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Abstract: The development of the Internet of Things (IoT) has accelerated research in indoor
navigation systems, a majority of which rely on adequate wireless signals and sources. Nonetheless,
deploying such a system requires periodic site-survey, which is time consuming and labor intensive.
To address this issue, in this paper we present Canoe, an indoor navigation system that considers
shopping mall scenarios. In our system, we do not assume any prior knowledge, such as floor-plan
or the shop locations, access point placement or power settings, historical RSS measurements or
fingerprints, etc. Instead, Canoe requires only that the shop owners collect and publish RSS values
at the entrances of their shops and can direct a consumer to any of these shops by comparing the
observed RSS values. The locations of the consumers and the shops are estimated using maximum
likelihood estimation. In doing this, the direction of the target shop relative to the current orientation
of the consumer can be precisely computed, such that the direction that a consumer should move
can be determined. We have conducted extensive simulations using a real-world dataset. Our
experiments in a real shopping mall demonstrate that if 50% of the shops publish their RSS values,
Canoe can precisely navigate a consumer within 30 s, with an error rate below 9%.

Keywords: IoT; knowledge extraction; indoor navigation; location fingerprinting; missed AP
problem; maximum likelihood estimation

1. Introduction

The Internet of Things (IoT) is considered to be the next generation in industrial evolution [1].
With a wealth of potential applications, indoor navigation systems are of particular interest. There
are many scenarios, in which location-based services are useful. For instance, a consumer may want
to find a certain shop in a shopping mall to optimize or enhance their experience, while shop owners
want to direct consumers to their shops in order to increase business. This implies a strong need for
a navigation service, which is capable of determining a target’s location relative to a user’s current
location.

With the development of IoT, navigation services can be implemented based on a localization
system, which relies on users’ mobile devices and adequate wireless signals and sources in
the environment, in performing vector subtraction between two absolute locations. Notice
that a Wi-Fi-based location fingerprinting (LF) technique is “infrastructure-free”: it can provide
value-added localization services for existing WLAN infrastructures without the need for any
specialized hardware [2]. Nonetheless, deploying a traditional LF-based indoor positioning system
is not easy, since the positioning server should collect the location fingerprints by performing a
site-survey of the received signal strength (RSS) from multiple access points (APs). With these
fingerprints, the positioning server is able to localize a mobile device based on its RSS measurements.
Nonetheless, the site-survey is extremely time consuming and labor intensive, which raises the cost
of initiating an LF-based localization service.
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Furthermore, the positioning server should perform the site-survey periodically to update the
fingerprints, reducing errors caused by the changing Wi-Fi environment, but also raising the cost of
maintaining the service. Following [3], a number of research studies has been performed to enable the
collection of fingerprints based on crowd-sourced solutions instead of an off-line site-survey. In these
solutions, users are required to continuously upload RSS measurements to the positioning server as
training data. Nonetheless, this can raise significant privacy concerns, and incentive mechanisms
need to be in place to guarantee the number of voluntary participants.

It is worth noting that the aforementioned crowd-sourcing approaches are easy to deploy, while
still enabling localization with high accuracy. Nonetheless, there is still a gap between “easy to
deploy” and “no need to deploy”. If there is no deployed localization service in a shopping mall,
it is difficult for a consumer to acquire his/her location. In this paper, we introduce an autonomous
navigation solution without a dedicated localization service or infrastructure deployed. Our designed
solution only utilizes the published RSS values at shop entrances for navigational computation.
Notice that in our design, we assume that a shop owner is willing to direct consumers to his/her
shop by publishing the RSS measurements observed at his/her shop entrance, and we also assume
that a consumer can easily acquire the RSS measurements at his/her current location using his/her
mobile device. In addition, we do not assume other knowledge, including the floor-plan, the AP
placement, power settings, historical RSS measurements or fingerprints.

In any indoor environment, like that of a shopping mall, the accessible regions for personal traffic
are limited by walls and indoor infrastructure, and individuals can only walk in nearly straight paths
through the hallways [4]. Therefore, we simplify the indoor navigation to an either-or operation,
i.e., “Should the consumer move forward or backward?”. Our basic idea is to determine whether
a consumer is approaching or leaving a target shop, by computing the distance between the RSS
measurements at the consumer’s current location and those at the shop’s entrance. With all of the
acquired RSS observations, including those collected by the consumer’s mobile device as the user
travels and those published at the target location, where each can be represented as a point in a
same m-dimensional signal space (where m is equal to the number of the APs), the physical distance
between the locations of different RSS observations can be computed based on the Euclidean distance
of these observations in the signal space. Then, what is left is a simple decision: if the distance
between the consumer’s latest RSS observation and that of the target location is decreasing, the
consumer should move forward (i.e., continue in the same direction); otherwise, he/she should move
backward.

Nonetheless, it is quite challenging to precisely estimate the distance between RSS observations.
The main problem concerns the dimensionality mismatches in the signal space. This is because
various RSS observations can observe different APs. In the case where the consumer is far from
the target shop, it is likely no APs will cover both locations. Even if two observing locations are close
to each other, the observed APs can still be significantly different, due to the missed AP phenomenon.
Studies on Wi-Fi fingerprinting approaches in [5–7] have shown that when a mobile device performs
a Wi-Fi scan, some of the APs can be missed in a scanning cycle, causing dimensionality mismatches
between different RSS observations. In addition, if the Wi-Fi scan operation is performed frequently
(e.g., every three seconds), the number of missed APs will be greatly increased. Furthermore, even
if a subset of RSS observations that share a few common APs can be placed into a signal space
with reduced dimensions, distance estimation based on insufficient information will often lead to
significant errors when making the “forward” or “backward” decisions.

