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Abstract: The theory for calculation and/or measurement of sound power based on the classical
velocity-based radiation mode (V-mode) approach is well established for planar structures. However,
the current V-mode theory is limited in scope in that it can only be applied to conventional motion
sensors (i.e., accelerometers). In this study, in order to estimate the sound power of vibrating beam
and plate structure by using polyvinylidene fluoride (PVDF) films as sensors, a PVDF-based radiation
mode (C-mode) approach concept is introduced to determine the sound power radiation from
the output signals of PVDF films of the vibrating structure. The proposed method is a hybrid of
vibration measurement and numerical calculation of C-modes. The proposed C-mode approach
has the following advantages: (1) compared to conventional motion sensors, the PVDF films are
lightweight, flexible, and low-cost; (2) there is no need for special measuring environments, since
the proposed method does not require the measurement of sound fields; (3) In low frequency
range (typically with dimensionless frequency kl < 4), the radiation efficiencies of the C-modes
fall off very rapidly with increasing mode order, furthermore, the shapes of the C-modes remain
almost unchanged, which means that the computation load can be significantly reduced due to
the fact only the first few dominant C-modes are involved in the low frequency range. Numerical
simulations and experimental investigations were carried out to verify the accuracy and efficiency of
the proposed method.
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1. Introduction

Calculation or measurement of sound power is an important issue in structure-borne sound
problems, since sound power is a global quantity to characterize the strength of the sound
generated from a vibrating structure. Measurement techniques for estimating the sound power
of vibrating structures play important roles for the researcher who wishes to understand their
acoustic behaviour and to control their sound radiation. However, there are some problems to be
solved: the standard methods are based on pressure measurement or based on sound intensity
measurement [1,2]. These methods always require special acoustic environments (such as anechoic
rooms or reverberation rooms).

To solve these problems, the use of structural motion sensors (such as accelerometers and laser
vibrometers) to estimate sound power has attracted more and more attention in recent years. It has
been widely accepted that the radiation mode approach is a powerful tool for interpreting sound
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radiation [3–7]. The original idea of the radiation mode approach can be found in a seminal study by
Borgiotti [3], who obtained a set of orthonormal boundary velocity patterns through singular value
decomposition (SVD). These patterns can be divided into efficient and inefficient velocity distributions.
Elliott and Johnson [4] and Cunefare and Currey [5] defined these velocity patterns as “radiation mode”.
The radiation modes are defined as a set of velocity distributions. Each radiation mode represents
a possible radiation pattern and has independent radiation efficiency. At low frequencies, the first
radiation mode accounts for the majority of the sound power. Pasqual et al. [6] applied radiation
modes to the problem of sound field synthesis by a spherical loudspeaker array. An important result
of their work is that the array with preprogrammed surface velocity distributions corresponding to
its acoustic radiation modes is a better control strategy than using spherical harmonics as elementary
directivities. Chanpheng et al. [7] applied radiation modes for a highway bridge structural acoustics
control problem. They concluded that the significant radiation mode shapes at maximum frequency
of interest can be used in controller design and as guidelines for positioning actuators and sensors.
Tao and Qiu [8] compared the velocity sensors required to estimate sound power by using radiation
modes or vibration modes for the same level of accuracy for low damped baffled simply supported
rectangular plates. They concluded that employing radiation mode requires fewer sensors below
the first resonance frequency, while employing vibration modes at structural resonance frequencies
requires fewer sensors than that employing radiation modes. Bai and Tsao [9] measured sound power
using laser displacement sensor and classical radiation mode approach for a baffled point-driven
flexible plate. In comparison to the conventional pressure-based ISO 3745 method [1], it is shown that
this technique produced more accurate estimations of sound power. Ji and Bolton [10,11] extended the
classical radiation modes to structure-dependent radiation modes which are defined as a set of modal
velocity distributions. Yamaguchi et al. [12] proposed the force radiation mode concept to understand
the relationship between sound power and driving force distribution. Lu et al. [13] proposed a mapped
radiation mode theory to avoid the cumbersome computation of radiation mode for convex structures.
They developed an efficient method to compute sound power by keeping advantages of the radiation
mode and avoiding the numerical difficulties in the computation of radiation modes, especially for
wideband frequency and large scale problems.

