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Abstract: An effective method to monitor heavy metal stress in crops is of critical importance to 

assure agricultural production and food security. Phenology, as a sensitive indicator of 

environmental change, can respond to heavy metal stress in crops and remote sensing is an 

effective method to detect plant phenological changes. This study focused on identifying the rice 

phenological differences under varied heavy metal stress using EVI (enhanced vegetation index) 

time-series, which was obtained from HJ-1A/B CCD images and fitted with asymmetric Gaussian 

model functions. We extracted three phenological periods using first derivative analysis: the 

tillering period, heading period, and maturation period; and constructed two kinds of metrics with 

phenological characteristics: date-intervals and time-integrated EVI, to explore the rice 

phenological differences under mild and severe stress levels. Results indicated that under severe 

stress the values of the metrics for presenting rice phenological differences in the experimental 

areas of heavy metal stress were smaller than the ones under mild stress. This finding represents a 

new method for monitoring heavy metal contamination through rice phenology. 
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1. Introduction 

With rapid development of the industry, rice paddies in some areas have been subjected to 

heavy metal pollution. According to the related statistics, more than 12 million tons of grains are 

contaminated in China every year [1–3]. Heavy metal pollution in croplands has the characteristics 

of concealment, permanence, irreversibility and toxicity [4]. The issue of food security affecting 

agricultural production and people’s livelihoods has received much attention [3–6], and underlines 

the need to develop effective methods to monitor heavy metal stress in agricultural crop growth. 

At present, most research on heavy metals in rice are carried out from the aspects of 

chlorophyll, leaf area index, cell structure (using a handheld radiometer for extracting spectral or 

crop parameter information in the field) [7–9], or by adopting empirical or semi-empirical models 

which were established based on the relationships between sensitive spectral characteristics and the 

heavy metal concentrations, or physiological parameters of crops for the dynamic monitoring of 

heavy metal stress [10–13]. These studies are predominantly based on the growth parameters above 

ground and root weight under heavy metal stress, and these methods are not easy to directly 

implement. Whereas phenology, which refers to seasonal biological life stages driven by 

environmental factors, is considered to be a sensitive and accurate indicator of environmental 

change [14–16], the way heavy metals affect rice crop growth is by interfering with the physiological 

activities of plants, such as photosynthesis, gaseous exchange, and nutrient absorption, to cause 
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reductions in plant growth and dry matter accumulation [17,18]. Thus, these effects may lead to 

changes on rice phenology. Research has also shown the effects of heavy metals on rice phenology in 

the laboratory environment, for example, when rice is under cadmium (Cd) stress, plants are thin, 

leaves are short, the tips of the leaves in the middle and lower part are withered and yellow, and the 

heading date is delayed for three to four days [19]. Higher concentrations of Cd (500 ppm) decrease 

secondary growth [20]; furthermore, when rice is harmed by arsenic (As), the amount of tillering will 

reduce and the heading period will be slightly delayed [19]. The above-mentioned results were 

based on the laboratory environment and tested the impacts of some heavy metal on rice growth. 

However, in the natural environment, it is often associated with a variety of heavy metals that affect 

the crop growth. As rice phenological information is of great importance for agricultural monitoring 

[21], it is necessary to identify the phenological differences under varied heavy metals stress for 

monitoring rice phenology.  

Compared with methods based on traditional ground remote sensing and model simulation, 

extracting the rice phenological information through satellite remote sensing to monitor heavy metal 

stress is more convenient and direct. Knowledge of crop calendars and phenology is often a key 

element in vegetation interpretation. Since the 1970s, the potential of multi-temporal satellite 

observations to provide information on the phenological development of natural vegetation and 

crops have been recognized by many researchers [22–24]. Previous studies on phenology have been 

mainly based on time-series analysis of remote sensing data to provide important information for 

detecting crop phenological periods [25–27]. The inversion of vegetation indices (VI), such as the 

normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) to extract crop 

phenology is the most common method [28]. VIs based on spectral transformations of two or more 

bands are designed to improve the contribution of vegetation characteristics and allow dependable 

spatial-temporal inter-comparisons in terrestrial photosynthetic activity and canopy structural 

variations. In addition, the information on the timing and progression of paddy rice development 

may help researchers to infer the condition of plants and their environment (e.g., soil factors) [22]. 

Meanwhile, heavy metals as a soil factor effects crop growth as they are taken up by the roots from 

the soil and transported to the aboveground parts of plants [10]. Hence, the investigation of the 

relationship between phenology and heavy metal stress in rice is helpful in understanding the 

mechanisms of plants responding to the concentration of heavy metals in the soil, and allow more 

precise predictions about the effects of future concentration of heavy metals in the soil on rice 

phenology. 

The objective of this study was to explore the potential of evaluating heavy metal stress based 

on rice phenology extracted by remote sensing technology. In order to verify the effectiveness of 

using phenological characteristics to monitor heavy metal stress in rice, we compared and analyzed 

the phenological differences under mild and severe heavy metal stress by two kinds of metrics with 

phenological characteristics for proving that the specific phenological characteristics are effective 

indicators for monitoring heavy metal stress in rice. The findings are expected to assist in monitoring 

the heavy metal contamination of rice and measure the degree of regional heavy metal pollution 

from the perspective of phenology. 

2. Study Area and Materials 

2.1. Study Area 

The city of Zhuzhou, in the Hunan Province, China, is an important commodity grain 

producing area and, simultaneously, is an old industrial base. From the industrial activity, the 

Xiangjiang River and its tributaries were contaminated. The main heavy metals in this area are 

cadmium (Cd), plumbum (Pb) and arsenic (As). Four rice fields adjacent to the Xiangjiang watershed 

in Zhuzhou were selected as experimental fields (Figure 1), and each field site was around 

1.28 km × 1.28 km in size. And in this area, the main type of rice grown is hybrid rice Boyou 9083. 

Furthermore, the main soil type is red soil with sufficient organic matter content (2–3%), and the 

dominant climate is subtropical monsoon with a mean annual temperature of approximately 16–18 
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°C. The annual average precipitation is 1257 mm and the total number of sunshine hours during the 

rice growing season is 969.6 h. Heavy metal stress levels were determined as mild or severe 

according to the analysis of soil sample (Table 1) and varied between the four experimental regions 

(labeled A, B, C, and D). The samples of soil were collected in five sample plots from each of the four 

experiment areas at three important rice phenological stages (initial tillering stage (mid-June), the 

middle tillering stage (mid-July), and the maturation stage (late August)), and the corresponding 

statistical information are shown in Table 2. The collected soil samples sited at rooting zone, and 

according to the Environmental Quality Standard for Soils in China [29], the depth of collected soil 

samples was 0–20 cm [30]. In these rice paddies, the intensive planting pattern made the impact of 

the characteristic spatial variability from the content of soil nutrients and soil texture smaller. 

