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Abstract: In modern communication and radar applications, large-scale sensor arrays have
increasingly been used to improve the performance of a system. However, the hardware cost and
circuit power consumption scale linearly with the number of sensors, which makes the whole system
expensive and power-hungry. This paper presents a low-cost nested multiple-input multiple-output
(MIMO) array, which is capable of providing O(2N2) degrees of freedom (DOF) with O(N) physical
sensors. The sensor locations of the proposed array have closed-form expressions. Thus, the aperture
size and number of DOF can be predicted as a function of the total number of sensors. Additionally,
with the help of time-sequence-phase-weighting (TSPW) technology, only one receiver channel is
required for sampling the signals received by all of the sensors, which is conducive to reducing the
hardware cost and power consumption. Numerical simulation results demonstrate the effectiveness
and superiority of the proposed array.

Keywords: nested array; single receiver channel; time-sequence-phase-weighting (TSPW);
multiple-input multiple-output (MIMO); degrees of freedom (DOF); large-scale array

1. Introduction

The multiple-input multiple-output (MIMO) array has gained considerable attention recently
since it is a flexible technique and can provide significant system performance improvement [1–5].
It forms a virtual array to efficiently extend the effective aperture and increase the degrees of freedom
(DOF), which bring many benefits, such as spatial resolution enhancement [6], improved interference
rejection capability [7] and excellent parameter identifiability [8]. The signal processing of the MIMO
array is based on the amplitude and phase information received by each antenna element. To obtain
the information, the general approach is to connect each array element with an independent receiver
channel [9], which requires the number of receivers to be equal to that of the sensors. Since the receiver
is one of the most expensive parts in the whole system, this requirement inevitably makes the system
become complex, bulky and costly [10]. The problem is more serious in large-scale sensor arrays.

Over the last several years, many solutions have been developed to handle the challenge. One of
the feasible solutions is the single receiver channel array based on the time-sequence-phase-weighting
(TSPW) technology [11,12]. The single channel TSPW (SC-TSPW) array exchanges the sampling time
for hardware cost savings. It weights and combines the signals of different sensors with orthogonal
codes and decomposes them at the baseband by employing the same codes. Only one receiver channel
is required for sampling. The basic principle of obtaining the original signals with one receiver channel
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is similar to that of code division multiple access (CDMA). The mentioned single channel array in the
following paper will refer to the SC-TSPW array if there is no special instruction.

The modern communication and radar applications, i.e., 5th generation wireless systems (5G) [13],
underwater sonar system [14] and personal radar [15], usually exploit large-scale sensor arrays to
sample the spatial signals to improve the performance of the system. For a single channel array with
N physical sensors, the sampling time for obtaining enough information to recover the original array
signal is O(N). Therefore, although this type of array can effectively save the cost of the whole system,
it is still a challenge to employ the single channel array in large-scale sensor applications because it
will spend too much time on sampling. The larger the sensor scale is, the more serious the real-time
processing problem will be.

In order to effectively increase the DOF, the nested array based on the concept of the Khatri–Rao
(KR) product has been proposed in [16]. By producing a difference co-array (DCA), it is possible to
obtain O(N2) DOF from only O(N) physical sensors. Meanwhile, unlike the minimum redundancy
arrays (MRAs) [17] and the minimum hole arrays (MHAs) [18], which need computer searching to find
the positions of sensors, it has a simple closed-form expression for the array geometry, and there are no
holes on the aperture of the corresponding DCA [19]. However, it mainly focuses on the applications
of passive scenarios.

In this paper, a new array geometry named the single channel nested-MIMO array is introduced.
The proposed array is formed by the fusion of the MIMO array, nested array and single channel
array to produce a cost-effective and DOF-enhanced sensor array. It has a closed-form expression for
the positions of transmit and receive arrays; thus, the aperture size and the number of DOF can be
predicted. It will be demonstrated that by exploiting the proposed array, it is possible to obtain O(2N2)

DOF with only O(N) physical sensors. Additionally, compared with the conventional single channel
array, the required number of receive sensors can be reduced for achieving a specified DOF.

The paper is organized as follows. Section 2 gives an overview of the related works to our research.
In Section 3, the conventional single channel TSPW array, multi-channel MIMO array and nested array
are briefly introduced. The algorithms for constructing the single channel nested-MIMO array and
obtaining the original array signals through the single channel structure are proposed in Section 4.
Simulation results, which show the effectiveness of the proposed array, are reported in Section 5,
followed by conclusions drawn in Section 6.

2. Related Work

The single channel nested-MIMO array is based on the theory of the SC-TSPW array, the nested
array and the MIMO array. The low-cost feature of the proposed array is inherited from the SC-TSPW
array. In the previous studies on the conventional SC-TSPW array, the main focuses are all about the
receive antenna design and the signal recovery method [11,20,21]. The system is considered to be
single input multiple output (SIMO) by default. The number of receive sensors should be increased to
enhance the DOF. The DOF grows linearly with the number of receive sensors.

Many of the researchers have already done much excellent work to enhance the degrees of
freedom of the sensor array. An array named the nested MIMO array has been proposed in [22] for
DOA estimation purpose. The co-array of the proposed array has been used to increase the DOF.
However, the array geometry is the same as that of a normal MIMO array. Thus, the design complexity
is the same as that of the standard MIMO array. In [23], another nested MIMO array based on the
array construction methods of [24] has been proposed to increase the DOF. Additionally, the spatial
sparsity of the array signal has been exploited for DOA estimation in this work. The minor defect
is that the positions of the sensors are obtained by computer exhaustive search, which is difficult to
be realized for large-scale wireless sensor applications. In [25], a nested minimum redundancy array
(NMRA) has been proposed. It has a closed-form expression of the sensor locations, and the DOF has
been significantly increased. The shortcoming of this array is that not all NMRA geometries with any
number of sensors can be obtained since it relies on the structures of known MRAs. An array composed
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of phased-MIMO and nested-array has been proposed in [26] for increasing the DOF. The receiving
array is a nested array. The proposed work benefits from both the nested array and the phased-MIMO
array. However, only the receive array exploits the nested array structure, and the total number of
sensors is still large.

