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Abstract: This paper proposes a new easy and fast 3D avatar reconstruction method using an
RGB-D sensor. Users can easily implement human body scanning and modeling just with a personal
computer and a single RGB-D sensor such as a Microsoft Kinect within a small workspace in their
home or office. To make the reconstruction of 3D avatars easy and fast, a new data capture strategy
is proposed for efficient human body scanning, which captures only 18 frames from six views
with a close scanning distance to fully cover the body; meanwhile, efficient alignment algorithms
are presented to locally align the data frames in the single view and then globally align them in
multi-views based on pairwise correspondence. In this method, we do not adopt shape priors or
subdivision tools to synthesize the model, which helps to reduce modeling complexity. Experimental
results indicate that this method can obtain accurate reconstructed 3D avatar models, and the
running performance is faster than that of similar work. This research offers a useful tool for the
manufacturers to quickly and economically create 3D avatars for products design, entertainment and
online shopping.
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1. Introduction

Modeling real humans in the virtual world is always a popular research topic since virtual avatars
are not only essential for products design and manufacturing for living but also have a great deal of
applications for games, movies, video conferences and online shopping. Reconstructing 3D avatars
with accuracy, effectiveness and convenience is a topic of interest for researchers, in particular with
the introduction of new hardware and technologies. Moreover, modeling is also expected to be
straightforward and accessible to the common user. Recently, the success of low-cost RGB-D sensors
such as Microsoft Kinect [1] has offered a promising means of 3D modeling, as current laser-based
or image-based methods are either expensive or setting-complex [2]. The use of Kinect in object
scanning, modeling and even environment mapping has led to explosive growth due to its economy
and convenience [3].

As a portable depth camera, Microsoft Kinect consists of a color sensor and a depth sensor, which
are able to obtain RGB images and depth images of objects within reachable range of vision. Based
on the RGB-D data from Kinect, there has been a great deal of research on human reconstruction to
achieve cost savings and greater efficiency [4–9], however, the final reconstructed human model is still
far away to be acceptable. The existing research is primarily concerned with the following: (1) the
use of fewer Kinects to increase modeling convenience and save on costs, as in [4,6,7,9]; (2) the use of
fewer shape priors to reduce reconstruction complexity and obtain more of the actual body silhouette,
such as in [5,8]; (3) the development of more sophisticated alignment algorithms to improve modeling
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accuracy, as in [5,7]; (4) the better quality RGB-D data inputs to obtain more model detail based on
artificial denoising or a more reasonable capture strategy, as in [7,8,10–12]. Although previous works
achieved a great deal in these aspects, it is still necessary to improve modeling quality and efficiency
because of increasing demands on practicality.

In this paper, we take all these concerns into account and propose a new method for easy and fast
3D avatar reconstruction with an RGB-D sensor. A Kinect sensor is adopted to finish the data capture
of the full human body, which preserves the benefits of convenience in practical applications without a
complex setting. Users can easily run it at home or in an office with a personal computer and a small
workspace. A turntable or second operator is not necessary during scanning. Furthermore, the accuracy
of reconstructed models is better than that of the previous work in comparison. The contributions of
this paper include the following:

(1) We adopt a new data capture strategy to scan the human body. It captures data from six views by
rotating the human body, and in each view only three frames are obtained in upward, horizontal
and downward directions (see details in Section 4.1). Thus, there are a total of 18 frames that
cover the full human body, which dramatically reduces the amount of captured frames compared
to previous work. For instance, in the system by Cui et al. [6], the user is turned around every
20 to 30 s to capture 10 frames within 0.5 s intervals; in the work of Tong et al. [5], each Kinect
acquired images at 15 frames per second about every 30 s; in the system of Li et al. [7], the user
was scanned from eight to nine views, and in each view, roughly 150 raw frames were captured.
The greatly reduced amount of captured frames in our work helps reduce the computation loads
for raw data analysis and thus speeds up the modeling procedure.

(2) We propose efficient alignment algorithms for aligning the point clouds in a single view and
multi-views. Based on the new data capture strategy, new efforts have been made to achieve
authentic aligned results quickly, including: (I) exploring the optimal combination of different
correspondence pairing methods concerning alignment quality and efficiency both in the rigid
and non-rigid alignment; (II) designing a three-step non-rigid alignment algorithm, which, unlike
in previous works of human body modeling, introduces a pre-alignment of multi-view data
frames using the model silhouettes to reduce the search space and thus improve alignment
efficiency; (III) managing the point clouds throughout all the steps in alignment, which is
helpful for generating more accurate results with no errors generated by the mesh operations;
(IV) aligning the point clouds without the assistance of shape priors or subdivision tools, which
helps to simplify the reconstruction procedure and reduce reconstruction complexity.

(3) We offer an easy-to-follow platform for 3D avatar modeling, one that highlights the technique
details in each step and makes it possible for readers to follow along or develop such a method.
With this platform, users can quickly generate 3D avatars for human factors/ergonomics
applications, virtual entertainment and business.

New improvements have been made in the number of Kinects, scanning easiness and modeling
efficiency. Because of these improvements, it is possible to reconstruct 3D avatars easily and quickly
with an RGB-D sensor within a small workspace in home or office and obtain accurate results in most
scanning scenarios. Experimental results are shown to validate the performance of our method and
present its progress when compared with similar work.

2. Related Work

2.1. RGB-D Sensors for 3D modeling

Emerging RGB-D sensors integrate the strength of optical cameras and laser-based 3D scanners.
They can obtain 3D measurement of objects and are almost portable like optical cameras. Thus,
3D modeling has become more practical with affordable RGB-D sensors, such as the Microsoft
Kinect. Meanwhile, the open source point cloud library (PCL) offers direct accessibility to the Kinect
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camera [13]; RGB-D programs can be efficiently developed and closely integrated with the open
platform OpenNI [14]. Microsoft also developed KinectFusion to help ordinary users scan and model
a scene by hand-holding the Kinect camera. Many applications have been developed based on such a
system; for example, Newcombe et al. used it for surface mapping and tracking [15], and Dong et al.
applied it to reconstruct indoor space [16]. However, 3D modeling by KinectFusion is a depth-only
approach and does not consider deformable shapes.

