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Abstract: In mobile opportunistic networks, the social relationship among nodes has an important
impact on data transmission efficiency. Motivated by the strong share ability of “circles of friends” in
communication networks such as Facebook, Twitter, Wechat and so on, we take a real-life example
to show that social relationships among nodes consist of explicit and implicit parts. The explicit
part comes from direct contact among nodes, and the implicit part can be measured through the
“circles of friends”. We present the definitions of explicit and implicit social relationships between
two nodes, adaptive weights of explicit and implicit parts are given according to the contact feature
of nodes, and the distributed mechanism is designed to construct the “circles of friends” of nodes,
which is used for the calculation of the implicit part of social relationship between nodes. Based
on effective measurement of social relationships, we propose a social-based clustering and routing
scheme, in which each node selects the nodes with close social relationships to form a local cluster,
and the self-control method is used to keep all cluster members always having close relationships with
each other. A cluster-based message forwarding mechanism is designed for opportunistic routing,
in which each node only forwards the copy of the message to nodes with the destination node as a
member of the local cluster. Simulation results show that the proposed social-based clustering and
routing outperforms the other classic routing algorithms.

Keywords: mobile opportunistic network; routing; clustering; social relationship; circles of friends

1. Introduction

Mobile Opportunistic Networks (MONs) can be formed by wireless portable devices such as
iPads, PDAs, smartphones, etc., which are usually carried around by human beings. Due to the random
mobility of nodes, there are no persistent connections between any two nodes. For data transmission,
each node stores data to be sent and then forwards them to the encounter nodes. Such a data delivery
process refers to the “storage-carry-and-forward” mechanism, which is the basic principle for data
transmission and routing in MONs. Since the path from a source to a destination is intermittently
connected, the conventional routing protocols are generally not applicable, and routing becomes a
challenging issue in MONs [1].

Based on the “storage-carry-and-forward” data transmission mode, two simple algorithms were
proposed in the research on opportunistic routing. One is Epidemic Routing [2], and the other is Direct
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Transmission [3]. In Epidemic Routing, each node simply forwards data to all encountering nodes.
Obviously, Epidemic Routing has the highest data delivery success rate among all routing algorithms
but also has the highest network overhead. On the contrary, in Direct Transmission, the source node
stores the data to be sent and does not forward them to any nodes until it reaches the destination.
Direct Transmission had the lowest network overhead but also the lowest data delivery success rate.
The other research works on routing in MONs tried to create a possible tradeoff between data delivery
rate and network overhead.

As human beings take part in network activities, the behavior of mobile nodes thus shows certain
social attributes. Some research works [4] had shown that social relationships among nodes had
an important impact on node encounter events and their duration time, which would be useful for
reducing routing overhead improving the success rate of data transmission. Accordingly, a number
of researchers made good use of nodes’ social attributes to design data forwarding mechanisms and
received good results. In the long run, the data transfer mechanism based on social relationships
among nodes will be more stable than the other forwarding modes [4].

In social based routing, the key point is to find and measure the social relationships among
nodes, which depend on the analysis of the historical data of encounters of nodes [5,6]. Some
works used historical data to predict the probability of the nodes’ encounters, and thereby designed
optimal algorithms for message forwarding. Some works measured strength of social relationships
among nodes based on nodes’ encounter frequency, formed social clusters of nodes, and proposed
cluster-based routing mechanism for message forwarding. However, as for social relationship finding
and measurement, there are still some important points not considered in the existing research
work. For example, there is such a social phenomenon in the real world: Bob has two grandmothers
represented by D and E, D is the mother of Bob’s mother, and E is the mother of Bob’s father. Although
D and E are close relatives, they may never contact each other because of their opposing personalities.
In this phenomenon, with D and E acting as two nodes in MONs, they have no direct encounter and
link, but, in fact, there is a strong social relationship between them. Therefore, in some conditions,
we may fail to find and measure the social relationship between two nodes only from their direct
encounter records.

In fact, although D and E have no direct relationship, they have common close friends including
Bob and his parents. Observing their circles of friends, we can find out how close the social relationship
between D and E is. Consequently, the social relationship between two nodes can be divided into two
parts. One part comes from direct contact events, which are called Explicit Social Relationships in this
paper. Another part is called Implicit Social Relationships obtained from the common friends of the
two nodes. Like the communication networks such as Facebook, Twitter, Wechat and so on, the circles
of friends can be used to find the relationship between two people.