To the best of our knowledge, the transmit antenna part has never been added into the SC-TSPW
array before this study. To bridge this gap, the work tries to introduce the transmit sensor array to the
SC-TSPW array and use the theories of MIMO and the nested array to enhance the degree of freedoms
while maintaining the low-cost characteristic of the SC-TSPW array. The main contributions of this
paper can be summarized as follows:

• The transmit antenna array is introduced into the conventional SC-TSPW array. Different
waveforms transmitted by different antennas are exploited. The aperture size of the corresponding
virtual array can be effectively extended. Specifically, since only one set of receiving equipment is
required, the hardware cost is reduced compared with that of the frequently-used multichannel
system. This low-cost feature is useful for those cost-sensitive applications, such as low-cost
personal mobile radar [27,28], next generation wireless systems [29], millimeter-wave automotive
radar [30], and so on.

• The work compromises the merits of the nested array and the MIMO array. The sensor locations
of the proposed array have closed-form expressions. We prove with mathematic analysis that the
virtual array of the proposed single channel nested-MIMO array can fully cover a parent nested
array. The aperture size and number of DOF can be predicted as a function of the total number of
sensors. Additionally, for a given number of DOF, the number of total sensors is relatively small.

• The corresponding signal recovery method of the single channel nested-MIMO array is proposed.
Unlike the recovery method, which uses the single channel samplings that contain only one kind
of waveform, the proposed signal recovery method uses the single channel samplings, which
contains different orthogonal waveforms, to form a virtual array with a large aperture. For a given
number of DOF, it requires less processing time than that of the conventional SC-TSPW array.

3. Preliminaries

3.1. Single-Channel TSPW Array

The system structure and the signal processing flowchart of a conventional SC-TSPW array are
shown in Figure 1.

The original spatial array signals X = [x1, . . . , xN ]
T are sampled with a fully filled sensor array.

Each sensor is connected with an independent digital controlled 0/π phase shifter, which produces a
weighting vector W = [wi1, . . . , wiN ] composed of one and −1. For an array with N elements, these
shifters change state N times to form an orthogonal Walsh–Hadamard matrix W and produce the
single channel outputs Y = [y1, . . . , yN ]

T , which can be written as [31]:

Y = WX + E =

w11 · · · w1N
...

. . .
...

wN1 · · · wNN


 x1

...
xN

+

 e1
...

eN

 (1)

where E = [e1, e2, . . . , eN ]
T is the noise term.

With only one RF receive channel, the single channel outputs Y are down converted, sampled
and stored temporally. With the signal recovery algorithm, the original array signal can be recovered
in the digital domain by:

X̆ = W−1Y = W−1(WX + E) = X +
1
N

WTE (2)

where W−1 = 1
N WT is the inverse matrix of the Walsh–Hadamard matrix and WTW = NIN is the

property of Walsh–Hadamard matrix.
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Figure 1. (a) Structure of a conventional SC-TSPW sensor array. The symbols LO, IF, A/D and
ζk are the local oscillator, the intermediate frequency, the analog-to-digital converter and the radar
reflection coefficient of the k-th target, respectively. (b) Signal processing block diagram of the single
channel system.
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Figure 2. (a) Array signal storage model for a pulse radar with the sensor array. (b) Single channel
sampling procedure in the view of datacube.
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According to [32], the echo signal of pulse radar with the sensor array after being converted
into the baseband can be considered as stored in a three-dimensional structure, called a datacube,
as shown in Figure 2a. In the view of the datacube, the procedure of the single channel sampling is
illustrated in Figure 2b. The original datacube degenerates into a single channel sample matrix after
the single channel sampling. It can be recovered when the single channel sample matrix contains
enough information. For an SC-TSPW array with N DOF (N is a power of two), N pulses must be
taken to provide enough information to form the single channel data matrix. Thus, the sampling
time of SC-TSPW will increase linearly with the number of sensors, which produces serious real-time
processing problems and leads it to become unsuitable for large-scale measurement arrays.

3.2. Multi-Channel MIMO Array

Unlike the phased-array radar, the standard MIMO radar exploits the waveforms by transmitting
different waveforms at different antennas. Consider a multi-channel MIMO system with a transmit
array with M antenna sensors and a receive array with N antenna sensors. There are mainly two types
of MIMO antennas: one is the widely separated antenna array [33], and the other is the co-located
antenna array [34]. This work addresses the co-located antenna array, for which both transmit and
receive arrays are closely located. The transmitted signal of the m-th sensor can be expressed in
low-pass equivalent form as:

sm(t) =

√
E
M

φm(t), m = 1, . . . , M, 0 ≤ t ≤ Tp (3)

where E is the total transmitted energy within one radar pulse, Tp is the pulse width and φm(t) is the
energy normalized orthogonal waveform, which satisfies

∫
Tp
|φm(t)|2dt = 1. In this paper, the set of

frequency spread signals proposed in [35] is adopted as φm(t). It can be described as:

φm(t) =

{ 1√
Tp

exp(j2πm∆ f t), 0 < t < Tp

0, otherwise
(4)

where m = 1, . . . , M. It is shown in [35] that these signals satisfy
∫

Tp
φm(t)φm(t)dt = 1, m = n and∫

Tp
φm(t)φ∗n(t)dt ≈ 0, m 6= n, if the frequency difference ∆ f � 1/Tp.

Assume that the number of targets is K. The far-field baseband signal received by the sensor array
of the p-th pulse of the l-th frame is [36]:

xp,l(t) =

√
E
M

K

∑
k=1

ζk,lb(θk)a
T(θk)φ(t) + zp,l(t) (5)

where t, θ and ζ are the fast time index, i.e., the snapshot number, spatial angle and the reflection
coefficient with variance σ2

k , respectively, φ(t) = [φ1(t), . . . , φM(t)]T is the waveform vector, (·)T

denotes the transpose zp,l(t) is N × 1 zero-mean white Gaussian noise term and

a(θk) = [1, e−j 2π
λ sin(θk)ds , . . . , e−j 2π

λ sin(θk)(M−1)ds ]T

b(θk) = [1, e−j 2π
λ sin(θk)dr , . . . , e−j 2π

λ sin(θk)(N−1)dr ]T
(6)

are the steering vectors of transmit and receive array, respectively, λ is the wavelength and ds and dr

are the spacing of adjacent elements of transmit and receive array, respectively. Note that the radar
cross-section of the target is assumed to be constant from pulse to pulse, but varies independently
from frame to frame with variance σ2

k , i.e., it obeys the Swerling Case I target model [37].
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Exploiting the orthogonality property, the received signal can be decomposed by M matched
filters. After matched filtering, the MIMO signal vector of the p-th pulse can be obtained, which is
given as follows:

Xp,l =

√
E
M

K

∑
k=1

ζk,lb(θk)a
T(θk) + z̃p,l (7)

where z̃p,l is the noise vector. By stacking the signal Xp,l in one column, the virtual data vector can be
obtained. The dimensionality of the data vector can reflect the number of DOF of the MIMO array.
In particular, if ds = Ndr is chosen to form an MIMO array, the corresponding virtual array is a uniform
linear array (ULA), and the number of DOF is MN, which is just the number of sensors of the virtual
array [16].