To address these challenges, in this paper, we propose a novel algorithm that computes the RSS
values of missed APs from the values of those observed, using the maximum likelihood estimation
(MLE). Our designed algorithm begins with assigning arbitrary initial values to the unknown
parameters, including the locations of the consumer, target shops, APs and the AP’s power settings.
Then, a stochastic gradient descent optimization technique is designed to iteratively learn the values
of these parameters to maximize the likelihood of observing the RSS measurements with respect
to the estimated locations of the consumer, the shops and the APs, under the assumption that the
RSS measurements (in dBm) are distributed through Gaussian distribution and that the path loss
varies exponentially with distance. Finally, each of the RSS observations is represented as a point in a
linear signal space, without reducing dimensionality. In doing this, navigation errors can be greatly
reduced, as every one of the RSS measurements can contribute to the navigation, rather than only a
small portion of the measurements contributing.



Sensors 2017, 17, 996 3 of 17

Designing such an MLE-based algorithm is non-trivial, as there are many parameters to
consider for each RSS observation. As a result, overfitting can easily occur (i.e., the learned
parameters deviate to describe the random noises of the RSS measurements, instead of the underlying
physical relationship between the observing locations and those of the APs). Lacking sufficient
RSS observations to control the extent of regularizing the learned values via techniques like
cross-validation, we instead use an early stopping strategy to terminate the fitting process. In
designing our strategy and learning algorithm, we utilize simulations based on a public dataset and
implement a prototype application. In addition, to further evaluate the effectiveness of Canoe, we
have conducted live experiments in a real shopping mall. The experimental results show that, if 50 %
of the shops publish their RSS measurements, Canoe can direct a consumer to any of these shops after
nine RSS observations (i.e., 30 s) with an error rate of only 9 %.

The remainder of this paper is organized as follows. In Section 2, we first describe a motivating
scenario and introduce the primary challenge and solution. In Section 3, we present the estimation
model and learning algorithm used in Canoe. In Section 4, we use a simulation to learn the optimal
settings of Canoe and address the overfitting problem. In Section 5, we show live experiments in a
real shopping mall to evaluate the effectiveness of Canoe. We conduct a literature review in Section 6,
followed by conclusions in Section 7.

2. Problem Definition

In this section, we first introduce a motivated scenario, and then present the problem definition
and our solution. In Table 1, we summarize the main notations introduced throughout this article.

Table 1. Summary of notations.

Symbol Meaning

A,A AP, the set of all APs
ns, nc the number of locations where RSS are observed by the shops or by the consumer
I ′, I ′′ matrix of RSS measurements observed by the shops or by the consumer
I , Ĩ matrix of all RSS measurements (I = I ′ + I ′′), matrix of computed RSS

I, Ij, Ii,j RSS observation, RSS measurement from the j-th AP, the i-th RSS measurement from the j-th AP
Di,j distance between the i-th observing location and the j-th AP

Pi, Qj location of the i-th observation, location of the j-th AP

2.1. Motivated Scenario

Shop owners are always willing to attract more consumers to increase sales through advertising,
typically providing store information and sales and the corresponding locations. This is even more
likely in a shopping mall, in which there are typically competing shops selling similar or even the
same commodities. Consumers may also hope to know the locations of these shops. For example, the
consumer, who is looking for the nearest Starbucks to have a cup of coffee and take a break, does not
want to spend time wandering around the mall.

Both the shop owners and the consumers have a strong need for an indoor navigation service.
Nonetheless, there is no such service available in most shopping malls. The main reason for this is
that neither a shop owner nor a consumer can deploy such a service based on the existing positioning
techniques, as these techniques generally rely on the maintenance of a large amount of dynamic
location fingerprints and knowledge of the whole floor plan.

The owner of the mall may have the means, but may also have scant motivation to deploy such
an in-building navigation service, since the owner cares more about whether a user is shopping in his
or her mall rather than at whichever specific shops. As an example, Google’s Indoor Maps provides
localization and navigation services based on publicly broadcast data (e.g., Global Positioning System
(GPS), Wi-Fi and cell tower information), and they are currently available only in selected locations,
listed in [8] (i.e., unavailable in all other locations). To make Indoor Maps available inside a building,
the owner should upload a floor plan and periodically perform a site-survey by walking through the
whole building to improve location accuracy, which is quite time consuming and labor intensive. This
leads to reluctance to adopt and deploy the service.

For navigation in the aforementioned scenario, we introduce Canoe. It is a lightweight
navigation system with no prior deployment of dedicated localization infrastructure, which requires
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only minor efforts of the shop owners and the consumer. We assume that the shop owners (here
denoted “shop-users”) are willing to publish the RSS measurements observed at the entrance of their
shops. We do not assume the prior knowledge of the locations of these shops, a floor plan, AP
placement and power settings, or any other information, which is not accessible to the shop-users
and customers (here denoted “consumer-users”).