So far, sound power estimation based on radiation mode approach was limited to using the
surface velocity distribution information, so the present classical or extended radiation mode theories
are termed as velocity-based radiation modes (V-modes) in this study.

Piezoelectric materials have attracted more and more attention as structural sensors in structural
vibration and acoustic problems [14–23]. For examples, Chen and Wang [14] used a rectangularly
shaped polyvinylidene fluoride (PVDF) film as a sensor to perform structural modal testing.
They experimentally verified that the modal parameters (such as natural frequencies, damping ratios
and mode shapes) can be properly identified for the cantilever beam and simply supported plate.
Oliveira et al. [15] also estimated the modal parameters of composite flat plate models through
experimental modal analysis using PVDF films as sensors. The PVDF experimental results were
verified by the results from laser Doppler vibrometry. The cross-sensitivity and size effects of PVDF
film sensors on modal testing were experimental investigated by Chuang et al. [16]. Luo et al. [17]
presented a real-time nonintrusive method for deflection monitoring by using PVDF films.

PVDF sensors can also be designed by shaping the surface electrode [18], whereby the output
of the sensor can be made sensitive to selected modal coordinates, and other modal coordinates
may be filtered out. PVDF sensors are continuous sensors and thus avoid spatial aliasing problems.
The design of modal sensors using shaped PVDF film can be traced back to Lee and Moon [18].
One of the most recent motivations has been the application of active vibration control (AVC) and
active structural acoustic control (ASAC). Different design approaches, such as parametric level set
method [19], differential transformation method [20], were imposed to the shaped PVDF modal sensors
for different structures. Several examples for the design of AVC system and ASAC system by using
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PVDF sensors are described in [21–24]. Reviews of the recent work on piezoelectric sensors for active
control systems are available in [23,24] and are not duplicated here.

It is well known that fewer modes are required by employing the radiation mode approach in
low-frequency sound power calculation. However, no literature has ever discussed how to measure the
sound power by using rectangular piezoelectric films. Therefore, a method to estimate sound power
based on piezoelectric sensors has yet to be developed.

This study presents a technique to estimate sound power by using a piezoelectric film. In this
study, segments of piezoelectric film made of PVDF are chosen because it adds little loading on light
structures, and is easy to cut into the desired segments [17,18]. Other advantages of PVDF film sensors
are high flexibility, low cost, and high mechanical strength to endure physical impacts. In order to
estimate the sound power using PVDF film, a new concept of PVDF-based radiation mode approach is
introduced to describe the relationship between sound power and the output signals of PVDF films of
the a vibrating structure. Due to the current output of PVDF used, the PVDF-based radiation mode
is termed as C-mode. The proposed method is a hybrid of vibration measurement and numerical
calculation of C-modes, because sound power of the vibrating structures is estimated by proposed
C-mode approach combined with measurement of PVDF film signals. Finally, with examples of
a clamped-clamped beam and a clamped plate, the proposed sound power measurement techniques
are verified by numerical simulation as well as experiments.

2. Sensing Principle of PVDF Film

The sensing principle of PVDF film has been clearly introduced by Lee and Moon’s work [18].
It is briefly reviewed here for completeness. Consider a plate with length Lx, width Ly and thickness h.
N rectangular PVDF film patches (same size) are equally attached on the top surface, as shown
in Figure 1.
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where hf is the PVDF sensor thickness. e31 and e32 are the PVDF sensor stress/charge coefficients. nx1 , 
nx2 , ny1  and ny2  are the edge coordinates of the nth PVDF sensor. v (x, y) is the velocity of the plate. 
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Figure 1. Rectangular PVDF films bonded on a plate.

Assume that the direction of maximum stress/charge coefficient e31 is parallel with y-axis,
the output current of the nth PVDF sensor can be expressed as follows [18]:

In =
h + h f

2

∫ xn
2

xn
1

∫ yn
2

yn
1

(
e32

∂2v(x, y)
∂x2 + e31

∂2v(x, y)
∂y2

)
dydx (1)

where hf is the PVDF sensor thickness. e31 and e32 are the PVDF sensor stress/charge coefficients.
xn

1 , xn
2 , yn

1 and yn
2 are the edge coordinates of the nth PVDF sensor. v (x, y) is the velocity of the plate.
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The velocity distribution of the plate can be represented by a series of expansion:

v(x, y) =
M

∑
m=1

AmΦm(x, y) = ΦTA (2)

where Φm(x, y) and Am represent the mth structural mode shape and modal velocity, respectively.
m = (mx, my) denote the index of structural mode in the x- and y-axis, respectively. Φ and A are
M × 1 vectors. Superscript T is denoted transpose.