3.3. Nested Array

The nested array is a concatenation of two uniform linear arrays (ULAs) [38]: the inner and outer
arrays, where the inner ULA has N1 sensors with spacing d1 and the outer ULA has N2 sensors with
spacing d2. Although there are many types of nested arrays, we only focus on the two-level nested
array because the difference co-array (DCA) produced by the two-level nested array has no holes
on the aperture. The DCA of the two-level nested array is a fully-filled ULA with 2N2(N1 + 1)− 1
virtual sensors. Thus, the degrees of freedom (DOF) that the two-level nested array can provide
is 2N2(N1 + 1) − 1. It should be noted that the minimum redundancy MIMO proposed in [24]
can also form the DCA and obtain more DOF than those of the nested array. However, only by
computer searching can the positions of the sensors of the minimum redundancy MIMO be obtained.
In the following context, the nested array will refer to the two-level nested array without additional
instructions.

To obtain the signals of the associated DCA, it is necessary to compute the source covariance
matrix R. In practice, the covariance matrix can be estimated using the samples of L frames [39] as
R = (1/L)∑L−1

l=0 X(l)XH(l), where (·)H is the conjugation transpose operator. The signals of DCA can
be written as:

X̂ = vec(R) = (B∗ � B)σ + ẽn (8)

where σ = [σ2
1 , . . . , σ2

K]
T , B = [b(θ1), . . . , b(θK)], ẽn is noise vector and � denotes the Khatri–Rao (KR)

product of two matrices.

4. Single-Channel Nested-MIMO Array

4.1. Array Geometry of Single-Channel Nested-MIMO Array

It is shown that the two-level nested array has an optimized distribution of sensors to maximize
the total DOF [16]. Therefore, in this section, we consider constructing an MIMO array, which makes
the corresponding virtual array contain the optimized two-level nested array while maintaining the
number of total sensors as few as possible. Additionally, the receive array will exploit the single
channel structure to reduce the cost and power consumption of the system. The structure diagram of
the single channel nested-MIMO array is illustrated in Figure 3.
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Figure 3. Structure of the single channel nested-MIMO array.

Assume the transmit and receive sensor arrays are parallel and co-located. Their positions are all
from a virtual uniform grid, where the minimum grid spacing is chosen as d = λ/2 to avoid spatial
aliasing. Denote Pt = { ~pTi | i = 1, . . . , M} and Pr = { ~pRj | j = 1, . . . , N} as the set of indexes of the
positions of transmit and receive elements, respectively, where ~pTi and ~pRj are the positions of the i-th
transmit and the j-th receive sensors, respectively. The single channel nested-MIMO arrays can be
constructed according to the following array geometry:

Definition 1. (Second-order single channel nested-MIMO arrays): Assume N1 and N2 are integers satisfying
N1 ≥ 1 and N2 ≥ 2. The single channel nested-MIMO arrays are specified by the integer sets Pt and Pr,
defined by:

Pt = X1 ∪X2

Pr = Y1
(9)

where:

X1 = {1 + iB | 0 ≤ i ≤ 1},
Y1 = {i | 1 ≤ i ≤ B},
X2 = {iA− B + 1 | 2 ≤ i ≤ N2}.

(10)

The parameters A and B are defined as:

A = N1 + 1, B = dN1 + 1
2
e (11)

where d·e denotes the convention of rounding towards positive infinity.

According to the Definition 1, we have:

Lemma 1. When the number of sensors of the parent nested array N ≥ 3, the virtual array of the second-order
single channel nested-MIMO array has the same aperture size as that of the parent nested array.
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Proof: The virtual array is the convolution of the transmit and receive arrays [40]. The sensor positions
of the virtual array are given by the set PV = { ~pTi + ~pRj , i = 1, . . . , N, j = 1, . . . , M}. Assume the
parent nested array has N = N1 + N2 (N ≥ 3) sensors. Then, the aperture size of the nested array is
ASnested = (N2(N1 + 1)− 1)d [16]. The aperture size of the proposed array is:

AS = (max{Pt}+ max{Pr} − 2)d

= (max{X2}+ max{Y1} − 2)d

= (N2 A− B + 1 + B− 2)d

= (N2(N1 + 1)− 1)d

(12)

Thus, ASnested = AS completes the proof. Q.E.D.

Theorem 1. For the nested array (NTotal ≥ 3), there exists at least one single channel nested-MIMO array,
such that the associated virtual array covers the parent nested array.

Proof: Because the proposed array has the same aperture size as that of the parent nested array
(Lemma 1), the statement of Theorem 1 is equivalent to the following argument: if the position set
Pnested of the parent nested array is a subset of PV , then the parent nested array is covered by the
virtual array of the single channel nested-MIMO array. The position set Pnested can be considered as
the union of two sets: the inner set Pinner and the outer set Pouter, where:

Pinner = {i | 1 ≤ i ≤ N1} (13)

Pouter = {i(N1 + 1) | 1 ≤ i ≤ N2} (14)

First, we consider the situation when N1 is even. Let N1 = 2j, j ∈ N+. Then A = N1 + 1 = 2j + 1,
B = dN1+1

2 e = d
2j+1

2 e = j + 1. According to Definition 1, we have:

X1 = {1, j + 2}
Y1 = {1, . . . , j, j + 1}

(15)

According to [16], for the optimal distribution, N2 should be 2j or 2j + 1. The proofs of these two case
are nearly the same. Thus, we only discuss the situation of the former one for explanation purposes.
When N2 = 2j, j ∈ N+,

X2 = {2A− B + 1, 3A− B + 1, . . . , N2 A− B + 1},
= {2(2j + 1)− (j + 1) + 1, 3(2j + 1)− (j + 1) + 1, . . . , 2j(2j + 1)− (j + 1) + 1},
= {3j + 2, 5j + 3, . . . , 4j2 + j}.