In this paper, we study social relationships among nodes, and propose social based clustering
and routing mechanisms in WONs. Inspired by some social phenomena, we present the definitions of
explicit and implicit social relationships, which are used to determine the strength of social relationships
among nodes. Our experiment results show that the proposed methods can exactly evaluate social
relationships among nodes, which is helpful for routing mechanisms to improve data delivery rates.
The contributions of this paper are listed as follows:

• We present the definitions of explicit social relationships (ExSRs) and implicit social relationship
(ImSRs), and combine both ExSRs and ImSRs to measure social relationships between nodes.
Adaptive weights are given to ExSRs and ImSRs in the measurement of social relationships,
which can be adjusted to the contact feature of the nodes, and thus accuracy measurement of
social relationship will be achieved. In addition, the distributed computing scheme of common
friends is proposed for the calculation of ImSR.

• We propose a novel social-based clustering and routing scheme. Each node selects the nodes
with closed social relationships to form a local cluster, and the self-control method is used to keep
all cluster members always having close relationships with each other. A cluster-based message
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forwarding mechanism is designed for opportunistic routing, in which each node only forwards
the copy of the message to nodes with the destination node as a member of local cluster.

The rest of this paper is structured as follows. In Section 2, we describe and analyze the related
work. In Section 3, definitions and computing methods are presented for explicit and implicit social
relationships. In Section 4, social-based clustering and routing is presented and analyzed. Simulation
results are presented in Section 5. The last section concludes this paper.

2. Related Work

Opportunistic routing has been extensively studied, and various types of message-forwarding
methods and routing algorithms were proposed for “storage-carry-and-forward” data transmission
with the goal of reducing network overhead and improving data delivery rate. Epidemic Routing [2]
flooded the message to all nodes without consideration of routing overhead. Theoretically, Epidemic
Routing had the highest success rate of data delivery, but at the price of highest routing overhead.
Direct Transmission [3] required that the source stored the data to be sent, and did not forward
the data to any nodes but the destination. Direct Transmission had the lowest overhead among all
routing algorithms, but also had the lowest success rate of data delivery. Other works in opportunistic
routing tried to make a balance between Epidemic Routing and Direct Transmission, and create a
possible tradeoff between data delivery rate and routing overhead. Lindgren et al. [7] used historical
data of nodes’ encounters and transmission records to compute forwarding probabilities between
nodes and the proposed forwarding-probability based routing mechanism PRoPHET, which had the
approximate success rate of data delivery of Epidemic Routing [2] with the low routing overhead.
Spyropoulos et al. [8] took the advantages of Epidemic Routing and Direct Transmission into
consideration and proposed a routing scheme called Spray and Wait, which “sprayed” a number
of copies into the network, and then “waited” until one of these nodes met the destination.
Erramilli et al. [9] proposed a delegation forwarding solution for opportunistic routing, which
required a node to forward data to only the node with the highest forwarding performance so far.
Balasubramanian et al. [10] treated opportunistic routing as a resource allocation problem, and each
node replicated packets according to packet utility value, which was determined by the delay to
destination and encounter probability with destination. Zhang et al. [11] proposed a novel mobility
prediction-based routing, and the computation of the probability for a node destined to an area was
based on the semi-Markov model. In [12–14], the authors used network coding in opportunistic
routing to improve throughput. The above routing schemes used a variety of mechanisms, including
discovering the meeting probabilities among nodes, packet utility, and network coding. The primary
focus of these mechanisms was to increase the likelihood of finding a path with limited information,
and the effectiveness had a relationship with the accuracy of prediction models or evaluation methods.

As human beings take part in network activities, the behavior of mobile nodes therefore shows
some certain social attributes. Research work [4] had shown that social relationships among nodes
could be used to improve the performance of opportunistic routing. Recently, there have been some
interesting works based on social relationships among nodes. Hui et al. [15] proposed a social-based
routing named BUBBLE. The authors exploited two social and structural metrics, namely, centrality and
community. Based on the social activity of nodes, they calculated the global ranking of the nodes in the
whole network and the local ranking of the nodes in the community. The message was forwarded to the
nodes with high social activity ranking. Gao et al. [16] studied multicast in Delay Tolerant Networks
(DTNs) from the social network perspective, used the cumulative probability of node encounter to get
node centrality and social community structures, and selected the nodes with high node centrality as
the relay nodes in multicast. Fan et al. [17] explored the relationship between geographic and social
regularities of human mobility, proposed the concepts of geocommunity and geocentrality, used the
semi-Markov process to model user mobility based on the geocommunity structure of the network,
and proposed route algorithms to minimize total duration or maximize the dissemination ratio.
Wei et al. [18] took the use of frequency and duration of node contacts to generate the social graph,