With Canoe, a consumer-user with a smart phone continuously observes his/her current RSS
measurements to compare to those published by the target shop, so that he or she can “paddle his/her
own Canoe” to direct him/herself to the target shop, without disclosing his or her information and
without requiring cooperation of any other consumers.

2.2. Problem Definition and Solution Overview

We consider the indoor navigation scenario based on the motivated scenario described in
Section 2.1, where the shop-users and the consumer-user observe the RSS measurements at their own
locations from m APs with unknown locations, denoted as:

A = {A1, A2, . . . , Am}. (1)

Thus, an RSS observation can be represented as an m-dimensional vector:

I =< IA1 , IA2 , . . . , IAm >, (2)

where the value in each dimension represents the RSS measurement from a unique AP. For the APs
that cannot be observed in an RSS observation (e.g., when the APs are far from the observing location),
we tag the values in the corresponding dimensions as “0”.

The shop-users each continuously observe the RSS measurements at the entrance of their own
shop and periodically publishes the averaged values over a given time interval. We use an m × ns
matrix I ′ to denote the averaged RSS measurements, where ns is the number of shops.

I ′ = [I′1, I′2, ..., I′ns ] =

 I′1,A1
· · · I′ns ,A1

...
...

...
I′1,Am

. . . I′ns ,Am


As the consumer-user moves in an arbitrary direction, his or her mobile device obtains nc

observations of the RSS measurements. We use an m × nc matrix I ′′ to denote the observed RSS
measurements.

I ′′ = [I′′1 , I′′2 , ..., I′′nc ] =

 I′ ′1,A1
· · · I′ ′nc ,A1

...
...

...
I′ ′1,Am

. . . I′ ′nc ,Am


At each observing location, only the nearby APs can be observed. This means that a large

proportion of the elements in I ′ and I ′′ are tagged as “0”. In addition, when the Wi-Fi scan operations
are performed frequently, many more APs can be missed in the RSS observations. As a result, both I ′
and I ′′ are sparse matrices.

On a certain floor in a shopping mall, where the accessible region is limited and the path-finding
result to a shop can be relatively simple, Canoe can tell whether the user is approaching or leaving
the target shop based on the distance between the user’s current location and destination. Therefore,
we simplify the navigation problem to a distance estimation problem, which is defined as follows:

Problem 1. Given I ′ and I ′′, for an arbitrary element I′i ∈ I ′ as the target, and for each I′′j ∈ I ′′, how do we
compute the distance between the locations LI′i

and LI′′j
? Here, LI′i

and LI′′j
respectively represent the locations,

where I′i and I′′j are observed.

The physical distance between two observing locations can be estimated from the Euclidean
distance between the RSS observations in the signal space [9,10]. Nonetheless, since I ′ and I ′′ are
sparse matrices, it is always difficult to compute the Euclidean distance between two elements I′i ∈ I ′
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and I′′j ∈ I ′′ due to dimension mismatches. Canoe addresses this problem by estimating all of the
unobserved RSS values from all of the APs. This estimation is based on the theory that various
RSS measurements are not independent of each other, but are strongly correlated. Although the
locations of the observations and the APs are unknown, the correlations between these locations
really determine the RSS measurements. In other words, the observed RSS measurements may reflect
the relative locations of the observations and the APs, so that they can contribute to estimates of the
unobserved values.

In the following, we present the design detail of Canoe.

RSS Measurements

USER SHOPS

Location 

Estimation

Without Fingerprints

Without Sufficient RSS Measurements

With Fingerprints

With Sufficient 

RSS Measurements

Traditional 

Location 

Fingerprinting

Crowd-sourced 

Localization

1. MLE

+

2. Gradient 

Descent

3. Stopping 

Strategy

 Forward 
Or

 Backward 

CANOE

Figure 1. Canoe overview.

2.3. Design Overview

Notice that it is quite challenging to precisely estimate the distance between RSS observations,
concerning the dimensionality mismatches in the signal space as various RSS observations can
observe different APs. On the one hand, if the consumer is far from the target shop, it is likely
no APs will cover both locations. On the other hand, if two observing locations are close to each
other, the observed APs can be significantly different because of the missed AP phenomenon. In
addition, if a subset of RSS observations that share a few common APs can be placed into a signal
space with reduced dimensions, distance estimation based on insufficient information will often lead
to significant errors.

To address these issues, our designed system consists of three key components: (i) the estimation
model, (ii) a learning algorithm and (iii) a mechanism to deal with overfitting. Figure 1 illustrates how
Canoe navigates a consumer to an arbitrary shop. When an offline fingerprint database is available,
traditional location fingerprinting techniques can be used to accurately locate the users and the shops;
or when there are sufficient online RSS measurements, crowd-sourced localization techniques can
be used to generate fingerprints. In the case that no fingerprint database and only insufficient RSS
measurements are available, Canoe can still perform the navigation.

On the hypothesis that the RSS measurements (in dBm) are normally distributed and that the
path loss varies exponentially with distance, the relative likelihood of observing an RSS measurement
can be described by a probability density function. Canoe uses the maximum likelihood estimation
to maximize this likelihood (with respect to minimizing the distances between the computed values
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and the real values of the observed RSS measurements). In doing this, Canoe can tell whether a user
should move forward or backward based on the estimated locations.