Furthermore, the four rice experimental fields were cultivated and irrigated adequately to avoid 

other unnecessary stress caused by other environmental factors, such as the nutrient deficiency, 

weeds, pests, etc. With the exception of the above factors effecting similarly on rice crops, the four 

experimental areas were only different in human management and soil heavy metal stress. 

 

Figure 1. The experiment areas A, B, C, and D in Zhuzhou, Hunan Province in China and the spatial 

distribution of sample points. 
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Table 1. The average heavy-metal concentrations in the four experimental areas. 

Heavy 

Metals 

Background 

Value(bi) 1 

A B C D 

27°46′58″ N 27°58′40″ N 27°39′58″ N 27°49′15″ N 

113°9′59″ E 113°05′56″ E 113°09′51″ E 113°02′9″ E 

Soil (si) Pollution Index (si/bi) Soil (si) Pollution Index (si/bi) Soil (si) Pollution Index (si/bi) Soil (si) Pollution Index (si/bi) 

Cd 1.43 0.84 0.59 1.37 0.96 2.31 1.62 3.42 2.39 

Pb 82.78 78.33 0.95 59.45 0.72 91.05 1.10 114.85 1.39 

As 19.11 10.23 0.54 16.75 0.88 17.34 0.91 17.78 0.93 

Pollution Level Mild Severe 

The unit of heavy metal concentration is mg/kg; 1 Background values of heavy metals were derived from the Hunan Institute of Geophysical and Geochemical Exploration, China. 

Table 2. The statistical information on the collected soil samples: the average heavy-metal concentrations of soil, and corresponding to the standard deviation in the four 

experimental areas at three important rice phenological stages (initial tillering stage (mid-June), middle tillering stage (mid-July), and maturation stage (late August) 

marked as 1, 2, and 3, respectively). 

MEAN/STD 
Area A Area B Area C Area D 

1 2 3 1 2 3 1 2 3 1 2 3 

Cd 0.678/0.009 0.881/0.007 0.952/0.004 1.26/0.013 1.38/0.005 1.47/0.009 2.22/0.01 2.35/0.003 2.36/0.008 3.11/0.15 3.31/0.009 3.84/0.005 

Pb 68.79/0.43 88.2/0.89 78/0.77 57.45/0.78 62.9/0.54 58/0.88 83/0.65 103.15/1.59 87/0.78 111/1.08 118.55/1.23 115/0.56 

As 7.29/0.53 11.8/0.58 11.6/0.51 16.25/0.34 17.9/0.67 16.1/0.52 16.5/0.56 18.22/0.87 17.3/0.39 15.46/0.67 19.6/0.76 18.28/0.54 
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2.2. Data Preparation 

In this study, 16 CCD images from the small sun-synchronous satellites, HJ-1A/B, which are 

used for monitoring and forecasting environmental and natural disasters, were adopted as the 

remote sensing data covering four experimentation areas in the entire growing season of rice 

paddies (dated from 13 June to 29 September 2013). The HJ-1A/B satellite can cover a ground swath 

700 km wide, and two CCD sensors were loaded on satellites which formed a constellation to 

constitute an observation network that covered China and its surrounding areas on a 

two-day-repeat cycle. The CCD sensors captured ground features with a 30 m pixel resolution at a 

nadir angle in the visible bands. These CCD images consisted of the following four channels: band 1: 

0.43–0.52 μm (blue waveband), band 2: 0.52–0.6 μm (green waveband), band 3: 0.63–0.69 μm (red 

waveband), and band 4: 0.76–0.90 μm (near-infrared waveband). Wang et al. [31] integrated HJ-1A/B 

CCD and Landsat-8 OLI vegetation indices time-series images to estimate phenological information 

in rice that demonstrated the good quality of HJ-1 A/B CCD images; Pan et al. [32] used CCD images 

from HJ-1A/B to map crop phenology. Given the capabilities of HJ-1A/B CCD images, it is suitable 

for extracting crop phenological information. Due to the monsoon climate, during the growth phase 

of the paddy rice, only 16 cloud-free CCD images could be obtained, and the number and 

distribution of these 16 images are sufficient to meet the experimental requirements. Thus, in this 

paper, we took advantage of all the above-mentioned to construct a vegetable index time-series 

dataset, making it possible to extract rice phenology. 

The time is expressed as the day of the year (DOY) in this paper. Among the 16 images (six for 

the tillering period; four for the heading period; six for the maturation period), there were two 

images in June (DOY168 and DOY181), four images in July (DOY189, DOY193, DOY206, and 

DOY210), five images in August (DOY219, DOY221, DOY223, DOY225, and DOY241), and five 

images in September (DOY252, DOY258, DOY262, DOY264, and DOY272). All of the 30 m 

multispectral CCD images were processed prior to use, and the specific process can be summarized 

as: (1) radiometric-calibration was performed for each band, and the four bands of each scenes were 

packed; (2) the CCD images were clipped to obtain a subset (55,650 m × 59,220 m) where the four 

experimental areas are located; (3) the data format was converted to BIL and performing 

atmospheric-correction by using the FLAASH module embedded in the ENVI 5.2 software (Exelis 

VIS, White Plains, NY, USA); (4) the projection of all images was made uniform; (5) geometric 

correction for all images based on a specific image was performed by using automatic image 

registration embedded in ENVI 5.2 (Exelis VIS, White Plains, NY, USA); (6) the EVI for each image 

was calculated; and (7) the EVI images were layer stacked to construct time-series stacks for 2013. 

3. Methods 

3.1. Preprocessing of Multi-Temporal Satellite Data 

3.1.1. Calculation of Vegetation Index 

The extraction of vegetation phenological information by remote sensing are mostly based on 

the vegetation indices time-series curves, that is, the vegetation indices of time-series using remote 

sensing images are analyzed by smoothing and parameter analysis of the vegetation indices to 

extract phenological information while reflecting seasonal characteristics of vegetation community 

for temporal-spatial analysis [33–36]. Therefore, the choice of vegetation indices is very important 

and should be highly sensitive to reflect changes in the ground environment.  