Sensors 2017, 17, 1109 4 of 19

addressed the community evolution problem, proposed distributed algorithms based on the social
graph to detect the overlapping communities and bridge nodes, and designed a social-based routing
scheme. Orlinski et al. [19] studied cluster based routing, and proposed a routing scheme with cluster
size adjusted dynamically. Mtibaa et al. [20] developed the PeopleRank approach for node ranking,
which was similar to PageRank. PeopleRank gave higher weight to nodes that were socially connected
to other important nodes of the network. In message forwarding, a node u forwarded a message to a
node v that it encountered if the rank of v was higher than the rank of u. Mei et al. [21] proposed a
socially aware and stateless routing scheme called SANE, in which message forwarding was based on
the interest similarity between nodes. SANE had the advantage of requiring less of a buffer of nodes
than other approaches. However, the interest is just one of the social ties between nodes. For the nodes
having no common interest, but frequent contact with the destination, they can often make a great
contribution to message delivery, as is not considered in SANE.

From different viewpoints of social relationships among nodes, the above works proposed the
effective routing solutions for a variety of problems, which had shown that social relationships among
nodes had a major impact on the performance of opportunistic routing. With the growing popularity
of smartphones, more and more people have the opportunity to participate in a variety of applications
of MONs, and comprehensive study of the social relationships among nodes will be more important
than before in MONs.

Different to the existing research work, in this paper, we take a real social phenomenon as an
example to discuss the measurement methods of social relationships, and propose a novel social-based
scheme for clustering and routing in MONs. In our daily lives, we can get a lot of information from
the circles of friends in social communication networks such as Facebook, Twitter, Wechat, and so on,
which inspires us to analyze the social relationships among nodes in MONs. In the real world, the
social relationship between two people is not only shown in direct contact with each other, but also
in their common circles of friends. For example, in our lives, there is often such a phenomenon: Bob
has two grandmothers D and E: D is the mother of Bob’s mother, and E is the mother of Bob’s father.
Although D and E are close relatives, they may never contact each other because of their opposing
personalities. In this phenomenon, there is no direct contact between D and E, but, in fact, they have
strong social relationships because they have a common “circles of friends”. As the saying goes, “like
attracts like”, and we have many types of circles of friends such as working circles, classmate circles,
common hobby circles and so on. Real-life experience tells us that we can get important information
from circles of our friends.

In an MON, the nodes are often wireless devices carried by human beings, and thus the activities
of nodes are inevitable for showing some social characteristics described above. Consequently, the
study of social relationships should reveal the explicit relationships among nodes via direct contact
events, and also determine the implicit social relationships among them from their circles of friends.
In this paper, we divide the social relationships between two nodes into two parts. One part comes
from direct contact events, which are called Explicit Social Relationships (ExSRs). Another part of
relationships should be relayed by their common friends, called Implicit Social Relationships (ImSRs).
We present the measure methods of ExSRs and ImSRs, which are used in the design of clustering and
routing. In short, what we focus on in this paper is measuring implicit social relationships between
nodes from their circles of friends, and the accurate measurement of social relationships can improve
the performance of the social-based routing proposed in this paper.

3. Social Relationship Measurement

As discussed above, the social relationships between nodes includes two parts: explicit social
relationships and implicit social relationships. The social relationships between nodes can be
represented by the combination of these two parts.
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3.1. Definitions

It is supposed that node i encounters node j at time t, and node i can measure its social relationship
Sij(t) with node j. Sij(t) is the strength of the social relationship from node i to j at time t, and Eij(t) and
Hij(t) are explicit and implicit parts of Sij(t), respectively. Then, Sij(t) can be denoted as Equation (1),
where WE

i (t) ∈ [0, 1] and WH
i (t) ∈ [0, 1] are used to adjust the weights of explicit and implicit social

relationships for the strength of social relationships with WE
i (t) + WH

i (t) = 1. Depending on the
frequency of node encounters, the weight functions WE

i (t) and WH
i (t) may vary over time:

Sij(t) = WE
i (t)Eij(t) + WH

i (t)Hij(t). (1)

In MONs, we suppose that each node has an encounter table, which stores node identification
and encounter frequency during recent time T. Ni(t) is the set of nodes encountered by node i during
recent time T at time t, and Nij(t) = Ni(t) ∩ Nj(t) is the set of nodes encountered by both nodes i and
j. We also say that Nij(t) is the set of common friends of nodes i and j at time t, or the circles of friends
of node i and j. In addition, fij(t) is the number of encounter times between node i and j during recent
time T at time t. Due to the symmetry of node encounters, we have Nij(t) = Nji(t) and fij(t) = f ji(t).

Observing social phenomena in our real lives, we find that if nodes i and j have social relationships
with each other, they must meet one of the following two conditions: (1) they have direct contact with
each other, and (2) they have a common circle of friends. In this paper, the two conditions above form
Explicit Social Relationships (ExSRs) and Implicit Social Relationships (ImSRs), respectively.