(16)

Thus, the position set of the virtual array PV is:

PV ={1, . . . , j, j + 1} ∪ {j + 2, . . . , 2j, 2j + 1, 2j + 2}
∪ {3j + 2, . . . , 4j + 1, 4j + 2} ∪ . . . ∪ {4j2 + j, . . . , 4j2 + 2j− 1, 4j2 + 2j}

(17)

Since the position set of the nested array is:

Pnested = Pinner ∪ Pouter

= {1, . . . , 2j, 2j + 1, 4j + 2, . . . , 4j2 + 2j},
(18)

it is clear that each element in the set Pnested is contained in the set PV . Thus, Pnested is a subset of PV ,
which is denoted as Pnested ⊆ PV . The proof is completed. When N1 is odd, the proof is quite similar
to the above one, and we do not repeat it. Q.E.D.
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Corollary 1. If the parent nested array contains N = N1 + N2 ≥ 3 sensors, the total number NTotal of physical
sensors and the number Ns of single channel receive sensors of the second-order single channel nested-MIMO
arrays are:

(NTotal , Ns) =

{
(N1+2N2+4

2 , N1+2
2 ), if N1 is even

(N1+2N2+3
2 , N1+1

2 ), if N1 is odd
(19)

Proof: The number of total sensors NTotal is equal to the sum of the numbers of elements of three sets
X1, X2 and Y1, and the number of single channel receive sensors Ns is equal to the number of elements
of Y1 in Equation (10), which is also equal to the value of B. If N1 is even, then B = N1

2 + 1 and:

NTotal = 2 +
N1

2
+ 1 + N2 − 1

=
N1

2
+ N2 + 2,

Ns =
N1

2
+ 1.

(20)

If N1 is odd, then B = N1
2 + 0.5 and:

NTotal = 2 +
N1

2
+ 0.5 + N2 − 1

=
N1

2
+ N2 + 1.5,

Ns =
N1

2
+ 0.5.

(21)

Q.E.D.

With Definition 1, it is easy to construct a single channel nested-MIMO array whose
virtual array totally contains the target nested array. Additionally, the positions of
the sensors have the exact closed-form expression. Figure 4 shows an example of a
single channel nested-MIMO array with 13 physical sensors, which covers a parent nested
array with 15 sensors. The set of positions of the parent nested array is Pnested =

{1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32, 40, 48, 56, 64}, and the set of virtual arrays of the single channel
nested-MIMO array is PV = {1, 2, 3, 4, 5, 6, 7, 8, 13, 16, 21, 22, 23, 24, 32, 37, 38, 39, 40, 48, 53, 54, 55, 56, 64}.

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5

T r a n .  A r r a y

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5

R e c e .  A r r a y

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5
I n d e x

 N e s t e d  A r r a y  V i r t u a l  A r r a y

Figure 4. Scheme of a single channel nested-MIMO array with 13 sensors, which covers a nested
array with 15 sensors. The position sets of the single channel nested-MIMO array are Pt =

{1, 5, 13, 21, 29, 37, 45, 53, 61} and Pr = {1, 2, 3, 4}, respectively.
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Although the single channel nested-MIMO array constructed by Definition 1 can correctly contain
the required nested array, it can be seen that there are many unused virtual elements in the virtual
array, which increases the redundancy. The high redundancy requires more physical sensors to form
the array, which increases the cost and power consumption. To further reduce the total number of
sensors, we loosen the restriction on the minimum number of total sensors and develop an optimized
array based on Definition 1.

Definition 2. (Optimized second-order single channel nested-MIMO arrays): Assume N1 and N2 are integers
satisfying N1 ≥ 3 and N2 ≥ 4. The optimized second-order single channel nested-MIMO arrays are specified
by the integer sets Ps and Pr, defined by:

Pt = X1 ∪X2 ∪X3

Ps = Y1 ∪Y2
(22)

where:

X1 = {1 + iB | 0 ≤ i ≤ 1},Y1 = {i | 1 ≤ i ≤ B},

X2 =


{∅}, if N2 is even

{3A− B + 1}, if N2 is odd and N1 is even

{A + 3B + 2}, if N2 is odd and N1 is odd

Y2 =


{2A− B}, if N2 is even

{iA | 1 ≤ i ≤ 2}, if N2 is odd and N1 is even

{2A− B}, if N2 is odd and N1 is odd

X3 =


{2iA + B + 1 | 1 ≤ i ≤ C}, if N2 is even

{(2i + 1)A + 1 | 1 ≤ i ≤ C}, if N2 is odd and N1 is even

{(2i + 1)A + B + 1 | 1 ≤ i ≤ C}, if N2 is odd and N1 is odd

(23)

The parameters A, B and C are defined as:

(A, B, C) =


(N1 + 1, dN1 + 1

2
e, N2 − 2

2
), if N2 is even

(N1 + 1, bN1 + 1
2
c, N2 − 3

2
), if N2 is odd

(24)

where b·c denotes the convention of rounding towards negative infinity and ∅ denotes the null set.

Lemma 2. When the number of sensors of the parent nested array N ≥ 7, the aperture size of the virtual array
of the optimized single channel nested-MIMO array is equal to that of the parent nested array.

Proof: The aperture size of the nested array is ASnested = (N2(N1 + 1)− 1)d. Without loss of generality,
we assume N2 is even. Then, A = N1 + 1, C = N2

2 − 1. The aperture size of the optimized single
channel nested-MIMO array, when N ≥ 7, is:

ASopt. = (max{Pt}+ max{Pr} − 2)d

= (max{X3}+ max{Y2} − 2)d

= (2AC + B + 1 + 2A− B− 2)d

= (2A(C + 1)− 1))d

= (N2(N1 + 1)− 1)d

(25)



Sensors 2017, 17, 1105 11 of 20

It is clear that ASnested = ASopt.. The proof of the case when N2 is odd is similar except that the value
of N1 should be taken into consideration in the proof. Q.E.D.

Theorem 2. For the nested array (N ≥ 7), there exists at least one optimized second-order single channel
nested-MIMO array such that the associated virtual array fully covers the parent nested array.