NDVI is the most widely used vegetation index for monitoring vegetation phenology. EVI, the 

enhanced vegetation index based on NDVI, is applied increasing widely. To a certain extent, the two 

VIs can reflect the comprehensive situation of the land cover types from pixels in corresponding 

regions. The periodic increase and decrease of the VIs value of the region is a typical performance of 

the vegetation growth cycle, which can be used to determine the vegetation growth and overall 

situation. Additionally, the differences of VIs among different regions can reflect the vegetation, soil 



Sensors 2017, 17, 1243 6 of 17 

 

type, precipitation, topography and land use, and so on [37]. Thus, the inversion of vegetation 

indices is an effective method to analyze the changes of regional vegetation, which is to observe the 

changes of the VIs curves: vegetation grows, VIs increase; vegetation dies, VIs decrease. However, 

compared with the NDVI, EVI uses the “anti-atmospheric vegetation index” and “anti-soil 

vegetation index” to overcome several disadvantages, such as the influence of soil background; 

NDVI is easily saturated in high vegetation coverage, and is easily affected by soil and vegetation in 

low vegetation coverage; the atmospheric attenuation is not completely removed, and so on [38]. In 

addition, EVI can be linear dependence with LAI (the leaf area index), and has a higher sensitivity 

compared with that of NDVI in high biomass areas [37], so it can be used to detect the process of the 

high biomass of rice paddy growth adequately with a greater dynamic range [34]. Thus, we used 

EVI instead of NDVI for rice phenology detection. The EVI formula is given as follows: 

EVI = 2.5 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + C1 × 𝜌𝑅𝐸𝐷 − C2 × 𝜌𝐵𝐿𝑈𝐸 + L
 (1) 

where 𝜌𝑁𝐼𝑅,  𝜌𝑅𝐸𝐷 and 𝜌𝐵𝐿𝑈𝐸 are the reflectance of near-infrared band, red band, and blue band 

corresponding to the values of Band 4, 3, and 1 in the HJ-1A/B CCD sensors, respectively. L and the 

coefficients C1 and C2 describe the use of the blue band in correction of the red band for atmospheric 

aerosol scattering. The coefficients, C1, C2, and L, are empirically determined as 6.0, 7.5, and 1.0, 

respectively [39]. 

3.1.2. Reconstruction of EVI Time Series 

Due to the presence of cloud, shadow, and other factors, the time-series EVI data still had a lot 

of noise, so they need to be filtered and reconstructed before application [40]. In the field of 

phenology monitoring, the TIMESAT program is currently used, and the software has a special 

webpage to introduce the software related information [41]. The software integrates AG 

(asymmetric Gaussian model functions), DL (double logistic model functions), and SG 

(Savitzky-Golay filtering method) filtering algorithms, which can process time-series and image data 

(two-dimensional space array) simultaneously [42,43]. 

Many researchers performed the studies about the fidelity performance and the capability of 

keeping main characteristics on the three algorithms for vegetation phenology detection. Wang, Xin, 

and Shu [40] used EVI time-series to compare three methods, and thought that the results using AG 

algorithm based on the envelope of the fitting can be closer to the real value, but the peak 

reconstruction performance is slightly worse than that using the DL algorithm, especially for shrub 

and grassland type in China. Hird and McDermid [44] performed an in-depth comparison of AG, 

DL, SG, and other reconstruction methods to reconstruct NDVI, and found that they all have great 

filtering ability, but AG and DL have better reconstruction performance overall. Cao, Wang, and 

Den [45] considered that the fidelity performance of AG is the best, followed by DL, and SG is 

relatively poor for high-quality MODIS NDVI data reconstruction. However, the phenological 

differences under varied heavy metal stress are small, at approximately 1–5 days [19]. Thus, in order 

to extract the slight differences under varied heavy metal stress on rice phenology, the asymmetric 

Gaussian model function (AG), which has better fidelity performance and reconstruction 

performance overall was selected to de-noise and fit the EVI time-series in this study. The method is 

based on the nonlinear least squares fits of asymmetric Gaussian model function, which can define 

key seasonality parameters, such as the number of growing seasons, the beginning and end of 

seasons, and the rates of growth and decline [42]. In the TIMESAT software, the EVI time-series of 

the experimental areas extracted the information of pixels by pixel to check for anomalous events, 

missing data, and noisy time-series. 

3.2. Detection of Rice Phenology 

After the original data were smoothed, the temporal profiles of EVI were obtained. Next, 

according to the characteristics of EVI time-series curves, the specific phenological periods were 

extracted. The rice growth period was from transplanting time to harvest time. Remote sensing in 
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rice using optical satellite sensors exploited the phenological characteristics of the rice life-cycle. 

About one to two weeks after transplanting, the rice turned into the tillering period. In the tillering 

period, due to the development of rice root and leaf systems, EVI rapidly increased until the heading 

period when the vegetative development of rice reached its maximum, and rice growth becomes a 

descending stage where EVI decreases gradually, due to the nutrients transferred into the seeds. 

During the maturation period, due to the loss of most of the chlorophyll, the leaves rapidly 

withered, and the vegetation index was minimized in the harvest period [35]. As mentioned above, 

we used first derivative (FD) analysis to identify the dates of rice key phenology transitions. First 

derivative analysis is also called the slope method, and the specific crop growth period is 

determined by the magnitude of vegetation growth rate in the temporal profiles of EVI [46,47]. The 

FD formula is given as follows: 

FDEVI =
(EVI(i+1) − EVIi)

∆DOY
 (2) 

where FDEVI is the FD value of EVI between the i th and i + 1 th DOY; the value of EVIi is at the i th 

DOY; the value of EVI(i+1) is at the i + 1 th DOY; and ∆DOY equals 1 as the interval.  

Based on the analysis method of first derivative, we selected the appropriate indicators to 

identify the rice growth stage: (1) due to a high level of LAI and biomass in the heading period 

(mid-August), this period will have the maximum EVI corresponding to the value of FD (FD0) 

[36,47]; (2) in the tillering period, rice plants grow rapidly, and the highest speed might be at the 

active tillering stage (mid-July) [27]. Thus, the maximum value of FD (FDmax) was used to estimate 

the active tillering period; and (3) similarly, at the end of the maturation stage, EVI declines rapidly 

due to leaf senescence [27]. Hence, we selected the minimum value of FD (FDmin) to detect the 

maturity period (mid-September). According to the characteristics of rice growth stages described 

above, the identification of rice growth and development period can be detected through the 

vegetation index of remote sensing image time-series. 