Definition 1 (Strength of ExSR). The strength of ExSR (Eij(t)) between nodes i and j at time t is denoted
as Equation (2), where µ is a constant integer and the threshold of encounter times. If the encounter times
between nodes i and j is more than µ, the strength of ExSR will be equal to 1, which means a close ExSR between
node i and j. In general, µ is an integer, set as 1.2 times the average encounters among all nodes. As shown in
Equation (2), Eij(t) ∈ [0, 1] is determined by encounter times of nodes i and j:

Eij(t) =
min(µ, fij(t))

µ
. (2)

Definition 2 (Strength of ImSR). The strength of ImSR (Hij(t)) between nodes i and j at time t is denoted as
Equations (3) and (4), where Rij(t) is used to denote the encounter times between nodes i or j and their common
circles of friends, and represents the indirect message delivery capability between nodes i and j. Equation (3)
has the same µ as Equation (2). Hij(t) ∈ [0, 1] depends on the common circles of friends between node i and j,
and the bigger size and more frequent contact of common circles of friends will lead to a stronger ImSR with
each other:

Hij(t) =
min(µ, Rij(t))

µ
, (3)

Rij(t) = ∑
k∈Nij(t)

min( fik(t), f jk(t)). (4)

As shown in Figure 1, nodes A, B and C stand for Bob and his parents, respectively, as is
mentioned in Section 1, D is the mother of Bob’s mother, and E is the mother of Bob’s father.
The encounter times between two nodes are marked with the solid lines. Supposing µ = 40, according
to Equations (3) and (4), we can get RDE = min(10, 10) + min(10, 10) + min(10, 10) = 30 and
HDE = 30

40 = 0.75 in Figure 1a, and RDE = min(8, 10) + min(8, 10) + min(8, 10) = 24 and
HDE = 24

40 = 0.6 in Figure 1b. Since D and E do not have direct contact at all, the communication
between D and E should be relayed by A, B or C. Therefore, if A, B and C reduce the contact with D or
E, the message delivery capability between D and E will have a certain degree of decline. In Figure 1a,b,
RDE is 30 and 24, respectively, which reflects the message delivery capability between D and E. Since
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the contact strength between {A, B, C} and D in Figure 1a is more than that in Figure 1b, the message
delivery capability between D and E in Figure 1a will be better than that in Figure 1b.

(a) Example 1 (b) Example 2

Figure 1. Implicit Social Relationships.

3.2. Adaptive Weights of ExSR and ImSR

From analysis of the real datasets In f ocom5 and In f ocom6, we find that the number of node
encounters changes greatly in different time periods, as is shown in Figure 2. From 7:00 a.m. to
9:00 a.m., and 6:00 p.m. to 10:00 p.m., the nodes have high frequency of encounter. However, the
frequency of node encounter is low from 10:00 a.m. to 5:00 p.m., and 11:00 p.m. to 5:00 a.m. next
day. This feature is consistent with our real lives. Our commuting time is from 7:00 a.m. to 9:00 a.m.,
and 6:00 p.m. to 10:00 p.m., and the large flow of people increases the encounter number between
individuals. However, during the rest of the daytime, we may always stay with families, friends, and
co-workers, and thus our encounter number with others goes down.
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(b) Encounter feature in Infocom6

Figure 2. Encounter feature in datasets of Infocom5 and Infocom6.

From the above analysis, we can find that there are two parts of time each day, i.e., commuting
time and resting time, and two corresponding features of encounter events among people in our
daily lives. One feature is that we encounter a lot of people during our commuting time. Because
the encounter time is short, and most people are strangers to us, this means that there are almost
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no common friends between us and the people we meet. The other feature is that we are relatively
static during the rest of the daytime, staying with people who we are familiar with, which means
that, in this part of the time, we usually have common friend circles with the people we encounter,
and the encounters during this time are relatively long. As is shown in the above analysis, ExSRs
put emphasis on direct contact between nodes, and ImSRs are related with common friend circles.
Consequently, when most of the relationships between nodes are direct contact, we want increase to
the weight of ExSRs in social relationships among nodes. With direct contact decreasing or common
friends increasing, ImSRs should have increasing weight in social relationships among nodes. In order
to measure the frequency of direct contact among nodes on the whole, we define the average contact
frequency around node i at time t as fi(t) shown in Equation (5):

fi(t) =
∑j∈Ni(t) fij(t) + ∑j∈Ni(t) ∑k∈Nj(t) f jk(t)

| Ni(t) | +1
. (5)

Then, the weights of ExSRs and ImSRs in social relationships from node i to other nodes are
defined in Equations (6) and (7), respectively. In Equation (6), µ is the same as Equation (2):

WE
i (t) =

min( fi(t), µ)

µ
, (6)

WH
i (t) = 1−WE

i (t). (7)

3.3. Distributed Computing for Social Relationships

In MONs, each node has an encounter table to record encounter events. Consequently, based on
Equation (2), each node can use its own encounter table to calculate the ExSR with other nodes.