Proof: Because the optimized single channel nested-MIMO array has the same aperture size as that of
the parent nested array, we need to prove that the position set Pnested is a subset of PV . Consider the
situation when N2 is odd and N1 is even. Let N2 = 2j + 3, N1 = 2j + 2, j ∈ N+. The inner and outer
position sets of the nested array are:

Pinner = {1, 2, . . . , 2j + 2}, (26)

Pouter = {2j + 3, 4j + 6, . . . , (2j + 3)2}. (27)

The position set of the nested array is:

Pnested = Pinner ∪ Pouter

= {1, . . . , 2j + 2, 2j + 3, 4j + 6, . . . , 4j2 + 12j + 9}.
(28)

According to Equation (24), A = 2j + 3, B = j + 1, C = j. Substitute A, B, and C into Equation (23);
we get:

X1 = {1, j + 2}, X2 = {5j + 9},
X3 = {6j + 10, 10j + 16, . . . , 4j2 + 8j + 4},
Y1 = {1, . . . , j + 1}, Y2 = {2j + 3, 4j + 6}.

(29)

Then:

Pt = {1, j + 2, 5j + 9, 6j + 10, 10j + 16, . . . , 4j2 + 8j + 4}, (30)

Pr = {1, . . . , j + 1, 2j + 3, 4j + 6}. (31)

The sensor position of the virtual array PV is listed in Table 1 as follows.

Table 1. Sensor position of the virtual array (N1 is even and N2 is odd).

H
HHHHPr

Pt 1 j + 2 5j + 9 6j + 10 10j + 16 · · · 4j2 + 8j + 4

1 1 j + 2 5j + 9 6j + 10 10j + 16 · · · 4j2 + 8j + 4
...

...
...

...
...

...
. . .

...
j + 1 j + 1 2j + 2 6j + 9 7j + 10 11j + 16 · · · 4j2 + 9j + 4

2j + 3 2j + 3 3j + 4 7j + 11 8j + 12 12j + 18 · · · 4j2 + 10j + 6
4j + 6 4j + 6 5j + 7 9j + 14 10j + 15 14j + 21 · · · 4j2 + 12j + 9

It can be verified that the upper-left data block of Table 1 is just the set Pinner, and the other
elements of Table 1 contain the set Pouter with redundancy. The proofs of the other cases are nearly the
same as this one, and we will not repeat them. Q.E.D.



Sensors 2017, 17, 1105 12 of 20

Corollary 2. If the parent nested array contains N = N1 + N2 ≥ 7 sensors, the total number NTotal of physical
sensors and the number Ns of single channel receiving sensors of the optimized second-order single channel
nested-MIMO array are:

(NTotal , Ns) =



(
N1 + N2 + 6

2
,

N1 + 4
2

), if N2 is even and N1 is even

(
N1 + N2 + 5

2
,

N1 + 3
2

), if N2 is even and N1 is odd

(
N1 + N2 + 7

2
,

N1 + 4
2

), if N2 is odd and N1 is even

(
N1 + N2 + 6

2
,

N1 + 3
2

), if N2 is odd and N1 is odd

(32)

Proof: The proof is nearly the same as the proof of corollary 1, and we will not repeat it here. Q.E.D.

As an example, Figure 5 shows the virtual arrays produced by the single channel nested-MIMO
arrays that constructed by Definition 1 and 2, respectively. The target nested array is the same as that
in Figure 4. It can be seen from Figure 5 that Definition 2 can produce a satisfactory array with less
physical sensors. The position indexes of the sensors generated by Definition 2 are Ps = {1, 5, 21, 37, 53}
and Pr = {1, 2, 3, 4, 12}, respectively. The number of total physical sensors is 10, which is less than that
of the array produced by Definition 1.

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5
I n d e x

 N e s t e d  A r r a y  V i r t u a l  A r r a y  ( D e f .  1 )  V i r t u a l  A r r a y  ( D e f .  2 )

Figure 5. Comparison of the array geometry of the parent nested array and two virtual arrays. The
virtual arrays are associated with the single channel nested-MIMO arrays that were generated by
Definitions 1 and 2, respectively.

Given a number of sensors NTotal , the designer usually is concerned about how many DOF the
array can provide. According to Definitions 1 and 2, the number of DOF that the proposed array can
provide is given by the following corollary:

Corollary 3. Given a number NTotal(NTotal ≥ 6) of physical sensors, the maximal number of DOF that the
single channel nested-MIMO array can provide from the associated DCA is:

DOFnested−MIMO =

{
2N2

Total − 8NTotal + 7, if NTotal is even

2N2
Total − 10NTotal + 11, if NTotal is odd

(33)

Proof: When NTotal ≥ 7, the maximal number of DOF is provided by the optimized second-order
single channel nested-MIMO arrays. Because the aperture size of the parent nested array of the
optimized array is larger than that of the original nested-MIMO array, under the constraint of a fixed
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total number of sensors, for a parent nested-array with N = N1 + N2 sensors, the number of DOF that
it can provide is [16]:

DOFnested =


N2 − 2

2
+ N, if N is even

N2 − 1
2

+ N, if N is odd
(34)

According to Equation (32), we will discuss it in four cases.

1. If N1 is an odd integer, and N2 is an even integer:

In this case, the number of sensors of the parent nested-array N is an odd integer and the number
of physical sensors of the nested-MIMO array NTotal is an even integer. Then:

DOF(1) =
N2 − 1

2
+ N

=
(N1 + N2)

2 − 1
2

+ (N1 + N2)

=
(2NTotal − 5)2 − 1

2
+ (2NTotal − 5)

= 2N2
Total − 8NTotal + 7

(35)

2. If both N1 and N2 are even integers:

In this case, the number of sensors of the parent nested-array N is an even integer, and the number
of physical sensors of the nested-MIMO array NTotal is an odd integer. Then:

DOF(2) =
N2 − 2

2
+ N

=
(N1 + N2)

2 − 2
2

+ (N1 + N2)

=
(2NTotal − 6)2 − 2

2
+ (2NTotal − 6)

= 2N2
Total − 10NTotal + 11

(36)

3. If N1 is an even integer and N2 is an odd integer:

In this case, the number of sensors of the parent nested-array N is an odd integer, and the number
of physical sensors of the nested-MIMO array NTotal is an even integer. Then:

DOF(3) = 2N2
Total − 12NTotal + 17 (37)

4. If both N1 and N2 are odd integers:

In this case, the number of sensors of the parent nested-array N is an even integer and the number
of physical sensors of the nested-MIMO array NTotal is an even integer. Then:

DOF(4) = 2N2
Total − 10NTotal + 11 (38)

Thus, the maximal number of DOF that the nested-MIMO array can provide is:

DOFnested−MIMO = max{DOF(1), DOF(2), DOF(3), DOF(4)}

=

{
2N2

Total − 8NTotal + 7, if NTotal is even

2N2
Total − 10NTotal + 11, if NTotal is odd

(39)

Q.E.D.
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4.2. Signal Processing of Single Channel Nested-MIMO Array

Because the proposed array exploits the single RF receiving channel to sample the original array
signals, the samplings cannot be directly used for subsequent array signal processing. The original
array signals should first be recovered by using the single channel sampling data. The processing flow
is shown in Figure 6. Since the signal processing methods of different frames are the same, we only
discuss the procedure in one frame.

Sam
ple

s (T
)

Pulses (P)

Single-channel sample matrix

1 MMatched-
Filtering

Signal 
Recovery

MIMO Signals

MN

Samples

Samples

MF-1

MF-M

MF-1

MF-M

Pulses 1

Pulses N

Pulses

M

Single-channel samples

lY

lX

Single-channel 
MIMO signals

,N ly

1,ly1, ( )ly t

, ( )N ly t

Single-channel samples

Figure 6. Signal processing diagram of the signal channel MIMO array.

Specifically, before recovering the original signals from the single channel data matrix, waveform
matched filters should be added. To reduce the requirement of the bandwidth of phase shifters, the
same weighting vector is used in one pulse, and different weighting vectors are used for different
pulses. Consider a single channel nested-MIMO array composed of a transmit array with M co-located
sensors and a single channel receive array with N sensors. Following Equation (5), the single channel
samplings of the p-th pulse in the l-th frame yp,l(t) can be expressed as:

yp,l(t) = HT
p xp,l(t)

= HT
p

K

∑
k=1

ζ ′k,lb(θk)a
T
m(θk)φ(t) + HT

p zp,l(t)
(40)

where HT
p is the weighting vector of the p-th pulse and ζ ′k,l =

√
E/Mζk,l . Decompose the signal yp,l(t)

by M matched filters. The filtered signal corresponding to the m-th transmitted waveform can be
expressed as:

ȳp,l(t) =
∫

Tp
yp,l(t)φ∗m(t)dt

= HT
p

K

∑
k=1

ζ ′k,lb(θk)a
T
m(θk) + z̄p,l(m)

(41)

where (·)∗ is the conjugation operator and z̄p,l(m) =
∫

Tp
HT

p zp,l(t)φ∗m(t)dt is the noise vector after
filtering. Stacking M filtered signals in one row vector, we obtain the signal ȳp,l = [ȳp,l(1), . . . , ȳp,l(M)].
Assume that one data frame contains N pulses. The single channel MIMO signal of the l-th frame Yl is:
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Yl =

 ȳ1,l
...

ȳN,l

 = HT
K

∑
k=1

ζ ′k,lb(θk)a
T(θk) + Z̄l (42)

where H = [H1, . . . , HN ]
T is an N × N Walsh–Hadamard matrix and Z̄l is the noise matrix. Since

HHT = NIN , the original MIMO signals Xl recovered from the single channel MIMO signals Yl can be
obtained by:

Xl = vec(
1
N

HYl)

= vec(
K

∑
k=1

ζ ′k,lb(θk)a
T(θk) +

1
N

HZl)

= vec(
K

∑
k=1

ζ ′k,lb(θk)a
T(θk)) + Z̃l

(43)

where Z̃l is the observed noise.
Because both the transmit and receive arrays are sparse, the element positions of the recovered

MIMO signal Xl should be slightly revised. For instance, if the configuration of the array is
Ps = {1, 4, 14} and Pr = {1, 2, 3, 7}, the element index of the initially recovered MIMO signal Xl will be
{1, 2, 3, 7, 4, 5, 6, 10, 14, 15, 16, 20}. The revised signal X̃l can be obtained easily by rearranging the index
of Xl in ascending order as {1, 2, 3, 4, 5, 6, 7, 10, 14, 15, 16, 20}. To obtain the signals of the associated
DCA of the single channel nested-MIMO array, the source covariance matrix R is calculated by:

R =
1
L

L

∑
l=1

vec(X̃l)vec(X̃l)
H (44)

where (·)H is the conjugation transpose operator. The vectorization of R represents the signals of the
associated DCA of the proposed array according to Equation (8). The recovered signals will be used
for direction-of-arrival (DOA) estimation, adaptive beamforming, and so on.

5. Simulation Results

The larger array aperture tends to have finer spatial resolution and smaller estimation error.
For the restricted linear array [19], the number of DOF varies linearly with the aperture size. More
DOF means more sources can be resolved. Therefore, in the first experiment, we compare the number
of DOF provided by the single channel nested-MIMO array with that respectively provided by the
conventional SC-TSPW array [11], MIMO array [34], nested array [16] and the improved nested array
proposed in [41]. The total number of physical sensors of each array is consecutive integers from seven
to 36. Specifically, the spacing between adjacent elements of the transmit array is N − 1 times larger
than that of the receive array to guarantee that the virtual array has no holes on the aperture. Figure 7
illustrates the comparison results. It is shown that the single channel nested-MIMO array constructed
by Definition 2 provides the largest number of DOF among these arrays under the constraint of a fixed
total number of sensors.

The second experiment evaluates the performance of proposed array in terms of DOA estimation
using the spatial smoothing multiple signal classification (SS-MUSIC) algorithm [16]. For comparison,
the estimation result of a nested array is also presented. Each array has eight physical sensors.
For the nested array, the number of DOF is 39. Since the SS-MUSIC can only exploit half number of
DOF [16], the number of sources that can be resolved up by the nested array under this case is 19.
The configuration of the single channel nested-MIMO array is Ps = {1, 4, 16, 28} and Pr = {1, 2, 3, 9}.
The number of DOF is 71, and the number of sources that can be resolved up is 35. Consider K = 21
narrowband sources impinging on the array with equal power. The spatial frequencies θ̄ = sin(θ) are



Sensors 2017, 17, 1105 16 of 20

uniformly distributed in the range from −0.95 to 0.95. The noise is assumed to be Gaussian white
noise. The signal to noise ratio (SNR) is 10 dB. The number of frames L is 300. Figure 8 illustrates the
MUSIC spectra for the proposed array and a nested array, respectively. It can be seen that all of the
targets have been identified correctly by the single channel nested-MIMO array, and the nested array
failed to obtain the correct spectrum, as expected.