Substituting Equation (2) into Equation (1), the output current of the nth PVDF sensor is given by:

In =
h + h f

2

∫ xn
2

xn
1

∫ yn
2

yn
1

(
e31

M

∑
m=1

Am
∂2Φm(x, y)

∂x2 + e32

M

∑
m=1

Am
∂2Φm(x, y)

∂y2

)
dydx (3)

Equation (3) can be rewritten into matrix form:

I =
M

∑
m=1

Fm,n Am = KA (4)

with Km,n =
h+h f

2

∫ xn
2

xn
1

∫ yn
2

yn
1

(
e31

M
∑

m=1

∂2Φm(x,y)
∂x2 + e32

M
∑

m=1

∂2Φm(x,y)
∂y2

)
dydx.

3. Radiation Modes Theory

3.1. V-Mode Approach

Consider a baffled, finite rectangular plate. The plate is divided into N elements with equal area.
The vector of sound pressure immediately in front of each of these elements is denoted as p, and the
vector of normal velocities of these elements is denoted as v, then we have:

p = Zv (5)

where Z is the matrix of impedance relating the sound pressure to the normal velocity for each
element [4]. For radiators in a baffle the matrix Z can be written as [4,9]:

Z = ρoco



1− exp
(

ik
√

∆S
π

)
− ik∆S

2π
exp(ikr12)

r12
... − ik∆S

2π
exp(ikr1N)

r1N

− ik∆S
2π

exp(ikr21)
r21

1− exp
(

ik
√

∆S
π

)
... − ik∆S

2π
exp(ikr2N)

r2N

... ... ... ...

− ik∆S
2π

exp(ikrN1)
rN1

− ik∆S
2π

exp(ikrN2)
rN2

... 1− exp
(

ik
√

∆S
π

)


(6)

where ρo and co are the density and the sound speed of the acoustic medium (air in this study),
respectively. ∆S denotes the elemental area. k = ω/co is the wave number, and ω is the angular
frequency of the plate. rmn = rnm is the distance from element m to element n i =

√
−1.

As discussed in Refs [3–6], the sound radiation can be assumed to be due to a number of elemental
radiators. The sound power can be expressed as [4]:

W =

(
∆S
2

)
Re
[
vHp

]
(7)

where the superscript H denotes the complex conjugate transpose. Re denotes the real part of the
bracketed quantity.
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Substituting Equation (5) into Equation (7), the radiated sound power can be formulated as:

W =
∆S
2

Re
[
vHZv

]
= vHRv (8)

where R = ∆S
2 Re(Z), and R is the radiation mode matrix, which is real, symmetrical, positive definite,

and the (m, n) element of matrix R is Rmn = ω2ρo(∆S)2

4πco

sin(krmn)
krmn

.
From Equation (8), it can be found that, if the velocity distribution of the plate is measured,

the sound power can be obtained, so in this study we call this classical radiation mode the
velocity-based radiation mode (V-mode).

3.2. C-Mode Approach

Notice that the main goal of this study is to estimate the sound power using PVDF film.
Assume that the total number of structural mode is equal to the number of PVDF sensor, K matrix
in Equation (4) becomes square, and the modal velocity can be expressed by PVDF current output
vector I:

A = K−1I (9)

According to Equation (2), the velocity distribution vector v in Equation (8) can be rewritten as:

v = Φ̃
T

A (10)

where Φ̃ is a M×N structural mode shape matrix with the mth column Φ̃m representing the amplitudes
of the mth mode shape for N elements of the plate.

