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1. Introduction

The opto-electronic platform can quickly capture and track the moving target on the aircraft,
which had a widely application in aircraft reconnaissance surveying, searching, rescuing and assessing
shells-hitting result. As shown in Figure 1, miss-distance between the moving target and LOS was
measured by image tracking sensor in the opto-electronic platform. Then, this miss-distance was sent
to servo system and the DC motor was controlled by servo system to produce the corresponding
movement for eliminating miss-distance and tracking the target.
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1. Introduction 

The opto-electronic platform can quickly capture and track the moving target on the aircraft, 
which had a widely application in aircraft reconnaissance surveying, searching, rescuing and 
assessing shells-hitting result. As shown in Figure 1, miss-distance between the moving target and 
LOS was measured by image tracking sensor in the opto-electronic platform. Then, this 
miss-distance was sent to servo system and the DC motor was controlled by servo system to 
produce the corresponding movement for eliminating miss-distance and tracking the target. 

 
Figure 1. The opto-electronic platform tracking servo system. Figure 1. The opto-electronic platform tracking servo system.
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However, there was a non-negligible miss-distance delay caused by the process of producing
image by CCD (Charge Coupled Device), measuring miss-distance by image tracking sensor and
transmitting miss-distance data to servo system. This miss-distance delay in the opto-electronic
platform tracking servo system can be described as unknown, bounded and time-varying. It reduced
the bandwidth, tracking accuracy and even caused servo system to oscillate. Consequently,
compensating miss-distance delay in opto-electronic platform was absolutely necessary.

In the past decades, control systems with time-delay have attracted much attention. To the best
of our knowledge, the engineering solution of this problem was roughly divided into two categories.
The widely used methods are probably to design the appropriate controller u(t)/U(K) directly.
As noticed in [1], time-varying delay has received very little attention. Until very recently, heavily
research has done on infinite-time systems with time-varying delay [1–12]. With the development of
the linear matrix inequality (LMI) approach, robust H∞ controller for time-delay systems has been
greatly discussed for stochastic systems [13–20]. However, design of the controller u(t)/U(K) directly
under unknown time-varying delay cannot meet the accuracy requirements because tracking accuracy
must be mrad level.

Another efficient approach is compensating time-delay by feed-forward forecasting based on
maneuvering target tracking [21–28], such as such as particle filter [23], Kalman filter [24] and H∞
filter [27], which was already used for compensating miss-distance delay in opto-electronic platform
tracking servo system. However, all those methods can only be used for compensating constant-time
delay. To the best of our knowledge, very little attention has been paid to the problem of feed-forward
forecasting controller for discrete-time Markovian systems with unknown time-varying delay.

In this paper, we focus on compensating unknown time-varying delay in the opto-electronic
platform tracking servo system and design a new feed-forward forecasting controller based on robust
H∞ controller. Simulation based on double closed-loop PI control system indicates that the proposed
method is effective for compensating unknown time-varying delay. Tracking experiments on the
opto-electronic platform indicate that root-mean-square (RMS) error is 1.253 mrad when tracking
10◦ 0.2 Hz signal. The remainder of this paper is organized as follows. Section 2 analyzes effect of
miss-distance delay on the opto-electronic platform tracking servo system. The proposed method is
presented in Section 3. Section 4 presents the experiment base on double closed-loop PI control system
and some conclusions of this study are given in Section 5.

2. Problem Statement

The most effective control program for the opto-electronic platform tracking servo system was
double closed-loop control, the position control loop based on opto-electronic encoder and the velocity
control loop based on rate gyro, which had been proven to be effective in numerous applications over
the years [29].

As shown in Figure 2, effect of miss-distance delay on the opto-electronic platform tracking servo
system is equal to adding the transfer function e−τs on the position control loop [30–32]. The frequency
characteristics of e−τs: {

Aτ(jw) = 1
φτ(jw) = −wτ

(1)

where Aτ(jw) is the amplitude-frequency characteristics, and φτ(jw) is the phase-frequency
characteristics. Equation (1) indicates that miss-distance delay only affects the phase characteristics.

The lost phase margin:
φl = 2π fcd(t) (2)

where fc is the crossover frequency, and d(t) is the miss-distance delay.

G(s) =
1/Ce

(Tms + 1)(Tes + 1)
(3)
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Figure 2. Diagram of position control loop and velocity control loop. 

The controlled object G(s) can be written as Equation (3), where Ce is the back electromotive 
force of DC motor, Tm is the electromechanical time, and Te is the electromagnetic time. In this 
paper, we separately design double closed-loop PI controller in no-delay situation and delay 
situation. Bode diagram of open position-loop and closed position-loop in each situation is shown 
in Figures 3 and 4. The result of tracking 10° 0.2 Hz signal in delay situation is shown in Figure 5. 
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Figure 3. Bode diagram of open position-loop and closed position-loop in no-delay situation.  
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Figure 4. Bode diagram of open position-loop and closed position-loop in delay situation. 

Figure 2. Diagram of position control loop and velocity control loop.