In 3D human reconstruction, the user cannot stand behind the 3D sensor and should be scanned
from different views for data capture. In previous works, Weiss et al. adopted a single Kinect to capture
humans wearing undergarments in various poses and computed body shapes by fitting them into a
SCAPE model [2,4]. Tong et al. used three calibrated Kinects and a turntable to capture different body
parts in the front and back sides and then reconstructed a 3D body shape [5]. Cui et al. reconstructed
the human body with a system where the subject turned continuously around 360 degrees before a
static Kinect while maintaining an approximate “T” pose [6]. Li et al. reported a 3D self-portrait system
using a single Kinect by rotating the user based on 8~9 views with approximately 45 degrees between
views [7]. Chen et al. realized 3D personalized avatar modeling with multiple Kinects targeting
at a greater fast capture speed [8]. Zhu et al. proposed a dynamic human body modeling using a
single RGB camera by taking advantage of human motion to decrease the chance of self-occlusion
and utilized a general template to generate parametric human model [9]. However, a more ingenious
approach for body scanning is still expected to improve modeling efficiency, accuracy and convenience.
Our method proposes a new scanning strategy in 6 views and captures 18 frames to fully cover the
body, which reduces the scan workload dramatically and thus improves modeling speed.

2.2. Multi-view Alignment

The 3D avatar is reconstructed by stitching together the sequence of captured RGB-D frames in
different views. At first, it is important to execute rigid frame-frame alignment by matching their
overlapping regions. Currently, both the image-based and shaped-based methods have been well
studied [17]. Image-based alignment is typically achieved by sparse feature matching and epipolar
geometry; Khoshelham et al. [18] presented an epipolar search method to obtain more accurate 3D
correspondences. Shape-based alignment is mainly based on iterative closest point (ICP) algorithms,
in which the algorithm proposed by Rusinkiewicz and Levoy [19] is preferred due to its efficiency
and reliability. Since the ICP method and its variants can handle local rigid alignment well [20], most
3D reconstruction methods based on continuous depth frames have adopted such methods [21,22],
in particular in human reconstruction with Kinects [6–8,23]. Given that calibration is required for the
RGB images and depth images and geometric information is more reliable than visual information,
we use the ICP-based method for local and global alignment, which helps to obtain more robust results
in different cases.

In terms of aligning multi-view frames, common strategies include sequential alignment or
pairwise alignment, which register each frame based on its previous frame. For instance, Chen and
Medioni [24] proposed an approach to register consecutive frames with enough overlapping area
without requiring point-to-point matching; Masuda [25] integrated the ICP algorithm and registered
a depth image to a given model through a set of rigid motion parameters. However, it is possible
to have tiny errors in pairwise alignment due to data noise and data incompleteness. These errors
may accumulate when aligning multiple frames, particularly when thousands of frames are involved
in the sequential approach. The accumulation of alignment errors leads to loop closure or even
drift problems for long sequences of frames. The work of Henry el al. [26] and Endres et al. [27]
addresses the loop closure problem well but relies on the distinctiveness of visual features, which
requires the input data to have high resolution and little noise. To alleviate this issue, another strategy
of simultaneous registration, namely, aligning all frames at once, was introduced; Li et al. [28] and
Nishino and Ikeuchi [29] reported simultaneous registration methods. However, these approaches
require search correspondences between the overlapping parts of all data frames over multiple views,
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which is exhaustive and computation-expensive. Considering alignment efficiency, we propose a
three-step multi-view alignment algorithm for the sequence of point clouds in different views. It is
useful for solving the loop closure problem and enables fast 3D avatar modeling.

Another problem in multi-view alignment is non-rigid deformation, which may be caused by
inevitable relative motion or data loss during the data capture. In the literature, some researchers used
prior templates to fit each scan frame for alignment [30,31]. This approach acquires a relative accurate
template and markers for model fitting and is more common in dynamic human modeling. Some used
semi-templates since an accurate template is difficult to obtain in many circumstances; for example,
Li et al. [7] used a crude approximation of the scanned object as a shape hull, and Tong et al. [5] used
a rough template constructed by the first data frame. In our method, because the new data capture
strategy can obtain good quality data in most cases, we make use of the normal information of data
points for pairwise correspondence computation between neighboring views. This attempt can reduce
alignment complexity and improve the efficiency of 3D reconstruction under the condition of accuracy.

3. Overview

This method aims to provide an easy and fast approach of 3D avatar reconstruction to users.
With a single RGB-D sensor such as Kinect, users can easily setup the scanning scenario and run the
software on a personal computer to start and even finish the scanning and modeling procedure by
themselves. The system setup is shown in Figure 1. The Kinect sensor is adjusted to the height of the
waist of the user, and the scanning distance to the user is within 1 m. After starting the procedure, the
user rotates himself/herself continuously to capture six views. In each view, the user is captured with
three data frames automatically; namely, one frame is horizontal to the Kinect; one frame is 20 degrees
above the horizontal; and one frame is 20 degrees below the horizontal. After the three frames are
captured, a friendly voice reminds the user to move to the next view. The intervals for voice command
is a controllable variable on the interface which the users can adjust for their preference.
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Figure 1. System setup of the 3D human body scanning scenario.

When the 3D scanning is finished in all views, there are only 18 data frames that fully cover the
human body. Thus, the computation speed for data denoising and alignment can be greatly enhanced
due to the reduced number of frames. The reconstruction pipeline of our method is shown in Figure 2.
The captured data frames are segmented from the background with specified depth thresholds and
proceed with the necessary denoising of the data. Then, the three captured frames in a view are
registered by local rigid alignment to fuse a view frame of the human body. Thereafter, 6 fused view
frames are further globally aligned and merged. In the three-step multi-view alignment, the frames in
neighboring views are first aligned and then gradually fused into two frames representing the body
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front and back sides; eventually, these two frames are stitched together to generate a complete data
frame for the whole human body.
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Figure 2. Pipeline of reconstruction of the 3D avatar.

Based on this globally aligned data frame, a recent version of the Poisson reconstruction
method [32] is adopted to generate a 3D human body model with a watertight surface. Due to
the small amount of data frames in the local and global alignments, we can complete the reconstruction
efficiently. Furthermore, the RGB data can be directly input into the Poisson reconstruction method;
thus, the reconstructed model is mapped with texture at the same time.

4. Reconstruction Approach

4.1. Data Capture

The first step in 3D avatar reconstruction is to capture the RGB-D data. As discussed above, the
user stands in front of the Kinect at a close distance (around 1 m, and 1.2 m is enough for the majority
of people), which helps to obtain higher quality data. It is noted that the resolution of images from the
Kinect is relatively low, in particular when the scanning distance increases, both the depth accuracy
and resolution decreases quadratically. However, through experimental investigation, we find that the
close scanning distance strategy can greatly improve the resolution of captured images. Figure 3 shows
the difference in data quality of the scanned human body when adopting different distance strategies.

Sensors 2017, 17, 1113 5 of 21 

 

representing the body front and back sides; eventually, these two frames are stitched together to 
generate a complete data frame for the whole human body.  

 
Figure 2. Pipeline of reconstruction of the 3D avatar. 