Substituting Equation (9) into Equation (10), the velocity distribution can be expressed as
a function of the PVDF sensor outputs:

v = Φ̃
T

K−1I (11)

Substituting Equation (11) into Equation (8), the sound power can be rewritten as:

W =
(

Φ̃
T

K−1I
)H

R
(

Φ̃
T

K−1I
)
= IH

(
Φ̃

T
K−1

)H
R
(

Φ̃
T

K−1
)

I = IHMI (12)

where M =
(

Φ̃
T

K−1
)H

R
(

Φ̃
T

K−1
)

, is a real positive definite matrix.
Similar to classical V-mode theory, the matrix M can be diagonalized through orthogonal

transformation and written as:
M = QΛQT (13)

where Λ is an N × N diagonal matrix, whose elements, λi, are eigenvalues of M.
Clearly, the eigenvalues λi in Equation (13) is real and positive with λ1 ≥ λ2 ≥ λ3 ≥ . . . . . . ≥ λN > 0.

The corresponding eigenvector Qi are orthogonal one another. Because eigenvectors matrix Q is real,
QT = QH, we can rewrite sound power W as:

W =
(

QTI
)H

Λ
(

QTI
)
= yHΛy =

N

∑
i=1

λi|yi|2 (14)

where y = QTI.
From Equation (14), it can be found that the sound power can be described as a summation of

a set of uncoupled radiation terms. Notice that the sound power estimated by Equation (14) is based
on PVDF film output signals. For this reason, the eigenvector Qi is termed PVDF-based radiation
mode (C-mode). Similar to V-mode approach [8], C-mode approach is able to give accurate estimation
of sound power only in the frequency range involved the first N structural modes if N number of
PVDF films are used.
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4. Numerical Calculations

In this section, the sound power using C-mode approach is estimated numerically. The theory
mentioned in the previous section is applied to two baffled finite structures (one clamped-clamped
beam and one clamped rectangular plate) in free space. In particular, the contributions of the C-modes
to the sound power; the shapes of the C-modes; the approximation error of the C-mode order reduction,
are simulated.

In all of the cases, the dynamics of the PVDF sensors are not modeled, because the PVDF sensor
thickness hp is much smaller than structures thickness h, the mass and stiffness of the sensor is then
negligible compared to the properties of the structures. This is a reasonable assumption since the
PVDF sensor thickness is typically 28 µm to 110 µm.

The dimensions of the beam and plate for calculation are 500 mm × 30 mm × 3.5 mm and
440 mm × 340 mm × 2 mm, respectively. Young’s modulus, Poisson ratio, loss factor and density of
both structures are 70 × 109 Pa, 0.3, 0.01 and 2700 kg/m3, respectively. The physical properties of the
PVDF film used in calculation are listed in Table 1.

Table 1. The physical properties of PVDF film.

Parameter PVDF Film

Length Px (mm) 30
Width Py (mm) 12
Thickness(mm) 28 × 10−3

Desity (Kg/m3) 1.78 × 103

Poisson’s ratio 0.28
Young’s modulus (N/m2) 2–4 × 109

Piezo Strain Constant d31 (m/V) 23 × 10−12

Maximum Operating Voltage (V/µm) 750
Relative permittivity ε/ε0 12

4.1. Sound Power for Beam Structure

Firstly, the sound power from a baffled clamped-clamped beam in free space is studied.
Because Lx >> Ly >> h, so response change along the width of the beam can be neglected.
And Equation (1) can be simplified as:

In =
h + h f

2
(yn

2 − yn
1 )
∫ xn

2

xn
1

(
e31

∂2v(x, y)
∂x2

)
dx (15)

The mode shape for clamped-clamped beam can be expressed as:

Φn(x) = cosh(λnx)− cos(λnx)− βn[sinh(λnx)− sin(λnx)] (16)

where βn =
cosh(λnLx)− cos(λnLx)

sinh(λnLx)− sin(λnLx)
and λn is the root for the equation cosh(λ) cos(λ) = 1.