The controlled object G(s) can be written as Equation (3), where Ce is the back electromotive
force of DC motor, Tm is the electromechanical time, and Te is the electromagnetic time. In this paper,
we separately design double closed-loop PI controller in no-delay situation and delay situation. Bode
diagram of open position-loop and closed position-loop in each situation is shown in Figures 3 and 4.
The result of tracking 10◦ 0.2 Hz signal in delay situation is shown in Figure 5.
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Figure 4. Bode diagram of open position-loop and closed position-loop in delay situation. 

Figure 3. Bode diagram of open position-loop and closed position-loop in no-delay situation.
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Figure 5. (a) LOS motion curve of tracking 10° 0.2 Hz signal without compensating miss-distance 
delay; and (b)tracking error of tracking 10° 0.2 Hz signal without compensating miss-distance delay. 

Contrasting Figure 4 with Figure 3, the bandwidth is reduced from 18 Hz to 3 Hz. As shown in 
Figure 5, RMS error is 1.6474° when tracking 10° 0.2 Hz signal, which cannot satisfy engineering 
indicator 1.5 mrad (0.0860°) . 
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where X(k) is system state vector and is shown in Equation (5), x1(k) is position data at time k, x2(k) is 
velocity data at time k and x3(k) is acceleration data at time k. U(k) is the mean acceleration at time k, 
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Figure 5. (a) LOS motion curve of tracking 10◦ 0.2 Hz signal without compensating miss-distance
delay; and (b)tracking error of tracking 10◦ 0.2 Hz signal without compensating miss-distance delay.

Contrasting Figure 4 with Figure 3, the bandwidth is reduced from 18 Hz to 3 Hz. As shown
in Figure 5, RMS error is 1.6474◦ when tracking 10◦ 0.2 Hz signal, which cannot satisfy engineering
indicator 1.5 mrad (0.0860◦).

3. Proposed Method

3.1. Time-Varying Delay Model Setup

The opto-electronic platform tracking servo system contains azimuth controller and pitch
controller. Considering the design of azimuth controller and pitch controller are the same, in this
paper, we only design the azimuth controller. This problem can be described as the following liner
discrete-time Markovian system:{

X(k + 1) = (A(rk) + ∆A(rk))X(k) + (B(rk) + ∆B(rk))U(k) + CW(k)
Y(k) = H(rk)X(k)

(4)

X(k) = [x1(k) x2(k) x3(k)]
T (5)

where X(k) is system state vector and is shown in Equation (5), x1(k) is position data at time k, x2(k) is
velocity data at time k and x3(k) is acceleration data at time k. U(k) is the mean acceleration at time k,
Y(k) is the measured output at time k, and W(k) is noise matrix which belongs to l2[0,∞). A(rk), B(rk), C,
and H(rk) are known matrices. ∆A(rk) and ∆B(rk) are unknown delay matrices related to the unknown
time-varying delay d(k). d(k) is satisfied with:

0 ≤ dmin ≤ d(k) ≤ dmax (6)

Let {rk, k ∈ Z+} be discrete-time Markov process, which takes values on finite space S = {0,1,2 ,
. . . ,N} with transition rate matrix Π = {πij, i,j ∈ S}, where πij is the transition rate from i to j given by:

P(rk+1 = j|rk = i) =πij; 0 ≤ πij ≤ 1 (7)

Define rk = i, then Equations (4) can be written as:{
X(k + 1) = Ai(k)X(k) + Bi(k)U(k) + CW(k)
Y(k) = Hi(k)X(k)

(8)

where Ai(k) = A(rk) + ∆A(rk), and Bi(k) = B(rk) + ∆B(rk).
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According to mean-adaptive acceleration model of maneuvering target, the continuous-time state
equation can be described as:

.
x1(t)
.
x2(t)
.
x3(t)

 =

 0 1 0
0 0 1
0 0 −δ


 x1(t)

x2(t)
x3(t)

+

 0
0
δ

a(t) +

 0
0
1

w(k) (9)

where a(t) is the mean acceleration at time t and δ is the maneuvering frequency.
Define t = T + di(k), and Ai, Bi, and C in discrete-time Markovian system (Equation (8)) satisfy

Equations (10)–(12), respectively.

Ai =

 1 t (−1 + δt + e−δt)/δ2

0 1 (1− e−δt)/δ

0 0 e−δt

 (10)

Bi =

 t2/2
t
1

− Ai =

 −t/δ + t2/2 + (1− e−δt)/δ2

t− (1− e−δt)/δ

1− e−δt

 (11)

C =

 0
0
1

 (12)

Considering only position data x1(k) can be observed in the opto-electronic platform tracking
servo system, observing matrix Hi can be described as:

Hi =
[

1 0 0
]

(13)

3.2. Controller System Design

In this paper, we consider one opto-electronic platform tracking servo system with dmin = 40 ms
and dmax = 80 ms. Assume di(k) satisfies discrete-time Uniform Distribution, which means:{

di(k) = (40 + i)/1000s i ∈ S = {0, 1, . . . , 40}
Pi = 1/41 i ∈ S = {0, 1, . . . , 40}

(14)