1 0 1 5 2 0 2 5 3 0 3 5

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0
Nu
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er 

of 
DO

F

N u m b e r  o f  P h y s i c a l  S e n s o r s

 S C - T S P W  a r r a y
 M I M O  a r r a y
 N e s t e d  a r r a y
 I m p r o v e d  n e s t e d  a r r a y
 S i n g l e - c h a n n e l  n e s t e d - M I M O  a r r a y  ( D e f .  1 )
 S i n g l e - c h a n n e l  n e s t e d - M I M O  a r r a y  ( D e f .  2 )

Figure 7. Comparison of the number of DOF versus the number of physical sensors.

(a)

(b)

Figure 8. MUSIC spectra as a function of spatial frequencies. The true angles of the signal sources
are depicted by the dash lines. (a) The spectrum of the nested array with eight physical sensors.
(b) The spectrum of the single channel nested-MIMO array with four transmit antennas and four
receive antennas.
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Figure 9 shows the root mean square error (RMSE) of the angle estimates as a function of SNR,
averaged over 2000 Monte Carlo simulations. Because the proposed array can identify 35 sources with
the SS-MUSIC algorithm, we also consider the corresponding RMSE for conventional MUSIC applied
to a 35-element ULA. The angle of signal source θ0 is 25◦. The RMSE is defined as:

RMSE =

√√√√ 1
Q

Q

∑
q=1

(θ̂ − θ0)
2

(45)

where Q is the number of Monte Carlo simulations and θ̂ is the estimated angle. It can be seen that both
the proposed array and the nested array perform worse than the conventional ULA with 35 elements.
Because the Khatri–Rao product used to form the DCA is only an approximation when the number of
samples is finite [16], however, the proposed array performs reasonably better than the nested array
when both of them have the same number of physical sensors.

- 3 0 - 2 0 - 1 0 0 1 0 2 0
1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

RM
SE

 (d
B)

S N R  ( d B )

 U L A ,  N = 3 5
 N e s t e d  A r r a y
 P r o p o s e d  A r r a y
 C R B

Figure 9. RMSE (in dB) versus SNR (for the source at 25◦). Both the nested array and the proposed
array have eight physical sensors.

The single channel sampling time of the proposed array is evaluated in the third experiment.
Because the sampling time of the single channel arrays scales linearly with the number of receive
antennas, it suffices to compare the number of receive sensors rather than the single channel sampling
time. For the purpose of comparison, we also show the numbers of receive sensors of the MIMO
array and the nested array besides the SC-TSPW array, because the receive parts of these arrays can be
naively modified with the single channel technology to reduce the cost. Figure 10 shows the number
of receive sensors of the SC-TSPW array, the MIMO array with single receiver channel (SC-MIMO), the
nested array with single receiver channel (SC-NA) and the proposed array. It can be observed that
the proposed array requires the fewest number of receive sensors among those arrays. The number of
receive sensors of the proposed array does not increase linearly with the number of DOF. However,
it should be noted that the entire processing time of the single channel system is still longer than
that of the multichannel system because the hardware cost saving is achieved at the cost of increased
sampling time.
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Figure 10. Number of receive sensors versus the number of DOF.

6. Conclusions

In this paper, we proposed a low-cost nested-MIMO array for large-scale wireless sensor
applications. It enjoys the advantages of a single channel array, MIMO array and nested array.
Not only are the hardware costs and the power consumption reduced, but the number of DOF is also
effectively increased. Additionally, the single channel sampling time of the proposed array does not
increase linearly with the number of DOF, which makes it possible to improve the real-time processing
performance for large-scale wireless sensor applications. The effectiveness and superiority of the
proposed array design strategy are verified by numerical results.
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Abbreviations

The following abbreviations are used in this manuscript:

TSPW time-sequence-phase-weighting
MIMO multiple-input multiple-output
DOF degrees of freedom
CDMA code division multiple access
DCA difference co-array
NMRA nested minimum redundancy array
SS-MUSIC spatial smoothing multiple signal classification
RMSE root mean square error
SNR signal to noise ratio
SC-TSPW single channel TSPW
SC-MIMO single channel MIMO
SC-NA single channel nested array

References

1. Alrabadi, O.N.; Perruisseau-Carrier, J.; Kalis, A. MIMO transmission using a single RF source: Theory and
antenna design. IEEE Trans. Antennas Propag. 2012, 60, 654–664.



Sensors 2017, 17, 1105 19 of 20

2. Wang, X.; Wang, W.; Li, X.; Liu, Q.; Liu, J. Sparsity-aware DOA estimation scheme for noncircular source in
MIMO radar. Sensors 2016, 16, 539.

3. Wang, W.Q. Large-area remote sensing in high-altitude high-speed platform using MIMO SAR. IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens. 2013, 6, 2146–2158.

4. Gao, H.; Wang, J.; Jiang, C.; Zhang, X. Antenna allocation in MIMO radar with widely separated antennas
for multi-target detection. Sensors 2014, 14, 20165–20187.

5. Hassan, N.; Raahemifar, K.; Fernando, X. Least square optimization of pilot sequence length for massive
MIMO systems. In Proceedings of the Computer Aided Modelling and Design of Communication Links and
Networks, Toronto, ON, Canada, 23–25 October 2016.

6. Bliss, D.W.; Forsythe, K.W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom
and resolution. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers,
Pacific Grove, CA, USA, 9–12 November 2003.

7. Geng, Z.; Deng, H. Adaptive interference and clutter rejection processing for bistatic MIMO radar.
In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation, Fajardo, Puerto
Rico, 26 Junuary–1 July 2016.

8. Li, J.; Stoica, P.; Xu, L.; Roberts, W. On parameter identifiability of MIMO radar. IEEE Signal Process Lett.
2007, 14, 968–971.