3. Design Detail of Canoe

In this section, we present the design detail of Canoe. In the following, we first overview the key
components and then present the individual components in detail.

3.1. Overview of Key Components

First, related to estimation model, we propose a novel algorithm based on maximum likelihood
estimation.

Second, regarding the learning algorithm, we adopt a stochastic gradient descent optimization
technique, which is designed to iteratively learn the values of these parameters to maximize
the likelihood of observing the RSS measurements with respect to the estimated locations of the
consumer, the shops and the APs. Thus, combining the maximum likelihood estimation and
stochastic gradient descent optimization techniques, we solve the dimension mismatch problem,
leading to the accurate estimation of the locations of the shops and the consumers.

Third, as there are many parameters to consider for each RSS observation, overfitting can easily
occur as a consequence. This means that the learned parameters could deviate to describe the
random noises of the RSS measurements, instead of the underlying physical relationship between the
observing locations and those of the APs. To overcome this issue, we design an early stopping scheme
so that the iteration process is curtailed when the learned results best describe the real locations of
observations.

In the following, we introduce these key components in our systems in detail.

3.2. Estimation Model

We now introduce the estimation model in detail. We begin with introducing assumptions and
then present the estimation model in Canoe. Notice that we use calligraphic uppercase letters to
denote matrices and normal uppercase letters with subscripts to denote the elements of the matrices.

We take the following two assumptions in designing Canoe: (i) the Wi-Fi RSS distribution, and
(ii) the Wi-Fi signal propagation path loss.

RSS distribution: One common assumption is that the RSS measurements (in dBm) are
distributed by the Gaussian distribution [2] described below, while some research has reported that
this may not be always the case [11]. Nonetheless, in the literature, it is hard to tell which function
could best approximate the real distribution of RSS measurements. Thus, we have chosen to use the
most widely-used assumption.

Assumption 1 (RSS distribution). The RSS measurements (in dBm) are distributed by following the
Gaussian distribution:

I ∼ Gaussian(Ĩ , σ2). (3)

Signal propagation path loss model: The path loss (PL) that a signal encounters inside a building
can be predicted by a radio propagation model.

Assumption 2 (Signal propagation path loss). During the Wi-Fi signal propagation, the path loss varies
exponentially with distance,

PL = PL0 + 10nlog10
d
d0

+ Xg. (4)

Here, PL0 is the path loss at the reference distance d0, n is the propagation path loss exponent, d
is the length of the path, d0 is the reference distance (e.g., d0 = 1m), and Xg is a normal (or Gaussian)
random variable with zero mean.

For the sake of convenience, we use I0,j to represent the RSS measurement from the j-th AP at
d0 = 1 m of distance; we have:

Ii,j = −10n lg Di,j + I0,j, (5)
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where I = I ′ ∪ I ′′ is the set of all accessible RSS measurements and Di,j represents the physical
distance between the locations of the i-th observation and the j-th AP.

In Canoe, we use the maximum likelihood estimation to estimate locations. Suppose there is a
unified coordinate system to specify all of the locations on the given floor in the shopping mall. For
any RSS measurement Ii,j in I , we use Pi to denote the coordinates of the location of the ith observation
and Qj to denote the coordinates of the location of the j-th AP. Then, the distance between the two
locations Di,j is relevant to Pi and Qj, as shown in Figure 2. Then, we have:

Di,j =
∥∥Pi −Qj

∥∥
2. (6)

Di,j

Pi

Qj

Coordinates

Figure 2. The relations among the location of the observation (denoted as Pi), the location of the AP
(represented as Qj) and the distance between the two locations (denoted as Di,j).

From the set of all accessible RSS measurements I , it is possible to compute the distance Di,j
for each observation and for each observed AP. We define the process of location estimation, which
estimates the locations of the observations and the APs (matrices P and Q) from the distances
(matrix D).

Definition 1 (Location estimation). A set of RSS measurements in dBm is represented as I ∈ R−m×n
, find

P ∈ R+m×2
(or R+m×3

in 3D positioning) and Q ∈ R+m×2
(or R+m×3

), such that a divergence function
F (I||Ĩ) is minimized, where a) Ĩ is the matrix transformed from D̃ by Assumption 2; and b) D̃ ∈ Rm×n

is
the reconstructed matrix by Equation (6).

The objective function is generated as follows. When we take Assumption 1, we have the
probability density function,

fI (Ii,j) =
1√
2πσ

exp

− (Ii,j − Ĩi,j)
2

2σ2

 . (7)

Maximizing the likelihood of observing I , with respect to P , Q and I0 under the i.i.d. (independent
and identically distribution) assumption,

L(P ,Q, I0|I) = ∏
i,j

fI (Ii,j), (8)

is equivalent to minimizing:

F (I||Ĩ) = ∑
i,j

(Ii,j − Ĩi,j)
2

(9)

= ∑
i,j

(Ii,j − I0,j + 10nlg
∥∥Pi −Qj

∥∥
2)

2 (10)
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Based on this objective function, Canoe learns the location estimation model by fitting the
previously observed RSS measurements in I .