When two nodes encounter each other, they will exchange their encounter table. With the
exchange of encounter tables, the ExSR between two nodes can be calculated based on the information
of their direct contacts, and each node can update its circles of friends with other nodes based on the
following distributed computing method. In order to collect common friends with other nodes, each
node maintains a common friend table. According to the information in the common friend table, each
node can calculate the ImSRs with other nodes. With the Figure 1b as an example, the distributed
computing method for ImSRs can be described as follows.

It is supposed that nodes A, B and C have the encounter tables shown in Figure 3, which are used
for information exchange with D; thus, D’s information is removed from these tables. Then, nodes A,
B and C are going to encounter node D one by one.

Figure 3. Encounter tables of nodes A, B and C.

As mentioned above, each node has a common friend table storing the information of common
friends with other nodes. When node A encountered D, they exchanged the encounter tables with
each other, and node D got the encounter table of A, which is shown in Figure 3a. Because D and
A have encountered each other, A becomes one of D’s friends. From A’s encounter table, based on
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the symmetry of encounter events, A is the friend of B, C and E, and nodes B, C and E have 10, 10,
and 10 encounters with node A, respectively. Consequently, we can deduce that node A is one of
the common friends of nodes D, B, C and E. Therefore, after an encounter with node A, node D
has the common friend table shown in Figure 4a. The first tuple (A, 10) in Figure 4a means that
nodes D and B have a common friend A, and the value 10 denotes the encounter times between B
and A. It should be mentioned that the encounter times between D and A can be obtained from D’s
encounter table. Similarly, after encountering B and C, node D had the common friend table shown in
Figure 4b,c respectively.

Figure 4. D’s common friends with other nodes.

As shown in Figure 4c, after encountering A, B and C, D finds that it has A, B and C as common
friends with E, and E has encounters 10 times with each of A, B and C, which are marked as (A, 10),
(B, 10) and (C, 10) in the table item of node E. From Figure 1b, D has encounters with each of A, B and
C eight times. Based on Equations (1) to (7) with µ = 40, the social relationship between D and E (SDE)
can be calculated as follows.

When node D encounters A, B and C, D can get their encounter tables as shown in Figure 3, and
D can find that each of A, B and C has direct contact with other nodes 30 times. From Figure 1b (from
its own encounter table), node D has direct contact with other nodes 24 times. Therefore, we can get
fD = 28.5, and WE

D(t) = 0.7125, and

fD = 24+30+30+30
4 = 28.5,

WE
D(t) =

min(28.5,40)
40 = 0.7125,

SDE = 0.7125× EDE + (1− 0.7125)× HDE

= 0.7125× min(40, 0)
40 + 0.2875× min[40,min(8, 10)+min(8, 10)+min(8, 10)]

40
= 0.7125× 0 + 0.2875× 0.6
= 0.1725.

The distributed exchange of node information may raise some privacy and security concerns.
If the information is exchanged between nodes in plain text, the nodes can acquire their neighbors’
situations about the most encountered nodes, which are sometimes private for the related mobile
device carriers. Moreover, the malicious users can falsify the exchanged information and appear to
have a close relationship with the destinations, so that other nodes may wrongly forward the message
to them. Therefore, the destinations may be attacked by malicious users by means of falsifying the
original message. In this paper, we focus on social relationship measurement and the efficient routing
schemes, which may have security and privacy problems. Recently, a number of solutions [22–26]
have been proposed to deal with the security and privacy issues in information exchange between
nodes in MONs. The solutions to the privacy and security problems in the proposed scheme can refer
to the related works mentioned above.



Sensors 2017, 17, 1109 9 of 19

4. Social-Based Clustering and Routing

With effective measurement of social relationships among nodes, we propose a Social-based
Clustering and Routing scheme (SCR) in MONs, including the construction and update of clusters,
and cluster-based routing.

