirms the assumption on sensor location aspect.
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3.2. Sensor Placement Effect on Vibration Signal

The results obtained and described in previous sections is characteristic to the sensor location
when it is placed on the tool (see Figure 17). To understand the effect of spindle noise on acquired
signal, further data analysis was performed with sensor placed at alternate locations. Another reason
to consider alternate sensor placement location is also to account for minimized distractions during
actual production scenario. With sensor placed on the tool, there is a risk of wire entanglement as well
as constraints with robot movement.
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Figure 17. Accelerometer attached to workpiece.

As the intention of the research undertaken is eventual deployment in production, sensor
placement issues must also be addressed. As such, the vibration signal was acquired with a sensor
placed on the workpiece (Figure 17). The vibration signal from the accelerometer was acquired at
a sampling rate 40 kHz. Similar signal pre-processing methods were used with a previous experiment
set up where the sensor is placed on the tool. After acquiring the vibration signal, Welch’s estimate
method was used to visualize the signal in the frequency domain. The Welch’s estimate of the signal is
shown in Figure 18.
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Figure 18 also shows the vibration signature obtained when the sensor was placed on the tool so
that the effect of sensor placement can be studied. From Figure 18 it can be understood that spindle
frequency content is less dominant in the vibration signal acquired when the sensor is placed on the
workpiece. In the signal acquired when the sensor is placed on the tool, the spindle frequency content
is dominant with the frequency previously established as associated to the spindle speed being the
highest. This further validates the finding that frequency generated by the spindle is within the range
of 150–200 Hz and hence cannot be relied upon for co-relation.

The vibration signal when finishing is in progress was also acquired with the sensor located on
the workpiece and a similar co-relation as that shown in Figure 16 was also obtained. This result is
shown in Figure 19. It is worth noting that a similar pattern was found with the vibration signatures of
different passes, irrespective of the sensor location. With the exemption of the y axis signature, x and z
axis signature showed linear co-relations with the number of completed passes. This is good in terms
of co-relation perspective, as it further establishes the methodology used here for event classification.
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3.3. Fuzzy Inference System (FIS)-Based Event Classification

Real time monitoring of surface finish quality in the aerospace manufacturing industry requires
uncomplicated yet reliable feature extraction methods to attain an accurate prediction. This study
focused on a feature extraction and classification method that is applicable to the real time monitoring
based on the LabVIEW and NI platform. Features in the time-domain analysis such as skewness,
kurtosis and RMS are analysed and compared to the Welch’s power spectrum estimate. The features
were extracted from twelve vibration datasets that are acquired during lab experiments (a deburring
process). The deburring processes were conducted on each work coupon in five sequential stages,
namely pass 1 to pass 5. Each pass contains one vibration dataset that is acquired during one rotation
(360◦) of a circular abrasive tool on the edge of a boss hole replicated from a jet engine combustor
casing. It is presumed that the vibration signal of pass 1 to pass 5 has event characteristic because it is
understood that the different in signal characteristics are due to the smoothening of the edges of the
boss hole with increasing number of passes. Therefore the features extracted from each dataset should
also correspond to the number of passes. The extracted skewness, kurtosis and RMS from different
passes has been presented in Figures 9–11. The trends of skewness, kurtosis and RMS feature were
not obvious compared to the Welch’s feature which is shown in Figures 13–15 for vibration signals
on three different axis. The Welch’s feature were then employed in the event classification of the
deburring process.

Due to the highly stochastic behavior of vibration data that are acquired from deburring processes,
the trends of the Welch’s feature were obvious for seven out of the twelve datasets. Among the
seven datasets, six datasets were used for training and one dataset for testing. The training datasets
are presented in Table 4. The maximum, median and minimum magnitude value of each pass are
calculated and used to build the triangle membership function of FIS Sugeno type. The overall
maximum and minimum value for all datasets is −84.7 dB and 70.25 dB. These values are used as the
range to build a triangle membership function of FIS Sugeno type.

Table 4. Training data for FIS model.