Assume that 10 rectangular PVDF film segments are equally attached on the surface. The total
number of C-modes is then 10, as is clear from Equations (14) and (15). Moreover, the dimensionless
frequency kl is defined as the acoustic wave number k multiplied by the length of the beam Lx [4,8].
The PVDF output currents are assumed to be ideally measured, a point excitation force is applied at
an arbitrarily chosen location ( xa = 0.05Lx), the locations of PVDF films and excitation point force are
shown in Figure 2.
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Figure 4 shows the shapes of the first four C-modes, that is, the eigenvectors derived from 
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frequency-dependent, as shown in Equation (13). However, in the quite large dimensionless 
frequency ranges (kl < 10), the C-mode shapes (eigenvectors) vary slowly with respect to frequency. 
It means that we can select a frequency independent C-mode Qf at a low frequency to represent the 
frequency dependent C-mode Q in this dimensionless frequency range. So the computation load can 
be reduced significantly. However, the V-mode shapes, as shown in Figure 5, are more sensitive to 
frequency. The detailed calculation method for V-mode shapes can be found in [4,6]. 

Figure 2. The locations of PVDF films and excitation point force on the beam.

Figure 3a shows the radiation efficiencies for the first four C-modes and the first four V-modes.
For comparison, the radiation efficiencies for V-mode are also presented in Figure 3b. A detailed
description of the radiation efficiencies for V-mode can be found in [4–8]. From Figure 3a, it can
be found that at lower dimensionless frequency ranges (0 < kl < 4), the radiation efficiency of the
first C-mode is significant and the radiation efficiencies of the other C-modes are almost negligible.
At higher dimensionless frequency ranges (4 < kl < 20), the radiation efficiency of the first mode
is still significant, but the radiation efficiencies of the other modes, especially the second and third
C-modes, increase in relation to the dimensionless frequencies. This means that the sound power can
be estimated by using the first few C-modes in low frequency range. Comparing Figure 3a to Figure 3b,
it can be found that the radiation efficiency for C-mode decreases more sharply than V-mode as the
mode order increases, which indicates that less C-modes are required for the same level of accuracy in
the prediction of sound power, if the mode amplitudes of all the modes are equal.

Sensors 2017, 16, 1111 7 of 19 

 

 
Figure 2. The locations of PVDF films and excitation point force on the beam. 

Figure 3a shows the radiation efficiencies for the first four C-modes and the first four V-modes. 
For comparison, the radiation efficiencies for V-mode are also presented in Figure 3b. A detailed 
description of the radiation efficiencies for V-mode can be found in [4–8]. From Figure 3a, it can be 
found that at lower dimensionless frequency ranges (0 < kl < 4), the radiation efficiency of the first 
C-mode is significant and the radiation efficiencies of the other C-modes are almost negligible. At 
higher dimensionless frequency ranges (4 < kl < 20), the radiation efficiency of the first mode is still 
significant, but the radiation efficiencies of the other modes, especially the second and third 
C-modes, increase in relation to the dimensionless frequencies. This means that the sound power 
can be estimated by using the first few C-modes in low frequency range. Comparing Figure 3a to 
Figure 3b, it can be found that the radiation efficiency for C-mode decreases more sharply than 
V-mode as the mode order increases, which indicates that less C-modes are required for the same 
level of accuracy in the prediction of sound power, if the mode amplitudes of all the modes are 
equal. 

 
Figure 3. The radiation efficiencies of beam for (a) the first four C-modes; (b) the first four V-modes. 

Figure 4 shows the shapes of the first four C-modes, that is, the eigenvectors derived from 
Equation (13), under different dimensionless frequencies. In principle, the C-mode shapes are 
frequency-dependent, as shown in Equation (13). However, in the quite large dimensionless 
frequency ranges (kl < 10), the C-mode shapes (eigenvectors) vary slowly with respect to frequency. 
It means that we can select a frequency independent C-mode Qf at a low frequency to represent the 
frequency dependent C-mode Q in this dimensionless frequency range. So the computation load can 
be reduced significantly. However, the V-mode shapes, as shown in Figure 5, are more sensitive to 
frequency. The detailed calculation method for V-mode shapes can be found in [4,6]. 
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Figure 4 shows the shapes of the first four C-modes, that is, the eigenvectors derived from
Equation (13), under different dimensionless frequencies. In principle, the C-mode shapes are
frequency-dependent, as shown in Equation (13). However, in the quite large dimensionless frequency
ranges (kl < 10), the C-mode shapes (eigenvectors) vary slowly with respect to frequency. It means
that we can select a frequency independent C-mode Qf at a low frequency to represent the frequency
dependent C-mode Q in this dimensionless frequency range. So the computation load can be reduced
significantly. However, the V-mode shapes, as shown in Figure 5, are more sensitive to frequency.
The detailed calculation method for V-mode shapes can be found in [4,6].
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From the discussion above, it can be found that, compared with the V-mode approach, the C-mode
approach has two advantages. First, the radiation efficiency decreases much quickly as the mode order
increases. Second, the shapes of C-modes are almost frequency independent.