Based on this globally aligned data frame, a recent version of the Poisson reconstruction 
method [32] is adopted to generate a 3D human body model with a watertight surface. Due to the 
small amount of data frames in the local and global alignments, we can complete the reconstruction 
efficiently. Furthermore, the RGB data can be directly input into the Poisson reconstruction method; 
thus, the reconstructed model is mapped with texture at the same time. 

4. Reconstruction Approach 

4.1. Data Capture 

The first step in 3D avatar reconstruction is to capture the RGB-D data. As discussed above, the 
user stands in front of the Kinect at a close distance (around 1 m, and 1.2 m is enough for the 
majority of people), which helps to obtain higher quality data. It is noted that the resolution of 
images from the Kinect is relatively low, in particular when the scanning distance increases, both the 
depth accuracy and resolution decreases quadratically. However, through experimental 
investigation, we find that the close scanning distance strategy can greatly improve the resolution of 
captured images. Figure 3 shows the difference in data quality of the scanned human body when 
adopting different distance strategies.  

(a) (b) (c)

Figure 3. Scanned human bodies from different scanning distances: (a) 2 m distance; (b) 1.5 m 
distance; (c) 1 m distance. 

Since the field of view of the Kinect is limited, we use three frames to capture the body in a 
single view. To realize an automatic capture, the Kinect’s motorized tilt feature is utilized to 
maneuver between the upward, horizontal and downward views. When the three frames have been 
captured successfully, the user rotates himself approximately 60 degrees. However, in practice, it is 

Figure 3. Scanned human bodies from different scanning distances: (a) 2 m distance; (b) 1.5 m distance;
(c) 1 m distance.

Since the field of view of the Kinect is limited, we use three frames to capture the body in a
single view. To realize an automatic capture, the Kinect’s motorized tilt feature is utilized to maneuver
between the upward, horizontal and downward views. When the three frames have been captured
successfully, the user rotates himself approximately 60 degrees. However, in practice, it is difficult
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to rotate precisely 60 degrees; thus, the user may rotate five times and evaluate based on perception,
which has no influence on the results of reconstruction. That is because our three-step alignment
algorithm can handle the rotation angle within 90 degrees. Figure 4 shows an example of the raw
captured data of six views, which is a total of 18 frames of images.
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During the scanning, a turntable or a second operator is not necessarily needed to assist with
the procedure. Ordinary users with no domain knowledge can finish the data capture by themselves.
Each data frame of RGB-D from the Kinect includes a 640 × 480 color image and a 640 × 480 depth
image. By using OpenNI [14], 3D coordinates of the data are automatically generated, and the depth
and color images are also calibrated by mapping the depth image to corresponding RGB points.
The calibrated RGB-D images are then further segmented and denoised.

4.2. Segmentation and Denoising

The captured data frames cover not only the human body but also the surrounding environment
in the scanning range. In order to segment the RGB-D data for the human body from the background,
we first figure out the bottom of the human body data by cutting a plane, then give a threshold θ to
the depth value (for the 1 m scanning distance, θ = 1.5 m) for separating the pixels since the scanned
human body is close to the sensor.

Meanwhile, the accuracy of the captured data can be affected by noise due to sensor coverage,
lighting variations, surface transparency and scattering, and also by lateral noise, which is generated
during registration of the RGB image and the depth image by OpenNI. For the RGB image, we use
the work of Barron and Malik [33] in the reconstruction of shape, reflectance and illumination from a
single image to smooth the errors caused by the lighting environment. As to the lateral noise, we draw
out the edges of segmented data and then compare the edge pixels to compute the deviation of color
brightness and hue. Here, we use the scan line to scan each row of pixels in the image for edge
detection. Since the background has already been removed, the first pixel with color value is set as
the edge of the human body, and the width of the edge is defined as k pixels (k = 10 in most cases).
A comparison of the pixels starts from the first pixel on the edge until the last one. If the adjacent
pixels on the edge line have deviation of more than 20% in color brightness or more than 3% in color
hue, we delete the sequence of pixels before the pixel whose color value is quantitatively changed to
remove the errors. For the depth image, due to the close scanning strategy adopted in this paper, the
quality of depth values has been greatly improved as shown in Figure 3. First, pixels with zero depth
value are deleted, and then the Laplacian method [34] is utilized to smooth the noise. A demonstration
of data frame segmentation and denoising is shown in Figure 5.
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After the segment and denoising process, the Kinect depth images are converted into 3D point
cloud data before data alignment. In the following local and global alignment, we directly use the 3D
point clouds to align different frames rather than the meshes generated by the data points. This attempt
could help to improve alignment accuracy by avoiding the errors generated by mesh operations.

4.3. Local Rigid Alignment

For the three data frames in a single view, we implement pairwise local rigid alignment for
consecutive frames by using the geometric ICP method. Although the ICP-based method may not
perform well when there is small overlap between the aligned frames [8], it is not a bottleneck in this
method due to the fact that there is enough overlap between two consecutive frames in a view that
has only a 20 degree pitching angle between them. On the other hand, the limited number of data
frames in a single view (only 3) leads to effective alignment in a short time, while in previous works,
such as [8], the long sequence of frames usually needs to repeat the alignment in reverse to refine the
alignment quality.

Denote F =
{

f k
i

∣∣∣i = 0, ..., 17, k = 0, ..., N fi

}
as all the point clouds of the data frames, and N fi

is
the number of points of frame fi. Let fi be the horizontal frame, fi+1 be the upward frame, and fi+2 be
the downward frame; first, fi+1 and fi, fi+2 and fi are rigidly ICP-aligned, and then fi, fi+1, fi+2 are
further merged to generate the aligned frame in a single view, as shown in Figure 2. Similarly, the data
frames captured in other views are rigidly aligned. There are a total of six merged data frames for the
six scanning views.