3.3. Establishment of Rice Phenological Metrics 

As the four experimental areas were from different places, there were differences in the specific 

transplanting period (mostly in mid-June) and the definition of phenological periods by traditional 

methods, therefore, we could not identify the delay and advance for the specific phenological 

period. To detect the impact of heavy metals in soil on rice phenology, we selected the date-intervals, 

which meant the lengths of time between different phenological phases and eliminated the impact of 

different planting time, as the heavy metal stress metrics of rice phenology to extract the same 

differences under varied heavy metal stress levels. The specific metrics are calculated as follows 

(Figure 2): 

L1 = DOYHeading period − DOYTilling period (3) 

L2 = DOYMaturation period − DOYHeading period (4) 

L3 = DOYMaturation period − DOYTilling period (5) 

where DOYTillering period , DOYHeading period , and DOYMaturation period  are the day of year of three 

phenological periods in 2013. L1, L2, and L3 refer to the lengths of time between three phenology 

periods (tilling period, heading period, and maturation period), respectively.  

To further analyze the effect of heavy metal concentration on rice phenology, the differences 

between L1 and L2 under same heavy metal stress were taken as a measure, that is, the variation 

tendency of two adjacent phenological intervals (between the tillering period and heading period 

and between the heading period and maturity period) under different heavy metal stresses was 

analyzed, and the formula is as follows: 

∆i= L1 − L2 (6) 
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where i represents the four experimental areas: Area A, Area B, Area C, and Area D. ∆i is the 

difference between L1 and L2. 

 

Figure 2. The lengths of time (L1, L2, and L3) and the integral areas (TIEVI1, TIEVI 2, and TIEVI 3) 

under the EVI time-series curve between three phenology periods (tilling period, heading period, 

and maturation period) were marked on the temporal profiles, respectively. 

The dates of the tillering, heading, and maturation periods can be extracted by remote sensing 

data using the phenology monitoring algorithms, as the EVI time-series reflect changes in the 

morphological and physiological condition of the rice during the rice growth cycle [28]. The 

time-integrated NDVI means the integral areas under NDVI time-series curves can describe the size 

of the rice growing season [22,48,49]. Furthermore, Reed et al. [22] verified that the time-integrated 

NDVI metric of phenological interpretation is net primary production, had strong coincidence with 

predicted phenological characteristics. Therefore, we assumed that the time-integrated EVI metric 

also described the size of the rice growing season between different phenological periods and could 

be used to reveal net primary production. This type of metric may not necessarily correspond 

directly to conventional, ground-based phenological events, but provides indicators for ecosystem 

dynamics. The specific metrics are calculated as follow (Figure 2): 

TIEVI1 = ∫ 𝐹(𝑥)𝐸𝑉𝐼𝑑𝑥
𝐷𝑂𝑌𝐻𝑒𝑎𝑑𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

𝐷𝑂𝑌𝑇𝑖𝑙𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

 (7) 

TIEVI2 = ∫ 𝐹(𝑥)𝐸𝑉𝐼𝑑𝑥
𝐷𝑂𝑌𝑀𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑

𝐷𝑂𝑌𝐻𝑒𝑎𝑑𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

 (8) 

TIEVI3 = ∫ 𝐹(𝑥)𝐸𝑉𝐼𝑑𝑥
𝐷𝑂𝑌𝑀𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑

𝐷𝑂𝑌𝑇𝑖𝑙𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

 (9) 

where 𝐹(𝑥)𝐸𝑉𝐼 represents functions of the EVI time-series curves. TIEVI1, TIEVI 2, and TIEVI 3 

equal the integral areas under the EVI time-series curves between three phenological periods (tilling 

period, heading period, and maturation period), respectively. 
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4. Results 

4.1. Extraction of Rice Phenology 

In this study, approximately 50 pixels from CCD images were extracted in each of the four 

experimental areas to fit the time-series of the EVI and extract phenological periods by pixel, before 

averaging the pixel information in the same experimental area. Figure 3 shows the raw data on EVI 

from remote sensing images, the fitting curves of EVI time-series by the AG function, and their 

corresponding FD curves for four pixels from the four experiment areas. As shown in Figure 3, all 

the smoothed curves of the EVI time-series presented a similar trend, as did the FD curves. The 

fitting curves of the EVI were much closer to the raw data values. At the beginning of the rice growth 

stage, the values of the EVI were comparatively low; however, the EVI between DOY180 and 

DOY190 increased rapidly. Simultaneously, FD also increased rapidly and corresponded to the time 

when the rice crops began to produce tillers and the green biomass increased rapidly. When FD 

obtained peaks at about DOY205, the EVI had the maximum increasing rate when the tillering 

period was most active. At approximately DOY230, the EVI reached the maximum that marked the 

rice crops entering into the heading period. After that, the values of the EVI stopped increasing and 

began to descend, and when FD got the valleys at about DOY257, the EVI had the maximum 

descending rate when the rice crops reached the maturation stage.  

 

Figure 3. The raw data on EVI from remote sensing image, the fitting curves of EVI time-series by 

AG function, and their corresponding FD curves for four pixels from the four experiment areas 

(Area A, Area B, Area C, and Area D), respectively. 

According to first derivative (FD) analysis (FDmax, FD0, and FDmin) of smoothed EVI temporal 

profiles, three phenological periods (the tillering period, the heading period, the maturation period) 

in the four experiment areas were obtained and averaged, respectively. Figure 4 represents the 

averaged of dates corresponding to the three phenological periods from the four experimental areas. 

As seen in Figure 4, the tillering periods in Area A and Area D were at DOY200, approximately, and 

ca. DOY203 was revealed as the tillering periods in Areas B and C. As for the heading periods, Areas 

B and C had the closer dates (around at DOY230), and the dates of Areas A and D were at DOY228 

and DOY225, respectively. During the maturation periods, the specific dates of the four 
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experimental areas had significant differences: Areas A and C were at DOY253, Area B was at 

DOY255, and Area D was at DOY249. More detailed information on the standard deviation of dates 

corresponding to the three phenological periods is provided in Table 3. However, the existence of 

differences on specific phenological periods between the four experiment areas is partly due to the 

different transplanting periods in rice from the four experimental areas. In addition, according to 

the above results, it was difficult to observe the specific effects on rice phenology under heavy metal 

stress. Thus, according to above-results, some metrics were necessary for detecting the effects of 

heavy metals stress on rice phenology. 

