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Abstract: Human visual mechanisms (HVMs) can quickly localize the most salient object in natural
images, but it is ineffective at localizing tumors in ultrasound breast images. In this paper, we research
the characteristics of tumors, develop a classic HVM and propose a novel auto-localization method.
Comparing to surrounding areas, tumors have higher global and local contrast. In this method,
intensity, blackness ratio and superpixel contrast features are combined to compute a saliency map,
in which a Winner Take All algorithm is used to localize the most salient region, which is represented
by a circle. The results show that the proposed method can successfully avoid the interference caused
by background areas of low echo and high intensity. The method has been tested on 400 ultrasound
breast images, among which 376 images succeed in localization. This means this method has a high
accuracy of 94.00%, indicating its good performance in real-life applications.

Keywords: automatic localization; human visual mechanisms; superpixel contrast feature; ultrasound
breast tumor

1. Introduction

Breast cancer is one of the most common malignant tumors women face. It has the highest
incidence and mortality of all diseases affecting women and even holds a rising trend. The early
detection of suspicious lesions is very important for effective treatment of breast cancer. Ultrasound,
mammography and magnetic resonance imaging (MRI) are general methods for the clinical detection
of lesions, among which ultrasound (US) has been widely used due to its non-invasion, non-ionization
radiation and non-injury [1,2]. However, the shortcomings of US breast images, such as low contrast,
serious speckles, and low spatial resolution, make it difficult for doctors to read and analyze these
suspicious lesions. Furthermore, with an increasing number of patients, doctors feel heavily burdened,
resulting in a higher rate of misdiagnosis.

In recent years, to improve the usability of US computer-aided diagnosis (CAD) has been preferred
to achieve more reliable and accurate diagnostic conclusions and to reduce the unnecessary MRI
and biopsies. In addition, CAD techniques used to investigate suspicious lesions in US breast images
can also help reduce the workload of doctors [3–6]. Generally, a CAD system mainly contains
three steps: image segmentation, feature extraction and object classification. Image segmentation
is an essential step. In recent decades, many segmentation techniques have been proposed [7],
such as neural network (NN)-based methods [8,9], deep learning, active contour models [6],
and region-based methods [10,11]. For these segmentation algorithms, due to the interference caused
by shadowing artifacts or similar tumor-like structures for the lesion, the automatic localization
of tumors in US breast images is a difficult and critical link [8–11]. In fact, generally, lesions are
manually marked as an alternative method, but artificial intervention makes it impossible to realize
fully automatic segmentation.
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To date, several methods have been proposed for the automatic localization of breast tumors in US
images. Upon review of these methods, they can be generally classified into two types: point-based
methods [10–12] and region-based methods [13–15].

Madabhushi et al. [11] proposed an automatic localization method using seeds point. This is
a type of point-based method. In Madabhushi’s method, the reference point is generated based
on empirical rules, with which suspicious lesions are more likely to be positioned at or near the center
of an image. As their seed point selection method combines the probability distribution functions
(pdfs) for intensity, texture and the location of the potential seed points, it is very likely to result
in an incorrect location, where the true tumor is not located at the center of the image, or pixels
with similar pdfs near the center of the image. Unfortunately, these two issues persist in US breast
images. Therefore, the reference point assumption is ineffective and influenced by the operation habits
of physicians. Besides, this point-based method is sensitive to speckle noise.

Other researchers have proposed region-based detection methods. Yap et al. [14] considered
two factors for selection object region: the size and the distance of each region to the reference
point. In this method, histogram equalization is firstly used to pre-process the images, which is
followed by hybrid filtering and multifractal analysis stages. Then, the region of interest
(ROI) is identified by a single-valued threshold segmentation method and a rule-based approach.
Compared to point-based methods, this method has better performance in case of noise immunity.
However, if the tumors are particularly small or the background areas are complex with serious
artifacts, this method loses efficacy.

Liu [15] also presented a region-based detection method based on a support vector machine (SVM)
classifier. He divided the images into 16 × 16 blocks and calculated the Gray Level Co-occurrence
Matrix (GLCM) of each region as the training data of his SVM classifier. However this localization
method needs many post-processing operations to select the ROI, including removing linear connected
areas, filling holes and experience-based region selection. This method cannot separate tumor areas
from normal tissues if only depending on the local texture feature. In addition, this method is unable
to localize tumors in small-sized tumors and large-sized tumors shown in Section 4.