For the point clouds in a single view, it is found that the means of the closest Euclidean distance
works well in correspondence point searching and performs well in terms of alignment when compared
with other methods (discussed later) such as the normal shooting method. Hence, we adopt the closet
Euclidean distance as the metric to search the correspondence points for the input data points, and
the data structure of k-d tree (k = 1) is adopted to speed up the searching process. The maximum
search range for correspondence pairs is within the distance between the centers of gravity (gi, gj)

of two point clouds ( fi, f j), which is calculated as d = sqrt((gix − gjx)
2 + (giz − gjz)

2) for the point
clouds in a single view. Because the data frames in a view are captured on the horizontal, upward
and downward view, the y values of data points, which indicate the height information, exhibit great
differences in consecutive frames and thus are not incorporated into the gravity center calculation.
With the searched correspondence points, the correspondence distance between the point pairs is
calculated by the point-to-tangent plane method rather than the point-to-point method; namely, we
calculated the distance between the input point and the tangent plane of its mate point.
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Let pi and qi denote the correspondence point pairs of two consecutive point clouds; the
correspondence distance of the point-to-tangent plane is calculated by:

d(pi, qi) = (pi − qi) · nqi (1)

where nqi is the unit normal vector at points qi. The normal of a point on a surface is approximated by
estimating the normals of a plane tangent to the surface, which is transformed as a least-square plane
fitting estimation problem in k-nearest neighboring points Qk [35]. Denote q as the centroid of Qk by
q = 1

k ∑k
i=1 qi; the normal of the point q is calculated by analyzing the eigenvalues and eigenvectors of

the covariance matrix C ∈ R3×3 of Qk by:

C =
1
k

k

∑
i=1

(qi − q)(qi − q)T , Cvj = λjvj, j = {0, 1, 2} (2)

where C is positive semi-definite and symmetric, and its eigenvalues are λj. When 0 ≤ λ0 ≤ λ1 ≤ λ2,
the eigenvector corresponding to the smallest eigenvalue is the approximation of the inquired normal
vector. Thus, the alignment of two consecutive frames is to minimize the distance by solving the
error function:

E = argmin
M

∑
i
‖(Rpi + T − qi) · nqi‖2 (3)

The solution of Equation (3) can be obtained by approximating the non-linear least-squares method
into an optimized linear least-squares method [36]. pi and qi are represented as pi = (pix, piy, piz, 1)T

and qi = (qix, qiy, qiz, 1)T , and M is a 4× 4 3D rigid-body transformation matrix, which is composed of
a rotation matrix R(α, β, γ) and a translation matrix T(tx, ty, tz), where

T(tx, ty, tz) =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

, R(α, β, γ) =


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

 (4)

with r11 = cos γ cos β, r12 = − sin γ cos α + cos γ sin β sin α, r13 = sin γ sin α + cos γ sin β cos α,
r21 = sin γ cos β, r22 = cos γ cos α + sin γ sin β sin α, r23 = − cos γ sin α + sin γ sin β cos α,
r31 = − sin β, r32 = cos β sin α, r33 = cos β cos α, α, β, γ are the rotation radians about the x, y and z axis

in the right hand coordinate respectively, namely, Rz(γ) · Ry(β) · Rx(α) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 ·
 cos β 0 sin β

0 1 0
− sin β 0 cos β

 ·
 1 0 0

0 cos α − sin α

0 sin α cos α

.

Suppose ∀θ ≈ 0, then sin θ = 0; thus, when α, β, γ ≈ 0, M can be approximated as:

M = T(tx, ty, tz) · R(α, β, γ) =


1 −γ β tx

γ 1 −α ty

−β ∂ 1 tz

0 0 0 1

 (5)

Then, Equation (3) can be solved by linear expression as:

(Rpi + T − qi) · ni =

M


pix
piy
piz
1

−


qix
qiy
qiz
1


 ·


nqix
nqiy
nqiz

0

 (6)
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It is noted that the approximation in the solution is based on the assumption of α, β, γ ≈ 0, and
the results will become more accurate when the two aligned point clouds are closer after iterative
computation. In our scanning strategy, since the consecutive frames in a view are already very close
after the 20 degree rotation, this solution works very well for the local alignment. The criterion for
ending the computation iteration is when (

∣∣∣Mk+1
∣∣∣ − ∣∣∣Mk

∣∣∣) < 0.01 between two steps. However,
there are usually less than 10 computation iterations since the point-to-tangent plane method
converges quickly.

As discussed above, there are alternative methods in correspondence point searching and
correspondence distance calculation. We illustrate the result of the method used in this paper and
compare its performance with that using the combination of other methods. As shown in Figure 6,
Figure 6a is the input of two original point clouds in a single view (the red one and blue one),
Figure 6b–e are the aligned results when employing different methods on the same two input data.
It can be seen that Figure 6b,e using closest Euclidean distance (CED) in correspondence point searching
have faster computation speed than those using the normal shooting (NS) method, while Figure 6d,e,
which use the point-to-tangent plane (PTTP) method in correspondence distance calculation, have
much better alignment results with smaller maximum error of Euler distance between two aligned
frames. Such a comparison shows that the closest Euclidean distance and point-to-tangent plane
methods used in this paper can quickly achieve local rigid alignment with good results.
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With the rigid alignment algorithm, the three data clouds in a single view are aligned by the 
group of two consecutive frames, and then they are merged into one point cloud for this view. 
Because point density increases greatly after merging the three frames, a down-sampling action is 
undertaken using the voxel grid of PCL, in which the space is divided into a set of tiny 3D boxes 
and all the points present in space are approximated with their centroid. 

4.4. Multi-View Alignment 

After all the data frames have been rigidly aligned group by group and the data frames for the 
6 views are generated, a three-step multi-view alignment is proposed to further globally align and 
fuse them together. As reviewed in Section 2, the multi-view alignment could be simultaneous, 
sequential or pairwise registration. However, simultaneous registration requires more computation 
iterations to converge, whiles sequential registration is dependent on previous frames and 
accumulates registration errors easily. To achieve both alignment efficiency and accuracy, the 
multi-view alignment is designed, which includes three steps: (1) pre-alignment of the multi-view 
frames; (2) rigid alignment of the multi-view frames and (3) non-rigid alignment of the multi-view 
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Figure 6. Local rigid alignment results when using different methods in correspondence pairing
computation: (a) Original two consecutive point clouds in a view (red and blue); (b) Result by
using CED and PTP; (c) Result by using NS and PTP; (d) Result by using NS and PTTP; (e) Result
by using CED and PTTP. * CED: closest Euclidean distance method in correspondence point
searching; NS: normal shooting method in correspondence point searching; PTP: point-to-point method
in correspondence distance calculation; PTTP: point-to-tangent plane method in correspondence
distance calculation.

With the rigid alignment algorithm, the three data clouds in a single view are aligned by the
group of two consecutive frames, and then they are merged into one point cloud for this view. Because
point density increases greatly after merging the three frames, a down-sampling action is undertaken
using the voxel grid of PCL, in which the space is divided into a set of tiny 3D boxes and all the points
present in space are approximated with their centroid.