 

Figure 4. The averages of dates corresponding to the three phenological periods(the tillering period, 

the heading period, the maturation period) in the four experiment areas (Area A, Area B, Area C, and 

Area D), respectively. 

Table 3. The standard deviation of dates corresponding to the three phenological periods(the 

tillering period, the heading period, the maturation period) from the four experiment areas (Area A, 

Area B, Area C, and Area D) were counted, respectively. 

STD Area A Area B Area C Area D 

Tillering 0.90 1.00 0.87 0.83 

Heading 0.47 1.20 0.73 0.68 

Maturation 0.84 1.45 0.74 0.81 

4.2. Phenological Differences in Rice under Heavy Metal Stress 

4.2.1. Differences in the Intervals of Rice Phenological Periods under Heavy Metal Stress 

To analyze the differences on rice phenology under two heavy metal stress levels, the lengths of 

time between three phenological periods (L1, L2, and L3) were selected as the metrics to present the 

phenological differences under stress. Figure 5 shows the comparison of the three metrics from the 

four experimental areas, respectively. Table 4 presents the statistical information on L1, L2, and L3. 

Overall, the values under mild stress (Areas A and B) were higher than the ones under severe stress 

(Areas C and D) in various degrees, thus indicating that there was a stress effect on the three 

phenological periods of rice in Areas C and D. The lengths of time between the tillering period and 

the heading period under mild stress in Areas A and B were longer approximately 1–2 days than in 

Areas C and D, and the phenological differences under mild stress level were about half a day, with 

smaller differences under severe stress (Figure 5a). Furthermore, between the heading and 

maturation periods, there were two days’ differences under different stress; however, under the 

same stress levels, there were some minimal differences (Figure 5b). This result indicated that under 
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the same stress, the effects of different concentrations of heavy metals on rice phenology during the 

tillering period and the heading period were less, and as were the effects during the heading and 

maturation periods. In addition, there were minimum values in Area D where all values of heavy 

metals concentration were the maximum (Figure 5a–c). The two metrics, L1 and L2 could exhibit the 

phenological differences under the two stress levels in a relatively small degree; however, the whole 

length of phenological periods between the tillering and maturation periods had a large decline 

where there were about three days under the two stress levels at least, and the longest gap was 

almost four days between Areas B and D. Thus, it was more obvious to measure the heavy metal 

stress levels using longer lengths of time between phenological periods. This observation illustrated 

that there are phenological differences under heavy metal stress levels by extracting phenological 

information from the EVI time-series of remote sensing data, and at the same time, demonstrated the 

abilities of the metrics, L1, L2, and L3, to distinguish heavy metal stress levels. Thus, the longer the 

interval between phenological periods, the greater the differences of metrics. 

 

Figure 5. Comparison of the DOY lengths of time between three phenological periods (the tillering 

period, the heading period, and the maturation period): (a) L1 exhibits the time intervals between 

the tillering period and heading period, (b) L2 exhibits the time intervals between the heading 

period and maturation period, and (c) L3 exhibits the time intervals between the tillering period and 

maturation period, from the four experiment areas (Area A, Area B, Area C, and Area D), 

respectively. 

Table 4. The standard deviation, maximum and minimum of L1, L2 and L3 from the four experiment 

areas (Area A, Area B, Area C, and Area D) were counted, respectively. 

Experiment Areas 
L1 L2 L3 

STD Max/Min STD Max/Min STD Max/Min 

Area A 0.73 28/26 0.73 26/24 1.46 54/50 

Area B 0.81 29/26 0.68 27/24 1.22 56/51 

Area C 0.89 26/23 0.77 26/22 0.79 50/48 

Area D 0.71 26/24 1.02 24/21 1.11 49/47 

Different concentrations of heavy metals had distinct effects on the rice different growth stages. 

As shown in Table 1, the concentrations of heavy metals gradually increased from Area A to Area D. 

Figure 6 shows that the differences between L1 and L2 also gradually increased from Area A to Area 

D. This result revealed the variation tendency of adjacent two phenological intervals (between 

tillering period and heading period and between heading period and maturity period) with different 

concentrations of heavy metals. In detail, the lengths of time during the tillering and the heading 

periods were gradually longer with increased heavy metal concentration of the four experimental 

areas, but the ones during the heading and maturation periods were gradually shorter. 
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Figure 6. The differences (∆i) between L1 and L2 varied from the four experiment areas (Area A, 

Area B, Area C, and Area D), respectively. 

4.2.2. Differences in the Time-Integrated EVI of Rice Phenology under Heavy Metal Stress 

Different characteristics of rice growth status presented different responses under heavy metal 

stress. Based on the time-series curves constructed by the EVI values obtained from the remote 

sensing images, the trend and abundance of curves can reflect the size of rice growth season. Figure 

7 shows the values of metrics, TIEVI1, TIEVI2 and TIEVI3, which are the integral areas of the EVI 

time-series between three phenological periods, came from four experimental areas. As shown in 

Figure 7a–c, the highest values of the integral areas were in Area B, and the values of TIEVI1, TIEVI2, 

and TIEVI3 in Area A under mild heavy metal stress were comparatively lower than in Area B, but 

higher than the two other areas under severe heavy metal stress. Thus, it was revealed that there was 

a stress effect on rice phenology under the severe stress level. In Areas C and D under the severe 

heavy metal stress, there were closer values of the integral areas between different phenological 

periods, and the values were minimum in Area D where the values of heavy metal concentration 

reached the maximum. This result illustrated that there are the closer effects of different 

concentrations of heavy metals on rice phenology during the heading and maturation periods under 

severe stress levels. However, under mild stress level, Areas A and B, showed a relative decline, 

which revealed that effects of different concentrations of heavy metals on the rice phenology during 

the tillering and maturation periods under mild stress were varied. On the margin of differences, 

TIEVI3 had better abilities to present the differences under the two kinds of heavy metal stress levels 

(Figure 7c). The statistical information of TIEVI 1, TIEVI 2, and TIEVI 3 on standard deviation is 

shown in Table 5. In this part, we selected other kinds of metrics with phenological features to try to 

extract the phenological differences under the two kinds of heavy metal stress levels, and considered 

that the results of comparing integral areas between three phenological periods could be the metrics 

to refer to the stress levels, especially TIEVI3.  