In this paper, we propose a new localization method combining the point-based and region-based
methods. This is based on the Itti HVM model [16]. Itti HVM model is a classic visual attention model,
which has been widely applied to localize the most salient region in natural images by combining color,
intensity, and orientation features. According to the characteristics of tumors in US images, we used
the intensity and blackness ratio feature to compute the saliency map. In addition, in order to avoid
the drawbacks of point-based methods, we add the superpixel feature so that these three features
greatly improve the performance of this model, especially for the large and relatively small tumors.
Finally, the automatically localized region is presented for the initial contour of the Chan-Vese (CV)
level set. We employed the automatic segmentation of a breast tumor to demonstrate the practical
significance of the proposed method.

2. Model Architecture

The human eye, working as a biological photoelectric sensor, can quickly obtain visual
information. This information can stimulate the visual light-sensitive cells, producing electrical pulses,
and guiding the eye movement. Different visual information causes different stimulation on the visual
light-sensitive cells, with the most significant information gaining the attention of the human eyes.
HVM has been successfully applied in the field of image processing [16–20], which can quickly
localize the ROI, and automatically discard the unimportant parts. Thus, this saves a lot of image
post-processing time.

In HVM, the movement of human eyes is mainly determined by visual features.
Therefore, in HVM models, feature extraction is the most important part. For natural images,
there are some features successfully applied in HVM models, such as color, texture and orientation.
However, many features are usually invalid for US images. For instance, tumors are usually dark and
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directional features are too weak to distinguish the tumors from other dark areas. In our model, we used
intensity, blackness ratio and superpixel contrast features to achieve tumor detection. This localization
method can be divided into four steps: (a) getting feature maps and saliency maps of blackness ratio
and intensity; (b) computing the superpixel saliency map of input image; (c) combining all saliency
maps; and (d) locating the most salient region. The framework of the automated object localization
method is shown in Figure 1.
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Figure 1. Proposed methodology.

2.1. Gaussian Pyramid Image

In this algorithm, to avoid information loss through sub-sampling process, the input image
is first smoothed by convolution with a linearly separable Gaussian filter and then sub-sampled
by a factor of two [19]. In our model, we use a 6 × 6 linearly separable Gaussian kernel filter
of [1,5,10,10,5,1,1]/32. The next levels σ = [1, 2, ..., 9] of the pyramid are obtained by repeating the
sub-sampling and decimation processes. σ = 1 represents the input image. The resolution of layer σ

is the 1/2σ times of the original image, as this representation can effectively reduce time complexity
of the algorithm. The Gaussian pyramid of input image is shown in Figure 2, in which images in higher
levels have lower resolution, while the information in the object area is well retained, overall improving
the efficiency of the procedure.
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2.2. Saliency Map

2.2.1. Intensity and Blackness Ratio Features

In US breast images, the intensity of tumors is lower than that of its surrounding areas, so tumors
have great contrast to backgrounds. We obtained the intensity feature MI by computing the average
of three color components:

MI = (r + g + b)/3 (1)

US images are intrinsically gray-scale images, so the color components r, g and b are equal.
For the record, the US breast images we obtained are stored in 24-bite bitmap (BMP) format, a standard
image file format in Window operating system. In these images, the color components r, g and b have
weak differences in gray values.

In addition, we defined the blackness ratio feature, in order to enlarge the weight of lower intensity,
and weaken the influence of high-intensity areas. The blackness ratio map MBR is explained as

MBR =
1−min(r, g, b)
(r + g + b)/3 + ε

(2)

To avoid the divisor to be zero, ε is added in Equation (2), where ε is set to 0.001.

2.2.2. Pyramid Feature Map

This involved extracting the intensity and blackness ratio features of each Gaussian pyramid
image and repeating for pyramid levels σ = [1, 2, ..., 9] to get the intensity pyramid feature map MI(σ)
and blackness ratio pyramid feature map MBR(σ).