4.1. Cluster Construction and Update

In the SCR scheme, each node has an encounter table recording the set of encounter nodes and
corresponding encounter times during recent time T. Based on the encounter table, each node can
calculate the ExSR with other nodes. In addition, each node has a common friend table recording its
common friends with other nodes, which can be called circles of friends and is used to compute ImSR
with other nodes. After social relationship measurement, each node selects the nodes with close social
relationships to join its local cluster, which will be updated dynamically to control the size and keep
the close relationship among members. For cluster updating, each node has a delete list marking the
nodes going to be dropped from the local cluster. For node i, Ni, Ci and Di are its sets of encounter
nodes, local cluster and delete list, respectively.

Initially, the related tables and lists in each node are empty. When two nodes encounter each
other, they update their encounter table and exchange encounter information. After information
exchange, they update their common friend tables similar to the example shown in Figures 3 and 4.
Then, based on Equations (1) to (7), they calculate their strength of social relationship with other nodes.
The encounter of two nodes may bring the change of their common friends with other nodes, thus
their social relationship strength with other nodes may change.

When node i encounters node j, it is supposed that Sij(t) is the strength of the social relationship
between nodes i and j at time t, and the parameter ω is the threshold of social relationship strength
for cluster members. Cluster construction and update are discussed as follows according to different
conditions of Sij(t) and ω.

Condition 1: Sij(t) is greater than ω

If Sij(t) is greater than ω, and node j is not a member of Ci, node j will join Ci. Otherwise, if node
j is a member of Ci and in the delete list Di, node j will be removed from Di, and node j is avoided
being dropped out from the cluster.

Condition 2: Sij(t) is equal to or less than ω

If Sij(t) is equal to or less than ω, and node j is not a member of Ci, node i will do nothing for
node j. Otherwise, if node j exists in Di, node j will be removed from Ci and Di, which means that
node j is dropped out from the local cluster of node i. However, if node j does not exist in Di, node j
will enter the delete list Di waiting for future consideration of removal from the local cluster.

The local cluster in each node will be updated dynamically, and the above processing will be done
if the related information has a change. The processing of cluster update can be shown in Figure 5.

In every calculation of a social relationship between a node and its cluster members based on
Equations (1) to (7), the result will be stored in the local cluster table. Before the next calculation, the
stored strength of the social relationship will decrease a certain value over time, which can be helpful
for dropping the out-of-date nodes from the local cluster, controlling the size of cluster, and keeping
the close relationship between a node and its cluster members. It is mentioned above that the time T is
the period for node encounter information collection, thus if no information shows that a node is alive,
the node will enter an observing window for consideration of dropping out from the local cluster. It is
supposed that there are n periods for the social relationship strengths to decrease to the threshold ω.
Consequently, the social relationship strengths in cluster table will be self-decreased by a value ζ every
T
n time. To social relationship strength between node i and its cluster member j, the decreasing value in
each period is ζij shown in Equation (8). If node j is one of cluster members of node i, and the recorded
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social relationship strength Sij has not been updated for a period of time T, it will be self-decreased to
ω. Then, node j will put onto the delete list of node i, and wait for consideration of dropping from the
local cluster of node i:

ζij =
Sij −ω

n
. (8)

Figure 5. Cluster update.

4.2. Cluster-Based Routing

As described above, each node selects the nodes with a close social relationship to form a local
cluster. Making full use of the close relationship among cluster members, cluster-based routing can
improve the success rate of data delivery, and also cut down on routing overhead. In this paper,
when two nodes encounter each other, message forwarding happens only if the destination is in the
local cluster of the encountering node. The process of routing can be described in two stages. One is
information exchange and the other is message forwarding.

(1) Information exchange

When two nodes encounter each other, they send a “hello” message to each other, and then they
get node identity and node encounter information of the other node. With the received information,
they can update their encounter table and common friend table, which are used to calculate the
strength of the social relationship with other nodes, and set up their local cluster.
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(2) Message forwarding

It is supposed that node i encounters node j, and node i has the message to forward. If node j is
the destination of the message, node i will forward the message to j and delete the message from its
sending queue. Otherwise, there are the following two cases for node i to forward the message.

Case 1: Intra-cluster message forwarding

If the destination of the message is in the local cluster of node i, and node j is also a member of
the cluster, node i will forward a copy of the message to node j. Otherwise, node i does not forward
the message to node j.

Case 2: Inter-cluster message forwarding

If the destination of the message is not a member of the local cluster of node i, node i will send
a “Request” packet to node j requesting whether the destination is in its local cluster. After node j
receives the “Request” packet and checks the cluster table according to the request, node j will reply to
node i with a “Response” packet notifying it about whether or not the destination is a cluster member
of node j. If node i receives the “Response” packet and the destination is a cluster member of node j,
node i will forward the message to node j. Otherwise, node i does not forward the message to node j.