 

Figure 7. The integral areas of EVI time series during the three phenology periods (the tillering 

period, the heading period, the maturation period): (a) TIEVI1 exhibits the integral areas between 

the tillering period and heading period, (b) TIEVI2 exhibits the integral areas between the heading 

period and maturation period, and (c) TIEVI3 exhibits the integral areas between the tillering period 

and maturation period, from the four experiment areas (Area A, B, C, and D), respectively. 
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Table 5. The standard deviation of TIEVI 1, TIEVI 2, and TIEVI 3 from the four experiment areas 

(Area A, B, C, and D) was counted, respectively. 

STD Area A Area B Area C Area D 

TIEVI1 0.68 1.16 1.02 0.56 

TIEVI2 0.57 1.23 0.65 0.58 

TIEVI3 1.22 2.31 0.95 0.84 

5. Discussion 

This study presents a new methodology for monitoring heavy metal stress in crops based on 

crop phenology with remote sensing technology. The methodology was identified through 

extracting rice phenological differences under mild and severe heavy metal stress levels by the EVI 

time-series, which was obtained from HJ-1A/B CCD images and fitted with asymmetric Gaussian 

model functions (AG). With first derivative (FD) analysis, three phenological periods (the tillering 

peirod, the heading period, and the maturation period) were detected, and then two kinds of 

metrics with phenological characteristic: date-intervals and time-integrated EVI were constructed 

and compared in the four experimental areas. The results indicated that the phenology is an 

effective indicator for monitoring heavy metal stress in rice. 

It is critical that phenological differences under different heavy metals stress are measured. In 

this study, we selected the EVI time-series, which were composed of CCD images, to define three 

key phenological periods. CCD images from HJ-1A/B have high temporal-spatial resolution were 

obtained, but due to the monsoon climate, the cloud-free remote sensing data during the growth 

phase of the paddy rice was limited. Compared with other remote sensing data commonly used for 

monitoring vegetation phenology, CCD data represents the value of the day unlike AVHRR and 

MODIS remote sensing data of usually eight or 16 days of synthetic products, which means any one 

of the images were compounded by the optimal algorithm between eight days or 16 days. Thus, we 

can obtain better and closer to the true value of smoothed curves of the EVI time-series that also 

contributed to detect phenological differences under the two heavy metal stress levels.  

Some studies found that the crop growth under heavy metal stress becomes slower comparing 

with non-contaminated conditions [50–53]. However, in our study, what is new is that two kinds of 

metrics with phenological characteristics were selected for comparison under two heavy metal 

stress levels. In our results, comparing the lengths of time between different phenological periods of 

rice under two heavy metal stress levels showed that the values under severe stress were shortened. 

The results could be explained by the time-integrated EVI as an indicator with phenological 

characteristics for ecosystem dynamics. Firstly, some studies have shown that the presence of heavy 

metals, Cd, Pb, and As in soil, can inhibit rice crop growth and the formation of rice grain yield in 

different ways [53,54]. In addition, the EVI, which represents crop growth status, can show linear 

dependence with LAI (the leaf area index) [37]. These possibly resulted in the differences on the 

values of the EVI obtained from remote sensing images at different phenological periods of rice in 

the four experimental areas that may help to bring about the results. Secondly, in our study, the 

dates corresponding to the extracted three rice phenological periods in the four experimental areas 

were relatively close, but there were slight differences. This may be partly due to heavy metal stress; 

partly due to the different transplanting periods in rice from the four experimental areas. The 

extracted three rice phenological periods corresponded to a certain moment in the phenological 

stages, respectively, that we could not identify the delay and advance for the specific phenological 

period, or even obtain the length of the whole rice growing season. This showed that the metrics for 

detecting rice phenological differences under varied heavy metal stress are necessary, and the result 

was related to the meaning of the metrics. Moreover, according to study by Du et al. [53], at the 

active tillering stage, the inhibition of cadmium on rice tillering is more obvious; after the active 

tillering stage, the inhibition gradually reduces. We suspected that different degrees of change in 

different phenological stages also contributed to the results. The results presented in this study 

suggest that the two kinds of metrics, the length of phenological periods and the integral areas can 

be considered as useful indicators for monitoring heavy metal stress in rice plants and could be 
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deemed as a label of mild or severe stress levels for the regions in this study: L3 ≤ 49.6 or TIEVI3 ≤ 32 

as severe stress, conversely as mild stress or no stress. Beyond the values of stress levels in this 

study, the changes in rice phenology became unpredictable. In addition, the variations of differences 

between L1 and L2 with increasing concentrations of heavy metals revealed the variation tendency 

of adjacent two phenological intervals with different concentrations of heavy metals, and the 

difference between the four experimental areas was small. This may be because the degree of heavy 

metal stress influence on the length of time between the tillering period and the heading period is 

different than that between the heading period and the maturation period [53]. 

This study provides a new way to monitor heavy metal pollution in agriculture through remote 

sensing technology. Compared to traditional ground-based methods used to monitor heavy metal 

stress, remote sensing is a simple and convenient resource. Furthermore, the analysis of phenology 

presented here concerned the effects of temperature, climate, rainfall, and so on. In this study, the 

results of the metrics’ analyses clearly indicate that heavy metal stress is also an important factor that 

affects phenological changes. At present, in the case of serious heavy metal pollution, when 

investigating the phenological changes of terrestrial ecosystems, it is necessary to consider the 

impact of heavy metal pollution in heavy metal contaminated areas.  

However, it is necessary to declare that the relationship between the phenological differences 

and stress metrics found in this study are specific to the selected phenological periods studied (the 

tillering period, heading period, and maturation period), and the results might differ for other 

phenological periods monitored, other types of data used, other smoothed functions, other measures 

of phenological period estimation, and other stress metrics. Thus, when the metrics are applied to 

other areas or other crops, another comparative analysis should be undertaken. Furthermore, the 

values of the metrics presented in this study ought to be proved. In conclusion, the generality of this 

finding in other areas and crops require further research. 

Our results are limited by the selected phenological extraction method’s sensitivity and fidelity 

and the metrics used, but under the severe stress level, the length of time between the tillering 

period and the maturation period was around 49 days, and the integral areas of the EVI time-series 

during the tillering and maturation periods was about 32. These were identified via the statistical 

properties, and a comparative analysis of the metrics is an important indicator of monitoring 

phenological differences under mild and severe stress levels to fully investigate heavy metal stress 

levels of rice paddies based on extracting phenological periods from EVI time-series curves by 

remote sensing data and the fitting method. Meanwhile, it should be pointed out that, in this study, 

two kinds of metrics were qualitatively analyzed, and the performance of the metrics could be 

further tested through detailed quantification using measured data and more detailed procedures. 