2.2.3. Generating Saliency Map

Center-surround receptive fields are simulated by across-scale subtraction between two maps
at the center (c) and the surround (s) levels in these pyramids, yielding intensity and blackness ratio
contrast maps [16,21,22].

CI(c, s) = N{|MI(c)ΘMI(s)|}
CBR(c, s) = N{|MBR(c)ΘMBR(s)|}

(3)

where N{.} is an iterative, nonlinear normalization operator, simulating local competition between
neighboring salient localization. Between one and five iterations are used for the simulations in this
paper. The contrast maps are summed over by across-scale addition⊕ to the σ = 5 level. Following this,
the sums are normalized again to generate a saliency map, as shown in Figure 3.
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In Figure 3b, a high-intensity area has higher contrast than tumor area, but the tumor area is more
salient than other high-intensity regions whose values are near to zero. In the blackness ratio saliency
map shown in Figure 3c, the tumor area has the highest saliency compared to any other regions.

When the local contrast of tumors is smaller than that of some background areas or speckle
noise, the blackness ratio and intensity features are unable to localize the tumors. In order to avoid
the interference of speckle noise and some background areas, we propose a novel global saliency
feature, superpixel saliency, to enhance the saliency of tumors.

2.3. Superpixel Saliency

2.3.1. Superpixel

A superpixel is a region that consists of a series of adjacent features with similar color
and brightness. Most of these small areas retain the effective information for further image
processing and generally preserve the boundaries of the object. We used simple linear iterative
clustering (SLIC) to generate a superpixel image [23], in which the gray values and Euclidean
distance are respectively used to compute the color similarity and spatial proximity of two pixels.
Compared to existing superpixel methods, SLIC has been shown to outperform in respect to algorithm
speed, memory efficiency and boundary adherence. Furthermore, the SLIC algorithm has excellent
performance. In the SLIC algorithm, parameter K of K-means and compactness m are of importance
to the segmentation performance. We discussed the segmentation performance of variant K and m.

Combined with the reference segmentation results in Figure 4, we can see from the four lines
in Figure 5 that compactness comes at the expense of boundary adherence. In other words, a higher
compactness indicates more missed edges. Furthermore, as shown in Figure 5b1–b4 and c1–c4,
the boundary adherence increases with K and then decreases rapidly when K > 400, resulting in poor
segmentation performance. In our method, we choose the parameters K = 400 and m = 40, with which
the SLIC algorithm can segment the locally pointed region well as shown in Figure 5b3 and the reference
segmented region in Figure 4.Sensors 2017, 17, 1101  6 of 15 
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Figure 5. Performance comparison of SLIC with variant K and m of superpixels. These pictures are
the superpixel images of a local region in a US breast image.

The superpixel segmentation of the original image is shown in Figure 6b.

Sensors 2017, 17, 1101  6 of 15 

 

 
Figure 4. Input image of SLIC network. 

 
Figure 5. Performance comparison of SLIC with variant K and m of superpixels. These pictures are 
the superpixel images of a local region in a US breast image. 

The superpixel segmentation of the original image is shown in Figure 6b. 

 
(a) (b)

Figure 6. Superpixel image obtained by SLIC: (a) Original image. (b) Superpixel image. 

2.3.2. Superpixel Saliency Map 

The superpixel saliency map is computed as 

   
 

 


 








K

k,ii
ikδ

,rrdi
kkSP ,...,K,,k,rrDeN

nrWrS
ik

1
2 212

2

 (5) 

   
    

 K
k

k ,...,g,gg,grW 21
minmax

max





 g

gg
g

 (6) 

     ikikik yyxx,rrd 
22

 (7) 

Figure 6. Superpixel image obtained by SLIC: (a) Original image. (b) Superpixel image.