The message to be sent can stay in the buffer of node i for a period of time that is dependent on
the buffer size of node i. During this period of time, if node i encounters the forwarding objectives
mentioned in the above rules, the message will be scheduled to be sent. Otherwise, the message will
be dropped from the buffer of node i according to the buffer management algorithm. There exists
a possibility that the message can not be forwarded if none of the nodes have destinations as local
cluster members, and the large buffer size will be helpful for message delivery.

5. Simulations

We implement the proposed scheme SCR in the Opportunistic Network Environment simulator
(ONE) [27] simulator, and evaluate SCR by performance comparison with PRoPHETv2 [7], DRAFT [19]
and BUBBLE [15]. In simulation, the real datasets In f ocom5, In f ocom6, Cambridge and Intel are used
for node activity driving, which can be downloaded from CRAWDAD [28]. The last updating date of
the datasets was in August 2016, and the detailed information is shown in Table 1. In simulation, the
node buffer size is set to 5M, the message size is 1K, and the node number and TTL are different to the
four datasets shown in Table 2. In SCR, the parameters are set as ω = 0.4, n = 500, and µ as 1.2 times
the average encounters among all nodes in each dataset. In DRAFT, the parameters are set as τ = 7,
δ = 0.9 and t = 3600 s.

Table 1. Characteristics of the four experimental data sets.

Dataset Infocom5 Infocom6 Cambridge Intel

Device iMote iMote iMote iMote

Duration(days) 3.5 4 11.5 4

Number of experimental devices 41 98 52 9

Number of internal contacts iMote 22,459 170,601 10,873 1364
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Table 2. Simulation parameters of four experimental datasets in ONE.

Dataset Infocom5 Infocom6 Cambridge Intel

Number of Nodes 41 98 52 9

Buffer Size 5 M 5 M 5 M 5 M

TTL 60 min 60 min 2 days 0.5 days

We compare the performance of each routing algorithm in the same simulation environment
and analyze the impact of parameters on SCR. The following metrics are used in the performance
comparison.

Packet Delivery Ratio (PDR): The ratio of the number of data packets that successfully reached
the destination and the amount of data packets sent by the source within a certain time.

Transmission Delay (TD): The delay is the average time it takes for a packet to reach the
destination after it leaves the source.

Routing Overhead Ratio (ROR): As is shown in Equation (9), the total number of packets to be
forwarded (relayed_number) minus the number of packets successfully transferred to the destination
node (delivered_number), and then divided by the number of packets successfully transferred to
the destination:

Routing_Overhead_Ratio =
relayed_number− delivered_number

delivered_number
. (9)

5.1. Packet Delivery Ratio

In the simulation, SCR, PRoPHETv2, DRAFT and BUBBLE run in the four datasets respectively,
and the simulation time is the duration of dataset, which is shown in Table 1. Simulation results
are shown in Figure 6. Similar to [19], quartiles are used to analyze the experimental results.
The experimental data is arranged in ascending order and then divided into four equal parts. Then,
we can find In Figure 6 there are five signs (min, first quartile, median, third quartile and max) for
the result of each algorithm. In some special situations, two or more signs may have the same value.
For example, in the first part of Figure 6, to the result of BUBBLE, the first quartile and median have
the same value. The quartiles shown in Figure 6 can reflect the distribution center, concentration and
spread range of packet delivery ratio. As can be seen from Figure 6, SCR has a higher distribution
center of packet delivery ratio than the other three algorithms, a small spread range and a focus on
better range.
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Figure 6. Quartiles of packet delivery ratios.

With the simulation time varying, the results are shown in Figure 7. When simulation time is less
than one day, SCR has similar results to the other algorithms. Due to the formation of clusters in the
network requiring a process, in a short simulation time, there are not enough nodes in the local cluster
for efficient data transmission. With the increasing of simulation time, SCR has a higher average packet
delivery ratio than the other three algorithms. Compared with PRoPHETv2, DRAFT and BUBBLE,
SCR has the higher packet delivery ratio, as shown in Table 3.
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Figure 7. Packet delivery ratio comparisons.
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Table 3. The PDR improvement of SCR compared with the other three algorithms (%).

Algorithms PRoPHETv2 DRAFT BUBBLE

Infocom5 18.1 8.5 28.4

Infocom6 8.5 3.7 27.3

Cambridge 4.2 3.4 10.5

Intel 9.5 3.5 14.4

5.2. Transmission Delay

The transmission delay of each algorithm is shown in Figure 8. Compared with the other three
algorithms, SCR has the transmission delay decreased by some extent, which is shown in Table 4. Since
SCR is cluster-based routing, and cluster members have strong social relationships with each other,
it can reduce unnecessary data transmission, and thereby reduce the transmission delay.
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Figure 8. Transmission delay comparisons.
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Table 4. The TD decrease of SCR compared with the other three algorithms (%).