The results in this paper could be further verified by collecting field observation data. In addition, 

more rice phenology periods, like the transplanting periods and panicle development, should be 

extracted to analyze the phenological differences by means of ground-based spectrometers. 

6. Conclusions 

In this study, we monitored rice phenological differences under mild and severe heavy metal 

stress levels using remote sensing technology for exploring the potential of evaluating heavy metal 

stress based on rice phenology by remote sensing. We used the EVI time-series smoothed with AG 

function to represent the status of plant growth. Three phenological periods (the tillering period, the 

heading period, and the maturation period) were detected through first derivative (FD) analysis 

(FDmax, FD0 and FDmin) of smoothed EVI temporal profiles. Two kinds of metrics with phenological 

characteristics, date-intervals and time-integrated EVI, were constructed to detect rice phenological 

differences under varied heavy metal stress. The comparison of the two kinds of metrics indicated 

that the values of the metrics for presenting rice phenological differences under severe stress in the 

four experimental areas were smaller than the ones under mild stress. It has been proved that it is 

feasible to use remote sensing technology to monitor the rice phenological variations caused under 

different heavy metal stress, and measured the rice phenological differences with the two kinds of 

metrics under mild and severe heavy metal stress. This conclusion strongly supported the theory 
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that phenology is one of the sensitive indicators of environmental change. Thus, phenology could be 

a useful indicator for heavy metal stress in rice plants. 

Acknowledgments: This study was supported by the National Natural Science Foundation of China (no. 

41371407 and 41601473). 

Author Contributions: Shuyuan Liu conducted and designed the experiments and wrote the paper; Xiangnan 

Liu supervised the research and provided significant comments and suggestions; Meiling Liu analyzed the 

data; Ling Wu designed the fitting methodology; Chao Ding gave suggestions about the experiment; and Zhi 

Huang contributed to the editing and review of the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Woo, S.; Yum, S.; Park, H.-S.; Lee, T.-K.; Ryu, J.-C. Effects of heavy metals on antioxidants and 

stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp. Biochem. Physiol. Part C 

Toxicol. Pharmacol. 2009, 149, 289–299. 

2. Song, Q.; Li, J. Environmental effects of heavy metals derived from the e-waste recycling activities in 

China: A systematic review. Waste Manag. 2014, 34, 2587–2594. 

3. Jin, M.; Liu, X.; Wu, L.; Liu, M. An improved assimilation method with stress factors incorporated in the 

WOFOST model for the efficient assessment of heavy metal stress levels in rice. Int. J. Appl. Earth Obs. 

Geoinf. 2015, 41, 118–129. 

4. Liu, F.; Liu, X.; Wu, L.; Xu, Z.; Gong, L. Optimizing the Temporal Scale in the Assimilation of Remote 

Sensing and WOFOST Model for Dynamically Monitoring Heavy Metal Stress in Rice. IEEE J. Sel. Top. 

Appl. Earth Obs. Remote Sens. 2016, 9, 1685–1695. 

5. Liu, M.; Liu, X.; Li, M.; Fang, M.; Chi, W. Neural-network model for estimating leaf chlorophyll 

concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 2010, 106, 

223–233. 

6. Huang, Z.; Liu, X.; Jin, M.; Ding, C.; Jiang, J.; Wu, L. Deriving the Characteristic Scale for Effectively 

Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors 

2016, 16, 340. 

7. Kooistra, L.; Salas, E. A. L.; Clevers, J.; Wehrens, R.; Leuven, R.; Nienhuis, P.H.; Buydens, L.M.C. Exploring 

field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ. Pollut. 2004, 

127, 281–290. 

8. Ren, H.Y.; Zhuang, D.F.; Pan, J.J.; Qiu, D.S. Canopy Hyperspectral Characteristics of Paddy Plants 

Contaminated by Lead. Geo-Inf. Sci. 2008, 10, 314–319. 

9. Liu, M.; Liu, X.; Ding, W.; Wu, L. Monitoring stress levels on rice with heavy metal pollution from 

hyperspectral reflectance data using wavelet-fractal analysis. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 246–

255. 

10. Liu, F.; Liu, X.; Zhao, L.; Ding, C.; Jiang, J.; Wu, L. The Dynamic Assessment Model for Monitoring 

Cadmium Stress Levels in Rice Based on the Assimilation of Remote Sensing and the WOFOST Model. 

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1330–1338. 

11. Schuerger, A.C.; Capelle, G.A.; Di Benedetto, J.A.; Mao, C.Y.; Thai, C.N.; Evans, M.D.; Richards, J.T.; Blank, 

T.A.; Stryjewski, E.C. Comparison of two hyperspectral imaging and two laser-induced fluorescence 

instruments for the detection of zinc stress and chlorophyll concentration in bahia grass  (Paspalum 

notatum Flugge). Remote Sens. Environ. 2003, 84, 572–588. 

12. Rosso, P.H.; Pushnik, J.C.; Lay, M.; Ustin, S.L. Reflectance properties and physiological responses of 

Salicornia virginica to heavy metal and petroleum contamination. Environ. Pollut. 2005, 137, 241–252. 

13. Shi, T.; Liu, H.; Wang, J.; Chen, Y.; Fei, T.; Wu, G. Monitoring Arsenic Contamination in Agricultural Soils 

with Reflectance Spectroscopy of Rice Plants. Environ. Sci. Technol. 2014, 48, 6264–6272. 

14. Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659–659. 

15. Brown, M.E.; de Beurs, K.M. Evaluation of multi-sensor semi-arid crop season parameters based on NDVI 

and rainfall. Remote Sens. Environ. 2008, 112, 2261–2271. 

16. Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 2000, 44, 

76–81. 



Sensors 2017, 17, 1243 16 of 17 

 

17. Filippis, L.; Pallaghy, C. Heavy metals: sources and biological effects. In Advances in Limnology Series: Algae 

and Water Pollution; Rai, L.C., Gaur, J.P., Soeder, C.J., Eds., Scheizerbartsche Press: Stuttgart, Germany, 

1994. 

18. Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–

313. 

19. Wang, Q.-E.; Zeng, Y.; Li, L.-M. Advances on the Effect of Cadmium Damage on Physiology and Ecology 

of Rice. North Rice. 2007, 4, 12–16. 