2.3.2. Superpixel Saliency Map

The superpixel saliency map is computed as

SSP(rk) = W(rk)
K

∑
i=1,i 6=k

{
ni
N

e−
d2(rk,ri)

2δ2 D(rk, ri)
}

, k = 1, 2, ..., K (5)

W(rk) =
max(g)− gk

(max(g)−min(g))
, g = {g1, g2, ..., gK} (6)

d(rk, ri) =
√
(xk− xi)2 + (yk− yi)2 (7)

D(rk, ri) = gk− gi (8)

In Equation (5), K is the number of superpixels; N and ni are respectively the total number of pixels
in input image and in superpixel ri; δ is used to control the influence of surrounding superpixels
on the superpixel being computed. In Equations (6) and (8), g is the set of average gray values gk
of all superpixels. (xk, yk) and (xi, yi) in Equation (6) are the centroids of rk and ri, with d(rk, ri) then
normalized to a range of [0,1].

In our method, three factors are considered: (a) Compared with normal tissues, a tumor has
lower echo that makes it more salient than other areas, which is achieved by the weight W(rk).
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(b) Closer superpixels have a greater influence on the contrast of the current superpixel, as illustrated

by the parameter e−
d2(rk,ri)

2δ2 in Equation (5), in which δ controls the influence of surrounding superpixels
ri on the current superpixel rk with respect to Euclidean distance, while δ is set to 0.05 to reduce the
contribution of far superpixels. (c) Larger areas denote a greater effect on other areas, as illustrated
with parameter ni

N .
In superpixel saliency map in Figure 7b, the superpixels in tumor area all have relatively high

contrast. Other areas, such as the marked high-intensity area, are less salient because of their
small areas.
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2.4. Combined Saliency Map

S =
1
3 ∑

l∈{I,BR,SP}
Sl (9)

We found above that the saliency of tumor area is greatly affected by high-intensity background
areas and low-intensity background areas, respectively, in the intensity saliency map and black ratio
saliency map. In addition, as illustrated in Section 2.3.2, spindly high-intensity areas are far less
salient due to their smaller sizes in the superpixel saliency map. Therefore, by combining these three
saliency maps, we can effectively reduce the salient values of dark background areas and high-intensity
background areas, as shown in combined saliency map in Figure 8.
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2.5. Winner Take All

Winner-take-all (WTA) neural networks have been extensively discussed as a way of making
decisions. The maximum of the saliency map defines the most salient image localization, to which
the focus of attention (FOA) should be directed (Figure 9). For our model, we used the WTA
network proposed by Itti et al. [16,21], in which the saliency map is modeled as a 2D layer of leaky
integrate-and-fire neurons. These model neurons consist of a capacitance that integrates the charge
delivered by synaptic input, a leakage conductance, and a voltage threshold.
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(10)

2.6. Post-Processing Operation

Based on the imaging mechanisms of the ultrasound imaging system, US breast images contain
three layers, including the fat layer, mammary layer and muscle layer. The locations of suspicious
lesions are in the mammary layer of US breast images, and the tumors have no junctions with the
image edges. In order to overcome the interference of low-intensity areas, which are positioned in the
fat layer or near the image edges, we propose an alternative strategy to automatically detect “wrong”
localization by considering the position of the detected region and then selecting the “second” most
probable lesion, using the information in the saliency map.

The workflow of this strategy is depicted in Figure 10.
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In order to find the second most probable lesion, the Inhibition of Return (IOR) algorithm [16] is
applied in our model to inhibit the saliency of the currently attended location to 0. In Figure 10, Lj is
the number of junction pixels of the segmented region and image edges. When Lj > 0, the saliency
of current-localized region is inhibited to 0 through the IOR algorithm and then find the second-most
salient region by the winner-take-all method.

3. Results

An automatic localization algorithm for US breast images is tested in this section. To evaluate
the proposed algorithm, 400 US breast images from the Ultrasound Department of West China Hospital
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of Sichuan University are tested. The proposed method successfully localized the tumors in 376 images
with a high accuracy of 94.00%.

The results of the proposed method shown in Figure 11 demonstrate that our automatic
localization scheme is valid for breast tumors with different backgrounds and sizes. The first line
shows four small tumors, the second line shows four tumors of medium sizes, and the third line
shows four tumors with pretty large sizes. In our method, incorporating the superpixel saliency map
along with low and high-level intensity knowledge makes it possible to avoid shadowing artifacts and
lowers the chance of confusing similar tumor-like structures for the lesion.
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segmentation procedures of two US breast images.
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Figure 13. The localization and segmentation procedures of a US breast image. (a) Original image,
(b) intensity saliency map, (c) blackness ratio saliency map, (d) superpixel saliency map, (e) combined
saliency map of three features, (f) localization results, and (g) segmentation results by the CV level set.