3.3. Learning Algorithm

In an indoor navigation application, which directs consumers to their destinations, real-time
feedback is essential to correcting the walking directions. Because the stochastic gradient descent
optimization combines implementation ease with a relatively fast running time, we choose it as the
learning algorithm in Canoe to minimize the objective function in Equation (10).

In particular, Canoe loops through all of the observed RSS measurements in I . For each RSS
measurement, Canoe estimates Ĩi,j and computes the associated estimation error:

Ei,j = Ii,j − Ĩi,j = (Ii,j − I0,j + 10nlg
∥∥Pi −Qj

∥∥
2).

Then, Canoe modifies the parameters in the opposite direction of the gradient, yielding:

Pi :=Pi − α · ∂F
∂P

= Pi − 2α ·
10n · (Pi −Qj)Ei,j

ln 10 ·
∥∥Pi −Qj

∥∥
2

(11)

Qj :=Qj − α · ∂F
∂Q

= Qj + 2α ·
10n · (Pi −Qj)Ei,j

ln 10 ·
∥∥Pi −Qj

∥∥
2

(12)

I0,j :=I0,j − α · ∂F
∂I0

= I0,j + 2αEi,j (13)

where α is the step size and n is the propagation path loss exponent. Notice that the value of n can be
various in different indoor environments and is normally in the range of two to four. Fortunately, we
can fix n to any positive value. In our simulation and experiments, we find that no matter which value
we set to n, the localization results remain the same. This is because Canoe only computes the relative
locations in a random coordinate system, and with different values of n, the output locations of Canoe
differ with each other just as if they belong to different coordinate systems. Canoe neither requires
the knowledge on which coordinate system is used, nor requires references to cardinal directions. It
only requires the information of relative distance between locations so as to perform the “forward or
backward” navigation.

At convergence, in theory, the locations of all of the observations and the APs (and also the
power settings of the APs) can be estimated. These locations give expression to the physical
distances/relationship between each other (i.e., the distribution of these locations), which maximizes
the likelihood of observing the known RSS measurements. Nonetheless, in practice, the results at
convergence can still deviate far from the actual locations, even if the coordinate system is converted
carefully through a stretch, spin or flip operation in the whole area. This is because the results can be
highly prone to overfitting.

3.4. Overfitting Issue and Solution

There are a number of parameters (i.e., all elements in matrices P , Q and I0) relative to the
number of observed RSS measurements (i.e., matrix I) in location estimation. Thus, overfitting can
easily occur in the iterations performed in Equations (11), (12) and (13).

To avoid overfitting in the stochastic gradient descent, one typical solution is to conduct
regularization. Nonetheless, the regularization is essentially a feature selection by penalizing complex
models to produce sparse feature matrices, while in Canoe, all of the features (i.e., P , Q and I0) are
indeed irreducible. This is because these features will affect the values of the RSS measurements in I
in the physical world, and the model in Canoe is fixed if Assumptions 1 and 2 are taken. In addition,
the lack of ground truth makes it difficult, if not impossible, to perform a regularization.

Due to these limitations, Canoe uses a stopping strategy rather than normal regularization to
avoid overfitting. Via simulations, we find that, in the iterative process, the fitting results (i.e., the
estimated locations of the consumer and the shops inP) quickly follows a similar location distribution
with that of the real locations, before the fitting results start to describe the random noises of the
RSS measurements, and the parameters are learned to be at increasingly erroneous locations. The
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challenge is to determine when to stop the iteration. We describe in detail the early stopping strategy
in Section 4.4.

4. Implementation and Simulation Study

In this section, we introduce the implementation and simulation study in detail. In the following,
we first give the overview and dataset. We then introduce simulation results related to missed APs
and the failure rate, the impact of overfitting and the effectiveness of our designed strategy, as well as
the simulation results.

4.1. Overview

Recall that the goal of the Canoe system is to provide indoor navigation in cases where no prior
knowledge of the building layout or infrastructure is required. It is not designed for any particular
building, but instead should provide a general solution for most in-building shopping or other similar
scenarios. To implement Canoe, we have simulated a shopping scenario based on a public dataset
of Wi-Fi RSS measurements. Based on the simulation results, we have evaluated the best settings of
parameters in Canoe and designed an early stopping strategy to avoid overfitting. Then, we have
implemented a prototype navigation application and conducted real-world experiments in an actual
shopping mall, which will be introduced in Section 5.

4.2. Dataset

The public dataset that we use is the mannheim/compass dataset [12]. This is the only public
dataset that we could find with recorded traces of signal strength of 802.11 APs. The dataset contains
data in both an off-line training phase and an on-line positioning phase, in an area of about 15 m in
width and 36 m in length. The off-line fingerprinting data contains 146,080 measurement records for
166 locations (880 records each), and the on-line positioning data contains 6600 measurement records
for 60 locations (110 records each).

4.3. Missed APs and Failure Rate

There are in total 20 APs in the dataset. For a given RSS measurement record, these 20 APs can
be classified into the following three categories:

The proportions of the observed APs, the unobservable APs, and the missed APs are shown in
Figure 3. One interesting finding is that the probability of missing an AP is not obviously related to
the averaged RSS value I.

• Observed APs: Those are observed in the RSS record (of one-time observation). In contrast, the
unobserved APs are those that are not observed in the record.