20. Costa, G.; Spitz, E. Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in 

vitro cultured Lupinus albus. Plant Sci. 1997, 128, 131–140. 

21. Eerens, H.; Haesen, D.; Rembold, F.; Urbano, F.; Tote, C.; Bydekerke, L. Image time series processing for 

agriculture monitoring. Environ. Model. Softw. 2014, 53, 154–162. 

22. Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring 

phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. 

23. Stöckli, R.; Vidale, P.L. European plant phenology and climate as seen in a 20-year AVHRR land-surface 

parameter dataset. Int. J. Remote Sens. 2004, 25, 3303–3330. 

24. Dubovyk, O.; Landmann, T.; Dietz, A.; Menz, G. Quantifying the Impacts of Environmental Factors on 

Vegetation Dynamics over Climatic and Management Gradients of Central Asia. Remote Sens. 2016, 8, 600. 

25. Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher northern latitude 

normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 

2001, 45, 184–190. 

26. Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology 

through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. 

27. Zheng, H.; Cheng, T.; Yao, X.; Deng, X.; Tian, Y.; Cao, W.; Zhu, Y. Detection of rice phenology through 

time series analysis of ground-based spectral index data. Field Crops Res. 2016, 198, 131–139. 

28. Li, S.; Xiao, J.; Ni, P.; Zhang, J.; Wang, H.; Wang, J. Monitoring paddy rice phenology using time series 

MODIS data over Jiangxi Province, China. Int. J. Agric. Biol. Eng. 2014, 7, 28–36. 

29. Environmental Quality Standard for Soils (GB 15618-1995); Standards Press of China: Beijing, China, 1995. 

30. Suo, L.; Liu, B.; Zhao, T.; Wu, Q.; An, Z. Evaluation and analysis of heavy metals in vegetable field of 

Beijing. Trans. Chin. Soc. Agric. Eng. 2016, 32, 179–186. 

31. Wang, J.; Huang, J.-F.; Wang, X.-Z.; Jin, M.-T.; Zhou, Z.; Guo, Q.-Y.; Zhao, Z.-W.; Huang, W.-J.; Zhang, Y.; 

Song, X.-D. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation 

indices time-series images. J. Zhejiang Univ. Sci. B. 2015, 16, 832–844. 

32. Pan, Z.K.; Huang, J.F.; Zhou, Q.B.; Wang, L.M.; Cheng, Y.X.; Zhang, H.K.; Blackburn, G.A.; Yan, J.; Liu, 

J.H. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. 

Geoinf. 2015, 34, 188–197.  

33. Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring 

vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. 

34. Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology 

detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. 

35. Sun, H.; Huang, J.; Peng, D. Detecting major growth stages of paddy rice using MODIS data. J. Remote Sens. 

2009, 13, 1122–1137. 

36. Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for 

Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387 

37. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and 

biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. 

38. Wang, Z.; Liu, C.; Chen, W.; Lin, X. Preliminary Comparison of MODIS-NDVI and MODIS-EVI in Eastern 

Asia. Geomat. Inf. Sci. Wuhan Univ. 2006, 31, 407–410. 

39. Huete, A.; Justice, C.; Liu, H. Development of Vegetation and Soil Indexes for MODIS-EOS. Remote Sens. 

Environ. 1994, 49, 224–234. 

40. Wang, Q.; Yu, X.; Shu, Q.; Shang, K.; Wen, K. Comparison on Three Algorithms of Reconstructing 

Time-series MODIS EVI. J. Geo-Inf. Sci. 2015, 17, 732–741. 

41. TIMESAT: A Software Package to Analyse Time-Series of Satellite Sensor Data. Available online: 

http://www.nateko.lu.se/timesat/timesat.asp (accessed on 27 April 2017). 



Sensors 2017, 17, 1243 17 of 17 

 

42. Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. 

IEEE. T. Geosci. Remote Sens. 2002, 40, 1824–1832. 

43. Jönsson, P.; Eklundh, L. TIMESAT—A Program for Analyzing Time-Series of Satellite Sensor Data. 

Comput. Geosci. 2004, 30, 833–845. 

44. Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected 

techniques. Remote Sens. Environ. 2009, 113, 248–258. 

45. Cao, Y.F.; Wang, Z.X.; Den, F.P. Fidelity performance of three filters for high quality NDVI time-series 

analysis. Remote Sens. Technol. Appl. 2010, 25, 118–125. 

46. Yu, F.F.; Price, K.P.; Ellis, J.; Shi, P.J. Response of seasonal vegetation development to climatic variations in 

eastern central Asia. Remote Sens. Environ. 2003, 87, 42–54. 

47. Lin, W.; Zhang, F.-C.; Jing, Y.-S.; Jiang, X.-D.; Yang, S.-B.; Han, X.-M. Multi-Temporal Detection of Rice 

Phenological Stages Using Canopy Spectrum. Rice Sci. 2014, 21, 108–115. 

48. Hill, M.J.; Donald, G.E. Estimating spatio-temporal patterns of agricultural productivity in fragmented 

landscapes using AVHRR NDVI time series. Remote Sens. Environ. 2003, 84, 367–384. 

49. Zhao, Y. Principles and Methods of Remote Sensing Application Analysis; Science Press: Beijing, China, 2003. 

50. Khudsar, T.; Iqbal, M.; Sairam, R.K. Zinc-induced changes in morpho-physiological and biochemical 

parameters in Artemisia annua. Biologia Plantarum. 2004, 48, 255–260. 

51. Vassilev, A.; Tsonev, T.; Yordanov, I. Physiological response of barley plants (Hordeum vulgare) to 

cadmium contamination in soil during ontogenesis. Environ. Pollut. 1998, 103, 287–293. 

52. Vassilev, A.; Berova, M.; Zlatev, Z. Influence of Cd2+ on growth, chlorophyll content, and water relations in 

young barley plants. Biologia Plantarum. 1998, 41, 601–606. 

53. Du, Y.; Wang, Y.; Xu, M.; Wang, L.; Hu, S.; Wang, X. The source of heavy metal pollution and its effects on 

the growth and development of rice. Tillage Cultiv. 2004, 61, 13–15. 

54. Zhang, X.; Li, Q.; Peng, C.; Gao, H.; Wei, W.; Zhao, F.; Zhu, P. Effects of heavy metals on heavy metal 

accumulation of grain and yield in rice. Jilin Agric. Sci. 2015, 40, 13–16. 

©  2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