According to above analysis, the sound power can be estimated by using first L frequency
independent C-modes Qf, yields:

W ≈
L

∑
i=1

λi|ŷi|2 (17)

where ŷi = QT
f I is the ith C-mode amplitude, and L < N.

Figure 6 shows the sound power obtained by using the frequency dependent C-modes. The exact
sound power is calculated by using Equation (8). From Figure 6, it can be found that sound power can
be accurately obtained if the first three frequency dependent C-modes are used.
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The computation load can be significantly reduced if the frequency independent C-modes in
Equation (17) are used to estimate the sound power. One question is how to select the frequency
independent C-mode Qf to represent the frequency dependent C-mode Q. To answer this question,
the sound power using the first three frequency independent C-modes is calculated, as shown
in Figure 7.
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independent C-modes coincides with each other, so only a single dashed curve can be found in the
figure. It means that the mode shape at any low dimensionless frequency can be used as the frequency
independent radiation mode Qf. Hence, it is suggested in this specific model that, within the range of
the dimensionless frequency, 0 < kl < 10, the sound power can be estimated by using the first three
frequency independent C-modes. From Equation (17), it can be found that both the radiation efficiency
and the C-mode amplitude need to be considered in the sound power calculation. Figures 8 and 9 show
the first four C-mode amplitudes and the corresponding modal sound power. From these figures it can
be found that the odd/even C-modes only contain the contribution of the odd/even structural modes.
Furthermore, the sound power due to the 4th C-mode is negligible compared to the other C-modes,
though the amplitude of the 4th C-mode is quite large. This is because the radiation efficiency of the
4th C-mode is very low (as shown in Figure 3a).
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Assuming the prediction precision of the sound power must exceed 99%, the mode number
requirements of using C-mode and V-mode are calculated and the results are presented in Figure 10.
From Figure 10, it can be found that, compared to V-modes, less C-modes are required for the same
level of accuracy in the prediction of sound power.
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Figure 10. The mode number requirements by C-mode and V-mode to account for 99% of the sound
power when the beam is excited by the point force.

4.2. Sound Power for Plate Structure

To further investigate the acoustic properties of the proposed C-mode approach, a baffled clamped
plate is chosen for calculation. The mode shape functions for clamped plate can be expressed as the
product of two independent beam functions:

Φmn(x, y) = Xm(x) ·Yn(y) (18)

where Xm(x) and Yn(y) can be chosen by using Equation (16), such as Xm(x) = Φm(x) and Yn(y) = Φn(y).
Assume the 10× 10 rectangular PVDF sensor equally attached on the surface of the plate. The total

number of C-modes is then 100, as is clear from Equations (13) and (14). Figure 11a shows the radiation
efficiencies of the first four C-modes, that is, the largest four eigenvalues derived from Equation (13).
The radiation efficiencies of V-modes are also presented in Figure 11b for comparison purposes.
Similar to beam case, it can be found that the radiation efficiency for C-mode decreases more sharply
than V-mode as the mode order increases. Figure 12 shows the shapes of the first four C-modes, that is,
the eigenvectors derived from Equation (13), under different dimensionless frequencies. Similar to
beam case, the C-mode shapes (eigenvectors) remain almost unchanged with respect to frequency.
It means that the C-modes shapes in quite large frequency range (kl < 8 in this case) can be seen as
frequency independent. It means that we can select any kl < 8 frequency independent C-mode to
represent the frequency dependent C-mode in this dimensionless frequency range. Equation (17) can
also be used to estimate the sound power for the plate case.
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Figure 12. The shapes of (a) the first; (b) the second; (c) the third; (d) the fourth C-modes for clamped
plate at different dimensionless frequencies.