• Unobservable APs: Those are ones that cannot be observed at the observing location. An AP
is considered to be unobservable if no records at this location ever observed this AP. Notice
that the unobservable APs must be unobserved APs, but unobserved APs may be observable in
different observations at the same location.

• Missed APs: Those are observable, but unobserved in this record. Because some records at this
location observe this AP, we can compute an averaged RSS value I.



Sensors 2017, 17, 996 10 of 17

Figure 3. Proportion of the observed APs, the unobservable APs and the missed APs. Here, I is
referred to as the theoretical RSS, which is an average value from the records in which this AP is
observed.

In the dataset, a record can observe seven (20 × 34.29%) APs on average . This inadequate
number of observed APs will always result in navigation failures (i.e., no results can be computed
regardless of accuracy or precision). The reason is that different APs are observed in different records
at different locations. Only if at least three common APs are shared between four observations, it is
possible to compute the geographical relation between these observing locations. Thus, if we only
use the observed values for navigation, the failure rate can be very high. In Canoe, since the RSS
values from missed APs and unobservable APs can be estimated, the failure rate is always zero. It is
worth mentioning that the failure rate increases in the real shopping mall scenario via our real-world
experiments. We will discuss this problem in Section 5.

4.4. Overfitting and Stopping Strategy

As we discussed in Section 3.4, overfitting is a key challenge in implementing Canoe, since there
are a number of parameters relative to observed RSS measurements. We use a case study to illustrate
how the overfitting problem can affect the estimation results and explain how we solve this problem
in Canoe. In this case study, we select 10 locations (represented as red dots in Figure 4), and for
each location, we randomly select 10 observations of RSS measurements. Using only these data, we
learn the locations of the observations using Canoe and show the results after increasing numbers
of iterations. We use a unique color for each observing location, and the ground truth is shown in
Figure 5c.

Figure 4. Ten selected locations we used in our case study in Section 4.4.

Figure 6a–f illustrates the learned locations after 10,000 to 320,000 iterations. It is obvious that
the results after approximately 80,000 iterations are the most accurate. After that, overfitting occurs,
and the learned locations start to describe the random noise in the RSS observations. This results in
great errors in learning the locations at convergence after about 320,000 iterations.
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(a) 19,000 iterations. (b) 89,000 iterations. (c) Groundtruth.

Figure 5. Stopping strategy: (a) learned locations with stopping strategy (after the first fluctuation);
(b) the final result, which is the learned locations with stopping strategy (after the second fluctuation);
(c) the ground truth.

(a) 10,000 iterations. (b) 20,000 iterations. (c) 40,000 iterations.

(d) 80,000 iterations. (e) 160,000 iterations. (f) 320,000 iterations.

Figure 6. Learned locations after the number of iterations.

Thus, a stopping strategy should be in place to avoid overfitting. If the relations between the
real locations of the shops are unknown, it is difficult to stop the iterations based on the learned
values. Furthermore, even if the consumer’s moving pattern can be obtained by using his or her smart
phone sensors (i.e., when the relations between the consumer’s observing locations are known), it is
still difficult to stop the iteration process at exactly the time when the learned results have the best
performance. This is because the RSS measurements are unstable in real Wi-Fi environments. Noise
in the RSS measurements observed by the consumer will cause the iteration process to end at a very
early stage.

In Canoe, we adopt a strategy to stop the iteration process, which is not based on the learned
locations, but is based on the variation of the estimation error F (I||Ĩ) in Equation (9). When the
value of F (I||Ĩ) decreases with iterations, it also presents violent and frequent fluctuations. We use
sliding windows to compute the averaged estimation error. Figures 7 and 8 illustrate the average
estimation error versus the number of iterations when the window size is 1000 iterations. There are
three fluctuations in total.



Sensors 2017, 17, 996 12 of 17

Figure 7. Estimation error versus the number of iterations.

(a) First fluctuation (b) Second fluctuation

Figure 8. (a) The first fluctuation: the estimation error increases after about 19,000 iterations. (b) The
second fluctuation: the estimation error increases after about 89,000 iterations.

The averaged estimation error first decreases rapidly. Then, after around 19,000 iterations, the
error increases and then decreases (as shown in Figure 8a). Furthermore, after about 89,000 iterations,
the error increases again and then decreases to convergence (as shown in Figure 8b). The estimated
results (learned locations) at each fluctuation (i.e., after 19,000 iterations and 89,000 iterations) are
shown in Figures 5a and 5b. When the estimation error first increases, the learned locations are
distributed in a line and start to describe the 2D relations between each other. When the estimation
error increases the second time, the learned locations are distributed in a 2D space and start to
describe the random noise in the RSS observations. From this finding, we design the following
stopping strategy: when the averaged estimation error increases the second time, Canoe should stop
the iteration process.

4.5. Simulation and Results

Using the mannheim/compass dataset, we generate simulated scenarios and evaluate the error
rate in navigation. In the simulation, we generate RSS measurements observed by the shop-users
and by the consumer-users. We assume the rooms to be different shops and randomly select ns = 10
shops as the shop-users of Canoe.