Data Number
Magnitude (dB)

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

Dataset 2 −80.7 −82.55 −82.75 −83.2 −84.7
Dataset 3 −79.6 −79.75 −81.5 −81.15 −81.65
Dataset 4 −80.25 −80.7 −83.2 −83.85 −84.6
Dataset 6 −70.25 −71.8 −74.2 −74.7 −75.25
Dataset 8 73.3 −74.35 −76.7 −77.9 −79.1

Dataset 10 74.1 −76.05 −76.95 −77.2 −78.55

Min −70.25 −71.8 −74.2 −74.7 −75.25
Median −76.85 −77.9 −79.23 −79.53 −80.38

Max −80.7 −82.55 −83.2 −83.85 −84.7

The representative trends of prominent and inconspicuous Welch’s features are presented in
Figure 20. For dataset #2, #6 and #10, the magnitude of the Welch estimate at a frequency of 1.297 kHz
are decreasing gradually, which corresponds to the number of passes. However, the dataset #3 did
not decrease gradually as shown in the black dotted line. An anomaly occurred on pass #4 where
the magnitude of 1.297 kHz was higher than the magnitude on pass #3. This was considered as
an inconspicuous trend of the Welch’s features. Further study will be conducted on this phenomenon,
however, the authors assumed that in the present study this is due to some stochastic behavior of the
accelerometer data.
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Figure 20. The representative plot of four datasets.

For simplicity for LabVIEW real time monitoring, Fuzzy Inference System (FIS) designer apps
from MATLAB is used in the present study for classification. The test set used was the dataset #3 as
shown in Figure 21. The magnitude changes in dataset #3 was the ideal result for deburring stages
where the material removal of the first deburring step is much higher than the next stages. This is
shown in Figure 21 where the amplitude difference between pass #1 to pass #2 was higher than the next
stages. As the deburring pass number increases, the material removal rate was also getting smaller.
This is indicated in the last two passes in Figure 21.
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Figure 21. The test dataset.

Two types of FIS, that is Mamdani and Sugeno, were used and compared. This paper used
number of passes as the classification label. The test dataset was fed to the Mamdani and Sugeno FIS
model. The FIS input was the magnitude of the component at 1297 Hz of the Welch’s power spectrum
estimate (in dB) and the output of classification is the label (number of passes). The prediction results
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of FIS Mamdani and Sugeno are presented in Figures 22 and 23, respectively. The local accuracy of
FIS Mamdani prediction is 88%, 74.5%, 98.33%, 78.25%, and 66.8% for pass #1, #2, #3, #4, and #5,
respectively. The overall accuracy for FIS Mamdani prediction is 81.18%. In addition, the local accuracy
of FIS Sugeno is 100%, 55%, 79%, 99%, and 90.2% for pass #1, #2, #3, #4, and #5, respectively. The overall
accuracy for FIS Sugeno prediction is 84.64%.
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4. Conclusions

The focus of this research work was to explore the relationship between captured vibration signals
and the progress of an actual finishing process. The experimental results establish a linear co-relation
between vibration signals with completed number of passes. The effect of sensor placement upon
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the vibration signals was also understood and the frequency range associated with spindle activity
was identified. One major limitation which the authors noted during this research work is that the
results obtained were dependent on the training experiments and hence applying the classification
technique to other finishing processes may not yield the same expected outcome. This will be the
focus of future research directions; to validate and set up a similar classification technique across other
finishing processes like polishing.

Spectral analysis proved to be a viable solution for performing this task and is seen as
a promising technique to be implemented in real-time applications involving high sampling frequencies.
The advantage seen here is that analyzing a particular frequency component relieves the need of bulk
data processing as opposed to statistical methods wherein packets of data needs to be computed to
understand the co-relation between different statistical attributes with the number of passes completed.
Besides, the Welch spectrum estimate showed a significant co-relation with the completed number of
passes as opposed to time-domain features like kurtosis and skewness.

This research work was conducted primarily to understand the possible co-relation between
sensor signal features and the progress of the finishing process. The co-relation observed will be
integrated to the robotic finishing software environment used for tool path programming and will
serve as a visual aid to shop floor operators enabling them to monitor the progress of the finishing
process. In the next phase of the project, the signature identified as a classifier will subsequently be
used as an input parameter for machine learning algorithms. Additionally, a control strategy could be
deployed with a feedback loop in the robot control system to dynamically adjust the process variables
to compensate for any unexpected behavior.
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