9. Tzeng, F.; Jahanian, A.; Pi, D.; Heydari, P. A CMOS code-modulated path-sharing multi-antenna receiver
front-end. IEEE J. Sol. State Circuits 2009, 44, 1321–1335.

10. Björnson, E.; Matthaiou, M.; Debbah, M. Massive MIMO with non-ideal arbitrary arrays: hardware scaling
laws and circuit-aware design. IEEE Trans. Wireless Commun. 2015, 14, 4353–4368.

11. Zhang, J.D.; Wu, W.; Fang, D.G. Single RF channel digital beamforming multibeam antenna array based on
time sequence phase weighting. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 514–516.

12. Zhang, D.; Wu, W.; Fang, D.G. Array signal recovery algorithm for a single-RF-channel DBF array. EURASIP
J. Adv. Signal Process. 2016, 2016, 99.

13. Hong, W.; Baek, K.H.; Lee, Y.; Kim, Y.; Ko, S.T. Study and prototyping of practically large-scale mmWave
antenna systems for 5G cellular devices. IEEE Commun. Mag. 2014, 52, 63–69.

14. Pan, X.; Jiang, J.; Wang, N. Evaluation of the performance of the distributed phased-MIMO sonar. Sensors
2017, 17, 133.

15. Guidi, F.; Guerra, A.; Dardari, D. Personal mobile radars with millimeter-wave massive arrays for indoor
mapping. IEEE Trans. Mob. Comput. 2016, 15, 1471–1484.

16. Pal, P.; Vaidyanathan, P.P. Nested arrays: A novel approach to array processing with enhanced degrees of
freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181.

17. Moffet, A. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 1968, 16, 172–175.
18. Vertatschitsch, E.; Haykin, S. Nonredundant arrays. Proc. IEEE 1986, 74, 217.
19. Liu, C.L.; Vaidyanathan, P.P. Super nested arrays: Linear sparse arrays with reduced mutual coupling-part I:

fundamentals. IEEE Trans. Signal Process. 2016, 64, 3997–4012.
20. Wang, H.; Fang, D.G.; Li, M. A single channel microstrip electronic tracking antenna array with time

sequence phase weighting on sub-array. IEEE Trans. Microwave Theory Tech. 2010, 58, 253–258.
21. Noordin, N.H.; Arslan, T.; Flynn, B.W.; Erdogan, A.T.; El-Rayis, A.O. Single-port beamforming algorithm for

3-faceted phased array antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 813–816.
22. Qin, S.; Zhang, Y.D.; Amin, M.G. DOA estimation of mixed coherent and uncorrelated signals exploiting a

nested MIMO system. In Proceedings of the 2014 IEEE Benjamin Franklin Symposium on Microwave and
Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications, Philadelphia, PA, USA,
26 September 2014.

23. Jie, Y.; Gui-sheng, L. A spatial sparsity-based DOA estimation method in nested MIMO radar. J. Electron.
2014, 36, 2698–2704.

24. Chun-Yang, C.; Vaidyanathan, P.P. Minimum redundancy MIMO radars. In Proceedings of the 2008 IEEE
International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008.

25. Yangg, M.; Haimovich, A.M.; Chen, B.; Yuan, X. A new array geometry for DOA estimation with enhanced
degrees of freedom. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing, Shanghai, China, 20–25 March 2016.



Sensors 2017, 17, 1105 20 of 20

26. Zhu, C.; Chen, H.; Shao, H. Joint phased-MIMO and nested-array beamforming for increased degrees-of-
freedom. Int. J. Antennas Propag. 2015, 2015, 11.

27. Guidi, F.; Guerra, A.; Dardari, D. Millimeter-wave massive arrays for indoor SLAM. In Proceedings of the
2014 IEEE International Conference on Communications Workshops, Sydney, Australia, 10–14 Junuary 2014.

28. Guerra, A.; Guidi, F.; Dardari, D. Millimeter-wave personal radars for 3D environment mapping.
In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
USA, 2–5 November 2014.

29. Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems.
IEEE Commun. Mag. 2014, 52, 186–195.

30. Menzel, W.; Moebius, A. Antenna concepts for millimeter-wave automotive radar sensors. Proc. IEEE 2012,
100, 2372–2379.

31. Wei-Xing, S.; Da-Gang, F. Angular superresolution for phased antenna array by phase weighting. IEEE Trans.
Aerosp. Electron. Syst. 2001, 37, 1450–1814.

32. Richards, M.A. Fundamentals of Radar Signal Processing. Tata McGraw-Hill Education: Noida, India, 2005.
33. Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO radar with widely separated antennas. IEEE Signal Process

Mag. 2008, 25, 116–129.
34. Li, J.; Stoica, P. MIMO radar with colocated antennas. IEEE Signal Process Mag. 2007, 24, 106–114.
35. He, Q.; Blum, R.S.; Godrich, H.; Haimovich, A.M. Target velocity estimation and antenna placement for

MIMO radar with widely separated antennas. IEEE J. Sel. Top. Signal Process. 2010, 4, 79–100.
36. Hassanien, A.; Vorobyov, S.A. Transmit energy focusing for DOA estimation in MIMO radar with colocated

antennas. IEEE Trans. Signal Process. 2011, 59, 2669–2682.
37. Skolnik, M. Radar Handbook Third Edition; Tata McGraw-Hill Education: Noida, India, 2008.
38. Li, S.; Xie, D. Compressed symmetric nested arrays and their application for direction-of-arrival estimation

of near-field sources. Sensors 2016, 16, 1939.
39. Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized coprime array configurations for direction-of-arrival estimation.

IEEE Trans. Signal Process. 2015, 63, 1377–1390.
40. Chen, C.Y.; Vaidyanathan, P.P. MIMO radar space-time adaptive processing using prolate spheroidal wave

functions. IEEE Trans. Signal Process. 2008, 56, 623–635.
41. Han, K.; Nehorai, A. Improved source number detection and direction estimation with nested arrays and

ULAs using jackknifing. IEEE Trans. Signal Process. 2013, 61, 6118–6128.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	Single-Channel TSPW Array
	Multi-Channel MIMO Array
	Nested Array

	Single-Channel Nested-MIMO Array
	Array Geometry of Single-Channel Nested-MIMO Array
	Signal Processing of Single Channel Nested-MIMO Array

	Simulation Results
	Conclusions