4.4. Multi-View Alignment

After all the data frames have been rigidly aligned group by group and the data frames for the
6 views are generated, a three-step multi-view alignment is proposed to further globally align and fuse
them together. As reviewed in Section 2, the multi-view alignment could be simultaneous, sequential
or pairwise registration. However, simultaneous registration requires more computation iterations to
converge, whiles sequential registration is dependent on previous frames and accumulates registration
errors easily. To achieve both alignment efficiency and accuracy, the multi-view alignment is designed,
which includes three steps: (1) pre-alignment of the multi-view frames; (2) rigid alignment of the
multi-view frames and (3) non-rigid alignment of the multi-view frames again. Pairwise alignment is
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performed between neighboring views, and the geometric constraint is used for the computation of
pairwise correspondence to achieve global alignment of multiple views.

Denote S =
{

sk
j

∣∣∣j = 0, ..., 5, k = 0, ..., Nsj

}
as the merged point clouds of the data frames for the 6

views, and Nsj is the number of points of the frame sj. Let s0, s1, s2 denote the frames on the front side,
the left-to-front side and the right-to-front side, respectively, and let s3, s4, s5 denote the frames on
the back side, the left-to-back side and the right-to-back side, respectively. Following are the specific
algorithms in the three steps:

Step 1: Pre-alignment of the multi-view frames. To avoid an exhaustive search for all possible
correspondence pairs, thus improving alignment efficiency, we first perform a pre-alignment of all
the partial views by searching their pairwise correspondence on the silhouette. Considering that
the extraction of the body’s silhouette is easy to confine to local sharp areas, such as the fingers,
we determine the silhouette of the point cloud in a differential way to achieve global smooth
distribution. Set ∆u (∆u = 10 mm) as a differential unit in the 2D space of the y axis, and then
the number of differential units Nd is decided by the maximum and minimum of the point cloud
on the y axis, namely, Nd = (ymax − ymin)/∆u; then, the 3D space is divided into Nd sub-regions
accordingly. Given a point p0 = (p0x, p0y, p0z), which is located in the ith (i = (p0y − ymin)/∆u)
sub-region, we designate a project plane vertical to XOZ at the inquired side of the point cloud, then
search all the points {pm} in the ith sub-region and calculate their distances to the plane by:

dm(pm, θt) = pmx sin θt − pmz cos θt (7)

where θt denotes the angle between the project plane and y axis. Suppose
∀θt =

{
−120

◦
, −90

◦
, −60

◦
, 60

◦
, 90

◦
, 120

◦}∣∣t = 0, ..., 5 , and θt is the same for all the points in
the same view. We sort all the points in a sub-region by the descending distance dm and choose k (k = 5)
points with minimal values as the correspondence points on the silhouette. Figure 7 shows an example
of the searching correspondence points of the silhouette for two neighboring views. With the searched
silhouette points in the neighboring views, those with the same descending orders in the same number
of sub-regions are chosen as correspondence pairs.
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Figure 7. Example of searching correspondence points on the silhouette.

When all the partial views finish searching and paring the correspondence points on the silhouette,
the neighboring views can be aligned by pairwise correspondence based on the closest Euclidean
distance. The pre-alignment procedure for all 6 views is repeated 5 times, as shown in Figure 8.
In theory, pre-alignment can be conducted iteratively in turn, such as by clockwise order. However,
the scanned body has more exposure to the sensor on the front and back sides; thus, the captured
frames on these two sides have more data points, which may offer more overlap between neighboring
views. This can help to improve the quality of alignment and obtain more accurate results. Therefore,
pre-alignment is first conducted for the front and back views with the side views, namely, s0 and s1, s0
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and s2, s3 and s4, s3 and s5, and finally s0 and s3. In the reference, similarly, Wang et al. [34] had used
the contours coherence to align two wide baseline range scans with limited overlap.
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Figure 8. Pre-alignment between the 6 partial views.

Step 2: Rigid alignment of the multi-view frames. With pre-alignment, the partial views already have
optimal initial alignment. They can be further rigidly aligned by the group of two point clouds in
neighboring views to obtain a more accurate body shape in the 3D space. In this step, we use the
ICP-based method again as discussed in Section 4.3, namely, combining the closest Euclidean distance
method in correspondence point searching and the point-to-tangent plane method in correspondence
distance calculation. The maximum range of correspondence point searching is still the distance
between the centers of gravity of two point clouds (gi, gj); however, its calculation is updated as
d = sqrt((gix − gjx)

2 + (giy − gjy)
2 + (giz − gjz)

2) for the point clouds of partial views. Our experimental
investigation finds that the correspondence pairs that have too much distance between them lead to
inaccurate correspondence and should therefore be discarded. Figure 9 demonstrates the calculated
correspondence points of two frames in neighboring views. As mentioned in Section 4.3, the rigid
alignment solution is based on the assumptions of α, β, γ ≈ 0, and the two point clouds are close to
each other. In this step, the pre-alignment in Step 1 has already determined a close initialization for
the neighboring data frames, which can ensure that the alignment solution works well. The pairwise
rigid alignment procedure for all six views is similar to that shown in Figure 8. There are five times
alignments in total for the front view, the back view and their neighboring views on the left and
right sides.
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Step 3: Non-rigid alignment of the multi-view frames. Loop closure is an important problem in
alignment, which means after multiple times of rigid alignment, the shape of the aligned object has
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no tight closure due to the accumulation of errors occurred in every rigid alignment. Although the
above two steps have already achieved primary registration for the multi-view frames, when we
merge them progressively, the loop closure problem occurs inevitably due to the possible relative
motion (as shown in Figure 10). It is necessary to solve this problem by distributing the errors evenly
over all the sequential frames, which is rather effective for the static objects. In practice, during the
scanning process, the human body does not remain completely still and inevitably exhibits movement.
Meanwhile, the deformation is also possibly caused by the dress, hairstyle or even the calibration of
the sensors. Thus, a non-rigid global alignment is required to deal with such problems.
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Figure 10. The loop closure problem from point clouds in rigid alignment: (a) Before non-rigid
alignment; (b) After non-rigid alignment. It can be seen from the comparison on the marked areas.

Similar to local rigid alignment, we first compute pairwise correspondences between the
neighboring views and then register and merge all the partial views progressively into a final global
frame of the human body. Given that adding higher-order information to the minimization criterion,
such as normals and curvatures, can decrease the possibility of convergence to local minima in
a non-rigid situation, we take into consideration the normals of the point cloud in the stage that
involves searching pairwise correspondence points. Namely, the normal shooting method is used
to search for the correspondence points, where the intersecting points between the normal vector of
the input point and the target point cloud are selected as the candidate points. The data structure
of k-d tree is also utilized to make the searching faster, where k = 10 candidate points nearest to the
input point are searched to compare their distances to the normal vector. In the set of candidate
points, the one having the shortest distance is selected as the mate point. The maximum search
range for correspondence pairs is still set as the distance between the centers of gravity of two point
clouds. In the stage of correspondence distance calculation, the point-to-tangent plane method, which
contributes substantially to good alignment results, is adopted. Later, we also compare the performance
of non-rigid alignment when employing different methods for correspondence point searching and
correspondence distance calculation.