We can see from Figure 12b–d that the tumor has the highest saliency than other regions in these
three saliency maps. It is also clear that the dark region located in the bottom-right background
has equally high saliency with the tumor in the blackness ratio and superpixel saliency maps.
However in the intensity saliency map, the saliency of this region is much lower than tumor, making it
less salient in the combined saliency map (Figure 12e).

However, in some US breast images, the local contrast of the tumor region is lower than that
of some background areas (Figure 13a). In these images, the intensity and blackness ratio features
have less contributions to the localization of tumors (Figure 13b,c), in which the high-intensity
bottom-right background area and the low-echo background area on the top left hold the highest
saliency compared to other areas respectively in the intensity and blackness ratio saliency maps.
The superpixel saliency map, in which the tumor has the highest saliency as shown in Figure 13e,
devotes greatly to the localization of tumors.

Among the 400 tested images, we found that the tumors in 32 images have lower saliency
compared with some background areas. Furthermore, in eight images, the positions of the first
localized areas are in the fat layer or near the image edges. As demonstrated in Figure 14b–d,
the localized dark region in these three saliency maps has equal or even higher saliency compared
to tumor, making the Winner Take All network ineffective to localize the tumor. This is consistent with
that of the example in Figure 15.
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using the processing operation, the proposed method successfully localizes tumors in the 
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Figure 15. An example of wrong localization by the proposed method. (a) Original image, (b) intensity
saliency map, (c) blackness ratio saliency map, (d) superpixel saliency map, (e) combined saliency map
of three features, and (f) localization results.

We analyzed the localization procedures and then improved the results by implementing
a post-processing operation as described in Section 2.6. The two images in Figure 15 are the segmented
results from the CV level set, in which the number of junction pixels Lj > 0. Therefore using
the processing operation, the proposed method successfully localizes tumors in the first-wrong
localization, using the information in the saliency maps, shown in Figure 16.



Sensors 2017, 17, 1101 12 of 15
Sensors 2017, 17, 1101  12 of 15 

 

 
(a) (b)

 
(c) (d)

Figure 16. The localization procedures by post-processing operation. (a) Segmentation results from 
the CV level set in US Image 1; (b) right localization results by post-processing operation in US 
Image 1; (c) segmentation results from the CV level set in US Image 2; (d) the right localization 
results by post-processing operation in US Image 2. 

4. Discussion 

In order to validate the effectiveness of the proposed scheme, it is compared with Liu’s 
detection method [15]. We followed the algorithm in [15] exactly and tested it using our data sets. 
Liu’s method was successfully executed only for 325 images Compared with Liu’s method, our 
method has better performance with a much higher accuracy of 94.00% compared to 81.25% (Table 
1). 

Table 1. The localization accuracy of Liu’s method and the proposed method. 

Proposed Method 
Liu’s Method

Right Localization Wrong Localization Sum 
Right Localization 325 51 376 

Wrong Localization 0 24 24 
Sum 325 75 400 

From Table 1, the 51 tumors that are wrongly localized by Liu’s method are successfully 
localized by our method. Figure 17a–f show the localization results of three representative examples 
in this case. Liu’s method cannot separate tumor areas from normal tissues. It is unable to detect 
tumors with particularly large sizes, because unusually large areas are easily mistaken as 
background areas as a result of its classification process (Figure 17a). In addition, it is also difficult to 
use Liu’s method to localize tumors with serious artifacts (Figure 17b) or small sizes (Figure 17c). Liu 
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Figure 16. The localization procedures by post-processing operation. (a) Segmentation results from
the CV level set in US Image 1; (b) right localization results by post-processing operation in US Image
1; (c) segmentation results from the CV level set in US Image 2; (d) the right localization results
by post-processing operation in US Image 2.

4. Discussion

In order to validate the effectiveness of the proposed scheme, it is compared with Liu’s detection
method [15]. We followed the algorithm in [15] exactly and tested it using our data sets. Liu’s method
was successfully executed only for 325 images Compared with Liu’s method, our method has better
performance with a much higher accuracy of 94.00% compared to 81.25% (Table 1).