To further investigate the difference between C-mode and V-mode, the first four V-mode shapes
under different frequencies are also presented in Figure 13. At low frequencies (kl < 1), the V-mode
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shapes can be considered as frequency independent, as expected. However, as frequency increase,
the V-mode shapes are more and more sensitive to frequency, as shown in Figure 13.
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To calculate the sound power, a point excitation force is applied at an arbitrarily chosen location
(xa = 0.06Lx, ya = 0.06Ly). Figure 14 shows the sound power obtained by using the frequency
independent C-modes, with a fixed dimensionless frequency with kl = 0.1. From Figure 14, it can be
found that using the first four C-modes, the sound power can be accurately calculated in dimensionless
frequency range 0< kl < 5. For kl > 5, it seems that more high order C-modes needed to estimate the
accurate sound power.
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Figure 14. The sound power for plate calculated by using the first four frequency independent C-modes.

Figures 15 and 16 show the first four C-mode amplitudes and the corresponding modal sound
power for plate. From Figures 14–16, it can be found that the sound power can be reduced significantly
if the first four C-mode amplitude are controlled.

Figure 17 shows the mode number requirements of using C-mode and V-mode, assuming the
prediction precision of the sound power must exceed 99%. It can be found that the mode number
requirements for C-mode and V-mode are the same for kl < 2.7. However, for kl > 2.7, compared to
V-modes, less C-modes are required for the estimation of sound power.
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power when the plate is excited by the point force.

5. Experimental Investigations

To further verify the proposed C-mode approach for the estimation of the sound power, a set of
laboratory experiments was performed to examine its effectiveness and accuracy for real measurement
data. Two applications including a clamped-clamped aluminium beam and a clamped aluminium
plate are illustrated. The physical parameters of beam, plate and PVDF films are the same as numerical
calculation. The experimental arrangement is shown in Figure 18. The proposed method is conducted
in an ordinary room because only surface vibration information is required as the input data.
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Next, the beam was equally covered with N = 10 segments of PVDF film (type: LDT1-28K, from 
Measurement Specialties Inc., Chatsworth, CA, USA), as shown in Figure 18a. Notice that the 
current of PVDF film needs to be measured. The PVDF film output signal was first conditioned and 
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Figure 18. Photographs of (a) a beam bonded 10 PVDF films; (b) a clamped plate.

5.1. Sound Power Estimated from the Beam

An inertial actuator attached on the beam (at an arbitrarily chosen location xa = 150 mm), was used
to provide the primary driving force for the beam. First, an accelerometer from Sinocera Piezotronics Inc.
(Yangzhou, China) with the weight of 28 g, sensitivity of 50 pC/g, frequency range of 0.5–6000 Hz
was used to measure the surface accelerations at 10 points, equally spaced (every 50 mm) along the
length of the beam. A TST5912 dynamic signal analyzer (from Test Electron Inc., Taizhou, China)
is used to acquire the frequency response functions (FRFs) between the acceleration signal of the
accelerometer and the applied voltage to the inertial actuator. Then the velocity distribution under
unit input voltage is obtained by the time integral of the measured FRFs. Substituting these measured
velocity distribution into Equation (8), the sound power estimated by accelerometer combined V-mode
theory can be obtained, which is used as a reference and will be compared to those obtained from
C-modes and PVDF films.

Next, the beam was equally covered with N = 10 segments of PVDF film (type: LDT1-28K,
from Measurement Specialties Inc., Chatsworth, CA, USA), as shown in Figure 18a. Notice that the
current of PVDF film needs to be measured. The PVDF film output signal was first conditioned and
then measured with dynamic signal analyzer. The circuit representation of the PVDF film and the
custom-built signal conditioner is shown in Figure 19. The output signal is the product of the PVDF
current and the feedback resistance Rf. The same measurement process as accelerometer was taken to
help minimize variance errors.
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Substituting the measured PVDF current output into Equation (17), and the first three frequency
independent C-modes at frequency 100 Hz (kl = 0.924) are used to estimate the sound power, the results
are shown in Figure 20.
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the PVDF film with C-mode approach is able to estimate the sound power correctly in actual tests. 

Figure 20. The experimental sound power for the clamped-clamped beam.