Once computing the pairwise correspondences between the point clouds of neighboring views,
we construct the deformation model in the form of a deformation graph to allow natural shape
deformations. For the two point clouds p, q, which will be aligned, p is first down-sampled at the rate
of 50 mm, where each point is modeled as a node in the graph, and then p, q are down-sampled at the
rate of 15 mm to establish correspondence pairs. An affine transformation matrix including a 3 × 3
rotation matrix R and a 3 × 1 translation vector t is associated to each graph node. Furthermore, each
graph node xi influences a deformation within the surrounding space of radius ri. Denote (Ri, ti) as
the transformation matrix of graph node xi; a vertex vj of the embedded shape will be transformed by:

v′j = ∑
xi

w(vj, xi, ri)[Ri(vj − xi) + xi + ti] (8)
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where w is the normalized weights and w(vj, xi, ri) = max(0, (1− d2(vj − xi)/r2
i )

3
); d(vj − xi) is the

distance from vj to xi; when the distance exceeds the influence space of radius ri(ri = 50 mm), the
weight is 0. During the transformation, to avoid looking through all the graph nodes and to speed up
the procedure, the k-d tree is further used to search out the nodes within the space of radius ri.

In theory, the goal of non-rigid alignment is to determine the affine transformation of the source
point cloud to the target one with minimal energy [28], thus we formulate non-rigid alignment as the
minimization of the energy:

E = argmin (w1Erigid + w2Esmooth + w3Ecor) (9)

where Erigid and Esmooth serve to ensure the local rigidity and smoothness of deformation,
respectively, and Ecor measures the deviation of the correspondence. For two graph nodes (xi, xj),
Esmooth = ∑

xi
∑
xj

w(xj, xi, ri + rj)‖Ri(pj − pi) + pi + ti − (pj + tj)‖2

2

, Erigid penalizes the deviation of

each transformation from a pure rigid motion and Erigid = ∑
i

Rot(Ri). Suppose e1, e2, and

e3 are the 3 × 1 column vectors of the 3 × 3 matrix R; then, Rot(R) = (et
1 · e2)

2
+ (et

1 · e3)
2
+

(et
2 · e3)

2
+ (1− et

1 · e1)
2
+ (1− et

2 · e2)
2
+ (1− et

3 · e3)
2. Let C be the set of all pairwise correspondence,

and c1 and c2 are the correspondence pairs for each correspondence, we therefore adopt the
point-to-tangent plane method in correspondence distance calculation, thus, Ecor is updated as

Ecor =
1
|C| ∑

(c1,c2)∈C
‖
((

∑
xi

w(c1, xi, ri)(Ri(c1 − xi) + xi + t)
)
− c2

)
· nc2‖

2
.

The optimization of Equation (9) can be solved by using the Nonlinear Least Squares algorithm
in [37]. Equation (9) is minimized by Gauss-Newton iterations, and a sparse Cholesky factorization
is employed to solve the linear equation in each iteration. We follow the findings in [8] and set the
weight parameters as w1 = 500, w2 = 2.0, w3 = 2.5. The description of the non-rigid alignment
algorithm for two point clouds in neighboring views is shown in Algorithm 1. Generally, the solver of
Gauss-Newton can converge within 15 iterations. During this non-rigid alignment, the most important
factor influencing the computation is from the correspondence point pairing. If given some initial
registration error, it will lead to repeated matching dozens of times. Fortunately, in the first step of
pre-alignment, all the partial views have already been configured well with initial alignment; thus, this
non-rigid multi-view alignment is fast to converge.

To demonstrate alignment performance using the normal shooting and point-to-tangent plane
methods in correspondence computation in the above, we compare the results of non-rigid alignment
on the same input of two point clouds in neighboring views (as shown in Figure 11) when adopting
various combinations of methods in correspondence pairing computation. As shown in Figure 12, the
results from the point-to-tangent plane (PTTP) method indicated in Figure 12c,d have better non-rigid
alignment quality which have smaller maximum error of Euler distance between two aligned frames
and much faster speed than those based on the point-to-point (PTP) method indicated in Figure 12a,b.
Thus, the point-to-tangent plane method works well for no-rigid alignment. Meanwhile, a comparison
of the results of Figure 12a–d for closest Euclidean distance (CED) and normal shooting (NS) methods
in correspondence point searching shows that the normal shooting (NS) method can improve both
alignment efficiency and quality. However, in local rigid alignment, it is observed that the NS method
contributes to inferior alignment performance. This phenomenon is due to the fact that the NS method
requires more time in correspondence point searching and may obtain fewer points but better accuracy
than the CED method. The number of correspondence points influences the subsequent steps in
non-rigid alignment and may lead to remarkable differences in the total performance of alignment,
which is more significant than the difference in correspondence point searching. However, the number
of correspondence points has little influence on subsequent steps in local rigid alignment, the final
performance of which is mainly affected by the time involved in correspondence point searching.
Meanwhile, the point clouds have been down-sampled before the non-rigid alignment step, and the
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number of data points is greatly reduced, while the point clouds are much denser in the local rigid
alignment. These facts cause the difference in performance of the NS and CED methods in local rigid
alignment and global non-rigid alignment, respectively.

Algorithm 1: Non-rigid alignment for two point clouds in neighboring views.

1: point cloud Q:= down-sampled P1 (50 mm)
2: point cloud S1:= down-sampled P1 (15 mm), point cloud S2 := down-sampled P2 (15 mm)
3: new embedded deformation graph G with G.node_amount = Q.point_amount
4: for i:= 1 to Q.point_amount
5: G.node[i].xyz := Q.point[i].xyz
6: G.node[i].translation_matrix:= 3 × 1 zero matrix
7: G.node[i].rotation_matrix:= 3 × 3 identity matrix
8: end for
9: while not reach max iteration times or stop condition
10: for i:= 1 to S1.point_amount
11: S1.point[i].correspondence:= corresponding point in S2
12: end for
13: matrix X:= all rotation matrix and translation matrix in G
14: new Gauss-Newton iterator (X = arg min (w1Erigid + w2Esmooth + w3Ecor))

15: new matrix f
16: while not satisfy precision requirement
17: compute matrix f according to w1Erigid + w2Esmooth + w3Ecor

fTf = 2(w1Erigid + w2Esmooth + w3Ecor)

18: matrix J := jacobian_matrix(f)
19: Cholesky_Decompositon.solve_linear_equation

Obtain the iteration hk+1 = hk + ∆h where JTJ ∆hk = −JTf
20: X:= X + h
21: Update E;
22: end while
23: deform P1 with G
24: end while
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With the deformation model, non-rigid alignment is executed iteratively for all partial views
following the procedure in Figure 8. The difference with Step 1 and Step 2 above is that it aligns and
merges the two neighboring views into a single metaview in a progressive way. Namely, s0 and s1 are
aligned, s0 and s2 are aligned, and then s1 and s2 are merged with s0 into a metaview t0. Similarly, the
frames of s3, s4, s5 are aligned between neighboring views and merged into a metaview t1, Finally, the
two metaviews t0 and t1 are aligned and merged into a point cloud for the global view of the human
body. To avoid non-uniform sample density, the merged data frame is followed with a down-sampling
operation with the rate of 2 mm.