From these shops, we randomly select one shop as the target shop. For each shop, the closest
off-line location to the door is treated as the entrance. At each entrance, we randomly select 10
records and compute the averaged values. These values compose the matrix I ′. Then, we generate
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consumer-user traces from the off-line locations. To generate a trace, we first randomly select a start
location and a direction (north, south, west or east). For every step at a fixed distance d = 3 m
on the direction (Different mobile devices can perform the Wi-Fi scans at different frequencies. The
highest frequency for most devices is about three seconds. The walking speed is about 1 m/s. Thus,
we have d = 3 m.), we find the closest off-line location and randomly select one record as the RSS
measurements observed by the consumer. After nc steps, we can have nc RSS records in total,
which compose the matrix I ′′. Based on the data (matrix I ′ and I ′′), Canoe determines whether the
consumer is approaching or leaving the target shop (or whether the consumer should move forward
or backward).

After Canoe has its answer, we compare it with the correct answer, which is computed from the
distance between the consumer’s locations and the shops’ locations. Notice that in the simulation, the
distance between the consumer’s location and the target shop’s location is set to be over five meters.
When the two locations are closer to each other, it is difficult to estimate whether the consumer is
approaching or leaving the shop.

We repeat this simulation and compute the mean error rate. The results are shown in Table 2. As
we can see from the table, using only two observations, the navigation results are only 75 % correct.
If the consumer continues moving in his/her direction and collects five observations, 90 % of the
navigation results are correct.

Table 2. Error rate in navigation after nc observations.

nc = 2 nc = 3 nc = 4 nc = 5

0.25 0.17 0.10 0.10

5. Real-World Experiments

We have conducted real-world experiments in a real shopping mall to evaluate the feasibility of
Canoe in real-world practice. The shopping mall that we chose is a representative indoor environment
for navigation.

First, this shopping mall has in total two buildings in operation (and two other buildings under
construction). This is a very large shopping area, so that consumers in this mall may be confused
when finding a certain shop, especially when this shop is new or recently moved to a new location
in the mall. The experiments are performed on Level B-1, which is the only floor connecting both
buildings. The floor-plans of both buildings are available at [13], by switching between buildings on
top right of the page. To check the floor-plan of Level B-1, one should choose the B1F tab on the top
left of the page.

Second, the accessible regions on Level B-1 of this shopping mall are mainly composed of a main
corridor and several small passages and many shops. There are no ring paths so that there is always
only one correct direction if a consumer wants to find a target shop. This makes it possible to evaluate
the error rate in navigation. It should be noted that in most indoor environments, users can move with
more than two directions (e.g., making a turn to left or right instead of moving forward or backward,
or even wandering around an area). It is possible to let Canoe notify users to make a turn instead of
moving “forward or backward”. Nonetheless, it is difficult for Canoe to decide which turn to make.
Another choice is to let users make the decision by themselves. When the distance between the user
and the destination decreases and then increases, there are two possibilities: the user has just passed
the destination or the user should make a turn. If the destination is not nearby, the user should make
a turn. If the user makes a wrong turn, the distance will continue to increase, and Canoe will notify
the user to move backward.

Third, the performance of Canoe depends strongly on the complexity of the environments. It
should be noted that within a complex in-building environment, it is very difficult to find the best
path without a perfect floor plan. Suppose a “C”-shaped corridor if the user and the destination are
located at different end-points. In this case, Canoe will point to the relative direction instead of the
correct moving direction. The floor plan of Level B-1 is relatively simple like most real in-building
shopping environments. Thus, consumers are able to find their destinations if they know relative
directions. Our experiments are performed on this floor.

On Floor B-1, there are in total 71 different shops, where 55 of these shops have an AP
with a unique Service Set Identifier (SSID). Notice that we do not use Media Access Control
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(MAC)-addresses (but only the SSIDs) to distinguish the APs. This is because we do not want to use
any AP, which is publicly deployed by the building owner. The APs deployed by the shopping mall
are always named “DeJiPlaza” or “DeJiPlaza-POS” which refers to the name or the points-of-sale of
the building. By using the SSIDs, we choose only personally-deployed APs. Thus, the experiment
results may offer insight to the performance of Canoe in other buildings, which may not have
publicly-deployed APs.

Based on the RSS measurements from these APs, Canoe provides navigation service to both
the shop-users and the consumer-users. A shop-user can use Canoe to guide consumers to
his/her own shop, by uploading the RSS measurements he or she collects at the entrance of the
shop; a consumer-user can use Canoe to find his/her target shop, by continuously collecting RSS
measurements along his or her path and comparing these measurements with those published by the
shop-user. In our experiments, since some shops are much smaller than others, we ignore these small
shops. At last, we choose 64 observing locations, each of which is an entrance of a shop. Under the
assumptions that 1/4, 1/3 or 1/2 of the shop-owners are willing to use Canoe, we have conducted
three groups of experiments. The first group uses RSS measurements of ns = 16 shops (with two
shops in between neighboring observing locations); the second group uses RSS measurements of
ns = 21 shops (with three shops in between neighboring observing locations), while the third group
uses RSS measurements of ns = 32 random shops (with fourshops in between neighboring observing
locations).