Notice that the reference signal used for the FRFs estimation is the voltage input to the actuator
amplifier, rather than the force input to the beam, as both actuator and amplifier are part of the plant in
the FRF measurements, so the estimated sound power in Figure 20 is quite different from the calculation
result in Figure 7. However, good agreement can be found between accelerometer and PVDF measured
sound power. It should be noted that the resonant frequencies measured by PVDF film are a little
larger than those measured by accelerometer. This is because the resonant frequencies of the beam are
reduced due to the weight of the accelerometer. However, when the sound power was measured using
PVDF films (the accelerometer was removed from the beam), a negligible mass (in comparison to the
accelerometer) is added to the beam structure, so the resonant frequencies measured by PVDF films
should be more accurate than those obtained by accelerometer. This means that the proposed method
using PVDF films provides a better estimation of sound power than using accelerometers.

5.2. Sound Power Estimated from the Plate

Similar to the experiment for beam, an inertial actuator attached on the plate (at an arbitrarily
chosen location xa = 270 mm, ya = 170 mm), was used to provide the primary driving force. In this test,
we measure the acceleration and PVDF output simultaneously, as shown in Figure 18b. This provides
the PVDF and accelerometer data under the same measurement conditions. The surface vibration
information at 5× 5 locations, equally spaced along the length and width of the plate, was measured by
the accelerometer and PVDF film, respectively. Using the same process as for sound power estimation
for the beam, the sound power of the plate measured by accelerometer can be obtained by using
Equation (8). Substituting the measured PVDF current output into Equation (17), and the first four
frequency independent C-modes at frequency 200 Hz (kl = 1.48) are used to estimate the sound power
for the PVDF film. The measured results are shown in Figure 21 and excellent agreement can be found
between the accelerometer and PVDF film. It is again shown that the PVDF film with C-mode approach
is able to estimate the sound power correctly in actual tests.
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It should be noticed that the use of multiple PVDF films (as shown in Figure 18a for a beam) is 
always more precise in principle. However, from this experiment (as shown in Figure 18b), very 
good experimental results were achieved, despite the use of only a single removable and reusable 
PVDF film. This phenomenon should be further investigated. The removability and reusability have 
been demonstrated to PVDF film by a very simple process that used double-sided adhesive tapes. In 
this test, because the test plate surface kept clean and dry to maintain bond integrity, after 25 
repeated peeling-bonding-measuring processes, the PVDF film showed no degradation.  

6. Conclusions 

In this study, a new method to estimate the sound power from vibration structures by using 
PVDF film is proposed. The proposed method is a hybrid of vibration measurement and numerical 
calculation of C-modes. Differing from the classical V-modes which depend on velocity distribution 
of the structure, the proposed C-modes describe the sound power radiation by using the output 
signals of PVDF films of the vibrating structure. The PVDF films as sensors have advantages such as 
light weight, flexibility, and low cost. Since the proposed method does not require the measurement 
of sound fields, special measuring environments are not required. Numerical simulation and 
experimental investigation were carried out. The accuracy of the proposed method is compared 
with the classical V-mode approach which is widely accepted for sound power calculation and 
estimation [8,9]. 
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Figure 21. The experimental sound power for the clamped plate.

It should be noticed that the use of multiple PVDF films (as shown in Figure 18a for a beam) is
always more precise in principle. However, from this experiment (as shown in Figure 18b), very good
experimental results were achieved, despite the use of only a single removable and reusable PVDF
film. This phenomenon should be further investigated. The removability and reusability have been
demonstrated to PVDF film by a very simple process that used double-sided adhesive tapes. In this
test, because the test plate surface kept clean and dry to maintain bond integrity, after 25 repeated
peeling-bonding-measuring processes, the PVDF film showed no degradation.

6. Conclusions

In this study, a new method to estimate the sound power from vibration structures by using
PVDF film is proposed. The proposed method is a hybrid of vibration measurement and numerical
calculation of C-modes. Differing from the classical V-modes which depend on velocity distribution of
the structure, the proposed C-modes describe the sound power radiation by using the output signals
of PVDF films of the vibrating structure. The PVDF films as sensors have advantages such as light
weight, flexibility, and low cost. Since the proposed method does not require the measurement of sound
fields, special measuring environments are not required. Numerical simulation and experimental
investigation were carried out. The accuracy of the proposed method is compared with the classical
V-mode approach which is widely accepted for sound power calculation and estimation [8,9].
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