4.5. Watertight Reconstruction

After all the point clouds are globally aligned and merged into a data frame for the whole human
body, we create a watertight mesh surface of the human body by using a recent version of screened
Poisson reconstruction method [32]. The point cloud is first transferred into the polygon format, which
contains RGB data together, and then delivered to the surface reconstruction method. Since we deal
with the point clouds throughout all the steps, it is helpful to generate a more accurate surface without
errors being generated by the mesh operations. Furthermore, due to the aligned point cloud having
full coverage of the scanned human body, we do not use shape priors or hulls to fill in the data loss
regions (holes) or apply subdivision tools such as quadratic Bézier curves to interpolate the depth
data. Such new attempts help to simplify the reconstruction procedure and reduce the complexity of
3D human reconstruction. Another new feature of reconstruction is that the RGB data are associated
with the depth data and can be directly mapped on the generated surface; furthermore, the generated
visualization is acceptable for most applications of CAD-based design and virtual shopping. In such
cases, the reconstructed avatars are further extracted for accurate anthropometric data/features, which
will be used in human factor/ergonomic applications to ensure that the designs and standards are
realistic. This evolved function can save steps and reduce time spent on calculating and mapping
the texture.

It is noted that there may be data holes in the final point cloud for the whole human body, for
example, the hole on the head that cannot be reached by the sensor and the hole on the body caused by
self-occlusion. The screened Poisson reconstruction method can automatically fill in the holes during
mesh generation. However, it occasionally leads to obvious artifacts when there are big holes in the
point cloud.

4.6. Texture Mapping

Texture mapping for reconstructed 3D human models is optional in this method in case a more
refined image of the reconstructed models is preferred for the final presentation of the models, such as
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3D portrait. In order to map the texture information of RGB images to the corresponding 3D points
on the reconstructed surface, a closed mesh of the 3D models is first constructed by segmenting and
unfolding the 3D surface to the 2D domain. Then, the 18 frames of the cloud points of the human body,
which have been assigned with colors through Kinect’s calibration of RGB images and depth images,
are aligned without down-sampling by the local and global alignment algorithms. For a 3D point p on
the mesh surface, its texture information is assigned with the weighted average of color values of the
points in the data frames which are near p under a threshold.

5. Results and Discussion

In this section, we demonstrate the reconstruction results for 3D avatars based on our method in
different scanning cases and compare them with the results of similar works. The limitations of the
approach are also discussed. All the RGB-D datasets in the scanning experiments are captured with
a single Microsoft Kinect facilitated with a notebook computer (CPU Intel i5-2450 m 2.5 GHz, 4 GB
RAM) in a living room. The experiments are performed easily with the aid of an instructional voice
that reminds the subject to rotate, and they can be executed without turntables or other operators.

5.1. Experimental Results

Although there are a variety of human scanning scenarios with different specifications, we choose
five cases that represent classic scenarios in practice, including a male subject wearing tight clothing
(Case 1), loose clothing (Case 2) and winter clothing (Case 3), as well as a female subject wearing a
piece of floppy skirt (Case 4). These cases involve possible relative body motion and deformation at
different levels. The cases of a male subject wearing loose and winter clothing have more deformation
than the cases of a male subject wearing tight clothing. The case of the female subject is the most
challenging because she not only wears a piece of floppy skirt, which deforms easily and swings,
but she also has fluttering long hair. In addition, she is posed with arms akimbo, which could cause
self-occlusion during scanning. Following the reported reconstruction pipeline, the 3D avatar models
in these cases are reconstructed in a user-friendly and efficient way. Figure 13 shows the reconstruction
results, which include reconstructed avatar with mesh, avatar with color and avatar with texture. It can
be seen that our method can achieve desirable results of 3D avatars, with realistic clothing wrinkles
and deformation as well as realistic hairstyles in the case of the female subject. Compared to the
current methods based on laser scanning or infrared scanning, the Kinect scanning method is quite
flexible and able to conveniently obtain the virtual avatars of users with low cost.

Sensors 2017, 17, 1113 16 of 21 

 

segmenting and unfolding the 3D surface to the 2D domain. Then, the 18 frames of the cloud points 
of the human body, which have been assigned with colors through Kinect's calibration of RGB 
images and depth images, are aligned without down-sampling by the local and global alignment 
algorithms. For a 3D point p on the mesh surface, its texture information is assigned with the 
weighted average of color values of the points in the data frames which are near p under a 
threshold.  

5. Results and Discussion 

In this section, we demonstrate the reconstruction results for 3D avatars based on our method 
in different scanning cases and compare them with the results of similar works. The limitations of 
the approach are also discussed. All the RGB-D datasets in the scanning experiments are captured 
with a single Microsoft Kinect facilitated with a notebook computer (CPU Intel i5-2450 m 2.5 GHz, 4 
GB RAM) in a living room. The experiments are performed easily with the aid of an instructional 
voice that reminds the subject to rotate, and they can be executed without turntables or other 
operators.  

5.1. Experimental Results 

Although there are a variety of human scanning scenarios with different specifications, we 
choose five cases that represent classic scenarios in practice, including a male subject wearing tight 
clothing (Case 1), loose clothing (Case 2) and winter clothing (Case 3), as well as a female subject 
wearing a piece of floppy skirt (Case 4). These cases involve possible relative body motion and 
deformation at different levels. The cases of a male subject wearing loose and winter clothing have 
more deformation than the cases of a male subject wearing tight clothing. The case of the female 
subject is the most challenging because she not only wears a piece of floppy skirt, which deforms 
easily and swings, but she also has fluttering long hair. In addition, she is posed with arms akimbo, 
which could cause self-occlusion during scanning. Following the reported reconstruction pipeline, 
the 3D avatar models in these cases are reconstructed in a user-friendly and efficient way. Figure 13 
shows the reconstruction results, which include reconstructed avatar with mesh, avatar with color 
and avatar with texture. It can be seen that our method can achieve desirable results of 3D avatars, 
with realistic clothing wrinkles and deformation as well as realistic hairstyles in the case of the 
female subject. Compared to the current methods based on laser scanning or infrared scanning, the 
Kinect scanning method is quite flexible and able to conveniently obtain the virtual avatars of users 
with low cost.  