Our experiments were performed in 14 different afternoons. In every afternoon, we used
different mobile devices to collect the RSS measurements at each observing location, i.e., the entrance
of each shop (which are re-collected every about two hours, since RSS value is dynamic). Then, we
randomly selected a shop as the target shop. Consumers were asked to walk freely, and they did
not know which shop was the target shop. By doing this, their familiarity of this shop or to this
shopping mall could be omitted. At last, 30 long traces are collected (which are later divided into 200
short traces). Along the consumer’s path, Canoe tells whether he or she is approaching or leaving the
target shop every three seconds. This answer is recorded and later compared with the correct answer.

We have evaluated the effectiveness of Canoe using the metrics of failure rate and error rate.
A “failure” occurs if Canoe cannot compute a result because the information is insufficient for
estimation (i.e., no result is generated by Canoe). An “error” occurs if Canoe computes a result that
is wrong (i.e., Canoe generates a result “forward”, while the correct direction should be “backward”
or vice versa). We do not count failures as errors. The failure rate is defined as f ailure/total, and the
error rate is defined as error/(total − f ailure). The average failure rate and error rate of navigation
of the total 200 traces are shown in Tables 3, 4 and 5. If there are enough shop-users (ns = 32), the
failure rate and error rate are very low. After the consumer-user performs nine to 11 RSS observations
(i.e., after about half a minute), the error rate is below 10 %. Nonetheless, when there are not enough
shop-users, it is difficult for Canoe to compute a correct result.

Table 3. Failure rate and error rate (16 shops).

ns = 16 nc = 3 nc = 5 nc = 7 nc = 9 nc = 11

Failure 0.66 0.59 0.42 0.44 0.37
Error 0.37 0.29 0.25 0.27 0.19

Table 4. Failure rate and error rate (21 shops).

ns = 21 nc = 3 nc = 5 nc = 7 nc = 9 nc = 11

Failure 0.55 0.40 0.31 0.21 0.19
Error 0.39 0.28 0.23 0.21 0.17
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Table 5. Failure rate and error rate (32 shops).

ns = 32 nc = 3 nc = 5 nc = 7 nc = 9 nc = 11

Failure 0.38 0.20 0.11 0.07 0.03
Error 0.34 0.22 0.18 0.09 0.08

6. Related Work

Indoor localization and navigation have been extensively studied. In the following, we briefly
summarize various techniques in this field, which are close to our study.

Indoor localization: A number of existing indoor localization systems has achieved a high
position accuracy with dedicated hardware deployment, including localization based on ultra-high
frequency (UHF) [14], ultra-wide band (UWB) [15], dedicated sensor or beacons [16] and others
[17,18]. For instance, Tagoram [19], which uses radio frequency identification devices (RFID), can
achieve mm-level accuracy.

To reduce the cost in deploying an indoor localization system, a number of research efforts
has leveraged existing Wi-Fi infrastructure and introduced location fingerprinting based on RSS
measurements of the Wi-Fi signals (e.g., radar [20]). The deployment of location fingerprinting
systems is often divided into two phases: (i) an off-line phase, in which a site survey of the RSS
from multiple APs are collected, and (ii) an on-line phase, in which a location can be computed based
on the currently-observed RSS measurements.

The site survey in the off-line phase can be extremely time consuming and labor intensive. In
the last few years, a number of investigations introduced crowd-sourcing-based systems [3,9,21–23],
which require the users to continuously observe their RSS measurements and upload the data to the
positioning server. These approaches do not require the site survey to be performed, and they do
not require the map of the floor-plan. Nonetheless, additional incentive mechanisms are required to
attract enough participants, as anyone uploading his or her observed RSS measurements needs to
obtain a benefit, like positioning accuracy, but will definitely still incur privacy risks [24].

Unlike existing indoor localization systems, which require a site survey, knowledge of the layout
or floor-plan, AP placement and power settings or cooperative users, Canoe uses only the RSS
measurements of the positioning customer and the participating shops. It is worth noting that Canoe
cannot provide accurate localization, but can provide precise navigation and does not require any
deployment of localization services.

Indoor Navigation: Most existing indoor navigation systems should first localize the users [25],
while in some approaches, users’ absolute locations are not necessary. For example, Escort [26]
could record users’ movement patterns and mutual encounters, so as to help a person navigate to
another person. Travi-Navi [27] is a self-deployable indoor navigation system, which records images
and sensor readings along a guide’s path and are then used to direct followers. Unlike previous
approaches, which require a guide to record various features along the path, and require the followers
to move in exactly the same path as the guide, Canoe only requires the features at the customer and
destination (RSS observations at the shops) and does not limit the paths of the followers.

7. Conclusion

In this paper, we have presented Canoe, a novel indoor navigation system, which does not
require the deployment of localization services and prior knowledge of the environment. With Canoe,
shop-owners can guide consumers to their shops by only publishing RSS measurements collected at
the shop entrances, while the consumer can be guided to their target shop by continuously observing
RSS measurements along their path. In Canoe, we have used maximum likelihood estimation and
stochastic gradient descent optimization techniques to solve the dimension mismatch problem. In
doing these, the locations of the shops and the consumer can be estimated accurately. We have
also designed an early stopping strategy to deal with the overfitting issue, such that the iteration
process is curtailed when the learned results best describe the real locations of observations. With a
combination of a simulation study based on real data and live experiments on a real-world shopping
mall environment, our experimental results show that Canoe is applicable and feasible in real-world
indoor navigation environments.
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