Table 1. The localization accuracy of Liu’s method and the proposed method.

Proposed Method Liu’s Method

Right Localization Wrong Localization Sum

Right Localization 325 51 376
Wrong Localization 0 24 24

Sum 325 75 400

From Table 1, the 51 tumors that are wrongly localized by Liu’s method are successfully localized
by our method. Figure 17a–f show the localization results of three representative examples in this
case. Liu’s method cannot separate tumor areas from normal tissues. It is unable to detect tumors
with particularly large sizes, because unusually large areas are easily mistaken as background areas
as a result of its classification process (Figure 17a). In addition, it is also difficult to use Liu’s method
to localize tumors with serious artifacts (Figure 17b) or small sizes (Figure 17c). Liu et al. only considers
local features for training SVM classifier, which consequently causes artifacts with similar textures
to be more likely regarded as objects when compared with tumors with smaller sizes. In the proposed
method, the saliency of tumors depends on both local and global contrast, so sizes of the tumors and
serious artifacts have little effect on our localization.
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Figure 17. Localization results of three images in which Liu’s method failed while the proposed 
method succeeded. (a) Localization results of Liu’s method in an image with a large-sized tumor, (b) 
localization results of Liu’s method in an image with serious artifacts, (c) localization results of Liu’s 
method in an image with small tumor, (d) localization results of the proposed method in an image 
with a large-sized tumor, (e) localization results of the proposed method in an image with serious 
artifacts, and (f) localization results of the proposed method in an image with a small tumor.  

However, two methods both fail for localization in 24 images, in which the background areas 
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image are shown in Figure 19. 
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Figure 17. Localization results of three images in which Liu’s method failed while the proposed
method succeeded. (a) Localization results of Liu’s method in an image with a large-sized tumor,
(b) localization results of Liu’s method in an image with serious artifacts, (c) localization results of Liu’s
method in an image with small tumor, (d) localization results of the proposed method in an image with
a large-sized tumor, (e) localization results of the proposed method in an image with serious artifacts,
and (f) localization results of the proposed method in an image with a small tumor.

However, two methods both fail for localization in 24 images, in which the background areas are
unusually complex, like the example shown in Figure 18. The localization procedures of this image are
shown in Figure 19.
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Figure 18. Wrong localization results of Liu’s method and the proposed method. (a) Localization
results of Liu’s method and (b) the results of the proposed method.
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Figure 19. An example of wrong localization by the proposed method. (a) Original image, (b) intensity
saliency map, (c) blackness ratio saliency map, (d) superpixel saliency map, (e) combined saliency map
of three features, and (f) localization results.
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We can see from Figure 19b, c that the localized region by the proposed method
has a higher saliency than the tumor both in intensity and blackness ratio saliency maps.
Furthermore, in a superpixel saliency map, these two regions have nearly equal saliency.
Therefore, the localized region is the most salient area in this US breast image. The post-processing
operation is ineffective in this case because the wrongly localized region is positioned near the center
of the images and has no junction with the image edges. Thus, the post-processing operation is unable
to define this localized region as “wrong localization.”

5. Conclusions

In this paper, a novel auto-localization method for US breast images is proposed. In the proposed
method, based on the distinct characteristics of breast tumors in US images, the blackness ratio,
intensity, and superpixel features are combined to compute the saliency map. The results demonstrate
that the proposed method can automatically detect the tumor regions in US images with good
performance and high accuracy. Comparing to Liu’s method, the proposed method performs better
in US breast images with serious speckle noise or artifacts and images with particularly large-sized
tumors. Combined with this method, the CV level set will no longer need the human-computer
interaction to finish the extraction of tumors, which achieves the fully automatic segmentation of US
breast tumors.

However, this localization method also has some weaknesses, as it is unable to localize
tumors in US breast images with complex background areas. In future work, more improvement
will be employed to reduce the interference of backgrounds on the localization of tumors.
Furthermore, the proposed method will be extended to other human tissues, such as the thyroid,
kidney, and gallbladder.
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