Avatar with Mesh Avatar with Color Avatar with Texture 

  

Case 1: 54,940 vertices, 109,320 meshes. 

Figure 13. Cont.



Sensors 2017, 17, 1113 17 of 21
Sensors 2017, 17, 1113 17 of 21 

 

  

Case 2: 50,488 vertices, 100,992 meshes. 

  

Case 3: 60,183 vertices, 120,401 meshes. 

  

Case 4: 51,416 vertices, 101,651 meshes. 

Figure 13. Reconstruction results of 3D avatars in four scanning cases. 

5.2. Performance Comparison 

To further demonstrate the performance of our method, the biometric measurement of 
reconstructed virtual avatars in the above experimental cases is calculated, and such measurement 
is conducted on the real bodies. Table 1 shows the average errors of biometric measurement in 
centimeters between the calculated and measured results of the human bodies. Meanwhile, we 
compare the similar results reported in [5,8] using two Kinects, and those reported in [6,9] using 
one Kinect. It can be seen that our results are better than the previous results on most of the items, 
such as the neck to hip distance, waist length, hip length, arm length and leg length. Although the 
biometric errors are not absolute when employing different human datasets, the 3D modeling 
method should be able to work for different subjects and has no obvious influence by the subjects' 
appearance, such as clothing and accessories. The comparison results in Table 1 indicate that our 
method is capable of obtaining accurate reconstructed human models. 

Figure 13. Reconstruction results of 3D avatars in four scanning cases.

5.2. Performance Comparison

To further demonstrate the performance of our method, the biometric measurement of
reconstructed virtual avatars in the above experimental cases is calculated, and such measurement is
conducted on the real bodies. Table 1 shows the average errors of biometric measurement in centimeters
between the calculated and measured results of the human bodies. Meanwhile, we compare the similar
results reported in [5,8] using two Kinects, and those reported in [6,9] using one Kinect. It can be
seen that our results are better than the previous results on most of the items, such as the neck to hip
distance, waist length, hip length, arm length and leg length. Although the biometric errors are not
absolute when employing different human datasets, the 3D modeling method should be able to work
for different subjects and has no obvious influence by the subjects’ appearance, such as clothing and
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accessories. The comparison results in Table 1 indicate that our method is capable of obtaining accurate
reconstructed human models.

Table 1. Average error of biometric measurements between the virtual and real human bodies.

Height
(cm)

Neck to Hip
Distance (cm)

Shoulder
Width (cm)

Waist Length
(cm)

Hip Length
(cm)

Arm Length
(cm)

Leg Length
(cm)

In [8] with two Kinect 1.0 2.4 1.9 6.5 4.0 3.2 2.2
In [5] with two Kinect 2.5 1.5 6.2 3.8 3.0 2.1
In [6] with one Kinect 2.1 1.0 3.2 2.6 2.3 3.1
In [9] with one Kinect 3.7 3.3 1.4
Ours with one Kinect 0.5 2.0 1.2 3.1 2.2 1.4 1.4

We also evaluate the running time of the thorough scanning and modeling procedure to validate
the performance of this method. Table 2 shows the average running time spent during each step and
also the computation cost of each step reported in [6,9], both of which used one Kinect. It can be seen
that the configuration of the hardware in our method is much simpler than those in [6,9], and our
method requires almost 40% less time than the other solutions, which did not include the time for
data scanning, as in [6]. The comparison demonstrates that our method has made much progress in
running performance since we have designed a more concise data capture strategy and more efficient
alignment algorithms.

Table 2. Average running time spent during each step in the thorough scanning and
modeling procedure.

In [6] with One Kinect
(CPU Intel Xeon

2.67 GHz, 12 GB RAM)

In [7] with One Kinect
(CPU Intel i7-930 2.8 Ghz,

4 Cores, 12 GB RAM)

Ours (CPU Intel i5-2450 m
2.5 GHz, 4 GB RAM)

Steps Time (s) Steps Time (s) Steps Time (s) Time Complexity

Super-
resolution 28 Scanning with

ICP registration 113 Data capture 99

Rigid 110 Poisson fusions 130 Segmentation
and denoising 15 O(n)

Non-Rigid 620 Background
segmentation 22 Local rigid

alignment 85 O(tn log n)

Poisson 68 Rigid alignment 23 Pre-alignment of
multi-view 3 O(n log n)

Nonrigid
alignment 126 Rigid alignment

of multi-view 62 O(tn log n)

Albedo
extraction

120 (in
Matlab)

Non-rigid
alignment of
multi-view

200 O
(

tn(log n + m
2
3 )
)

Visual hull 14 Watertight
reconstruction 21 O(n)

Final watertight
fusion 119 Texture

mapping 100 O(p log n)

Poisson texture
blending 180

Total 826 Total 847 Total 585

Though this proposed method can reconstruct 3D avatars easily and fast with desirable results
in most cases, however, if the poses exhibit substantial self-occlusion, such as crossed hands and
crouching, we find that the data incompleteness caused by self-occlusion will lead to artifact in the
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results. However, in practice, the scanning poses with substantial occlusion may be deliberate in just a
few applications, such as 3D portraits print.

6. Conclusions and Future Work

In this paper, we propose an easy and fast method of 3D avatar reconstruction with an RGB-D
sensor. The user can easily implement the scanning and modeling procedure with the help of a
personal computer and an RGB-D sensor in home or offices. During the scanning process, there is no
need for a turntable or a second operator, and ordinary users with no domain knowledge can finish
the data capture by themselves. The contributions of this method include a new data capture strategy
that captures 18 frames in 6 views to fully cover the human body and efforts in proposing efficient
alignment algorithms to quickly achieve a globally aligned point cloud for the entire human body.
Furthermore, we do not use shape priors or subdivision tools to assist the alignment and reconstruction,
which reduces the complexity of the modeling procedure. A comparison of the reconstruction results
shows that this method can obtain reconstructed 3D avatars in various situations, and the accuracy and
running performance is superior to that of similar works. This reconstruction method is meaningful
for products design and digital entertainment. The direction of future research include increasing
modeling robustness when there is substantial occlusion or deformation of the scanned body and
improving the quality of scanned data to allow for finer detail and more realistic texture. The former
may require a more sophisticated data capture strategy and alignment algorithms; the latter could be
solved by more advanced denoising algorithms and higher resolution RGB-D sensors.
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