Algorithms PRoPHETv2 DRAFT BUBBLE

Infocom5 17.1 18.2 38.4

Infocom6 29.3 7.6 27.6

Cambridge 5.3 1.4 11.2

Intel 3.3 1.3 5.1

5.3. Routing Overhead Ratio

The comparison of routing overhead is shown in Figure 9. Compared with the other three
algorithms, SCR has the routing overhead ratio decreased by some extent, as shown in Table 5. Since
cluster members have close social relationships in SCR, data transmission has better efficiency than the
other three algorithms. In SCR, each node only forwards the copy of the message to nodes that have
the destination node as cluster members. Consequently, the total amount of message forwarding is
reduced without a negative effect on packet delivery ratio.
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Figure 9. Routing overhead ratio comparisons.
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Table 5. The ROR decrease of SCR compared with the other three algorithms (%).

Algorithms PRoPHETv2 DRAFT BUBBLE

Infocom5 30.7 9.3 19.2

Infocom6 18.5 15.3 3.3

Cambridge 11.2 3.5 15.8

Intel 13.6 9.4 1.5

5.4. Impact of Parameters on Performance

In SCR, there are three parameters: ω, µ and n. The parameter ω is the threshold of social
relationship strength for cluster members, and to each node, the size of its local cluster will increase
with the decreasing of ω. The parameter µ is the referring encounter times for the measurement of
social relationship between nodes. In a given condition, the bigger µ has the smaller value of social
relationship between two given nodes. For local cluster constructing, ω and µ have a similar effect.
On the one hand, with fixed ω, we can change µ to let a node join the cluster. On the other hand, to a
given µ, we can change the threshold ω to have a node join the cluster. It is obvious that changing the
value of the social relationship has the same effect as changing the threshold of the cluster for cluster
constructing. Consequently, we herein only analyse the impact of ω on performance. The parameter
n is the number of self-decreasing times in the time period T, which is for the social relationship
to self-decrease to ω, as is shown in Equation (8). Given that the simulation time is three days, the
performance of SCR in In f ocom5 dataset is shown in Figure 10, where ω is denoted as “Omega”.

As is shown in Figure 10, the smaller ω has the higher packet delivery ratio, the lower transmission
delay, and the higher routing overhead ratio. This is consistent with theoretical analysis: the increasing
size of the cluster generates more copies of the message forwarded by cluster members, which
improves the success of packet transmission and thus decreases the transmission delay, but more
copies of the message raises the routing overhead ratio. Considering the tradeoff of packet delivery
ratio, transmission delay and routing overhead, we suggest that the parameter ω should be 0.4, which
is why we set up ω = 0.4 in the above simulation.

From simulation results, the n has almost no impact on packet delivery ratio and transmission
delay. In our opinion, the n has a relationship with the speed of an outdated node dropping from the
cluster, but no relationship with the key nodes that can forward messages to destinations successfully.
As far as routing overhead is concerned, the smaller n leads to more useless nodes staying in the
cluster, and more copies of the message forwarded to the network. Therefore, routing overhead ratio
increases, as is shown in the lower right part of Figure 10.
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Figure 10. Impact of parameters on SCR performance.

6. Conclusions

In this paper, we study the effective measurement method for social relationships among nodes
in mobile opportunistic networks, and propose a novel social-based clustering and routing scheme.
Inspired by the importance of “circles of friends” in the communication networks such as Facebook,
Twitter, Wechat and so on, we take a real-life example to show that social relationships among nodes
consist of explicit and implicit parts. Explicit social relationships come from direct contact among
nodes, and implicit social relationships can be measured through the “circles of friends”. We present
the definitions of explicit social relationships (ExSRs) and implicit social relationships (ImSRs), and
combine both ExSRs and ImSRs to measure social relationships between nodes. Adaptive weights are
given to ExSRs and ImSRs in the measurement of social relationships, which can be adjusted for the
contact feature of the nodes, and thus accuracy measurement of social relationships will be achieved.
In addition, the distributed computing scheme of common friends is proposed for the calculation
of ImSR. Based on effective measurement of social relationships, we propose a novel social-based
clustering and routing scheme. Each node selects the nodes with closed social relationships to
form a local cluster, and the self-control method is used to keep all cluster members always having
close relationships with each other. A cluster-based message forwarding mechanism is designed for
opportunistic routing, in which each node only forwards the copy of the message to nodes with the
destination node as a member of the local cluster. Simulations have been done, and the results show
that the proposed solution outperforms the other two classic routing algorithms, and also shows the
effectiveness of the proposed measurement method for social relationships among nodes.
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