Define estimating state Z(k):
Z(k) = Li(k)X(k) (15)

where Li(k) = [1,0,0]. Let Ẑ(k) denote the estimate of Z(k) which is the measured output Y(k). The error
e(k) can be written as:

e(k) = Ẑ(k)− LiX(k) (16)

Equation (8) is robustly stochastically stable under the condition:

E[
n

∑
k=0

eT(k)e(k)] ≤ γ2
n

∑
k=0

wT(k)w(k) (17)

where γ is H∞ level. Equation (17) is satisfied with appropriate H∞ level γ and i ∈ S, if and only if
there exist Pi(k+1|k) such that following matrix inequalities hold:

Pi
−1(k + 1|k ) + Hi

T(k)Hi(k)− γ−2Li
T(k)Li(k) > 0 (18)

where Pi(k+1|k)satisfies the Discrete-time Riccati Equation:
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Pi(k + 1|k ) = AiPi(k|k )Ai
T + CCT − AiPi(k|k )

[
Hi

T Li
T

]
Ri
−1(k)

[
Hi
Li

]
Pi(k|k )Ai

T (19)

Ri(k) =

[
I 0
0 −γ2 I

]
+

[
Hi
Li

]
Pi(k|k )

[
Hi

T Li
T

]
(20)

According to the analysis above, feed-forward forecasting controller system is design as follows:

(1) Select minimal γ > 0 and i ∈ S which can satisfy Equations (18)–(20). γ is a constant that is
selected by testing experiment to satisfy the requirement of engineering and i is time-varying.

(2) Prediction:
X̂i(k + 1|k) = Ai X̂i(k) + BiU(k) (21)

Ki(k + 1) = Pi(k + 1|k )Hi
T · [I + HiPi(k + 1|k )Hi

T ]
−1

(22)

where Pi(k+1|k) and Ri(k) are shown in Equations (19) and (20).
(3) Measurement update:

X̂i(k + 1) = X̂i(k + 1|k) + Ki(k + 1) · (Y(k + 1)− HiX̂i(k + 1|k) ) (23)

Pi(k + 1|k + 1) =
[

Pi
−1(k + 1|k ) + Hi

T(k)Hi(k)− γ−2Li
T(k)Li(k)

]−1
(24)

(4) Transmitting current data:

As shown in Figure 6, we transmit the current position x̂1(k + 1) and velocity x̂2(k + 1) to
position/velocity control loop separately after feed-forward forecasting. The DC motor was
controlled by servo system to produce the corresponding movement for eliminating miss-distance
and tracking the target.
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4. Experiment

Considering one opto-electronic platform tracking servo system, Ce = 1.333 V, Tm = 0.7 s,
Te = 0.006 s, sample frequency of velocity-loop is 500 Hz, and sample frequency of position-loop
is 50 Hz. According to Equation (3), controlled object G(s) can be written as:

G(s) =
0.75

(0.7s + 1)(0.006s + 1)
(25)

We design Gv(s) and Gp(s) as shown in Equation (25). The bandwidth of velocity-loop is 28 Hz.
The bandwidth of position-loop is 18 Hz. Both of them satisfy engineering indicator.
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{
Gv(s) =

2.6584(62s+1)
s

Gp(s) =
535.93(0.12s+1)

s

(26)

The sample period Ts is 0.02 s and γ = 0.8 is selected by testing experiment. The actual time from
X(k) to X(k+1) can be written as:

t = T + di(k) = (0.06 + i/1000)s i ∈ S = {0, 1, . . . , 40} (27)

We use the proposed method to track 10◦ 0.2 Hz input signal and the LOS motion curve is
shown in Figure 7a. The real motion curve and the output curve are almost overlapped because
the amplitude of LOS motion curve is far bigger than tracking error. The tracking error is shown
in Figure 7b. In Figure 7b, we can calculate that RMS error is 0.0673◦, which satisfies engineering
indicator 1.5 mrad (0.0860◦).
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Figure 7. (a) LOS motion curve of our method when tracking 10° 0.2 Hz signal; and (b) tracking 
error of our method when tracking 10° 0.2 Hz signal. 
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Figure 7. (a) LOS motion curve of our method when tracking 10◦ 0.2 Hz signal; and (b) tracking error
of our method when tracking 10◦ 0.2 Hz signal.

In order to verify the performance of the proposed method for compensating unknown time-varying
delay, we conduct contrast experiments based on Kalman filter/H∞, filter which were used for
compensating constant-delay in the opto-electronic platform tracking servo system before. Those
constant time-delay methods are shown as follows:{

X(k + 1) = ΦX(k) + CW(k)
Y(k) = HX(k) + V(k)

(28)

where W(k) and V(k) are unrelated Gaussian white noise and satisfy Equations (29). Φ, C and H are
known matrices which, respectively, satisfy Equations (30)–(32).

E[Wk] = 0; E[WkWj
T ] = Qkδkj

E[Vk] = 0; E[VkVj
T ] = Rkδkj

E[WkVj
T ] = 0

(29)

Φ =

 1 Ts Ts
2/2

0 1 Ts

0 0 1

 =

 1 0.02 0.0002
0 1 0.02
0 0 1

 (30)

C =

 0
0
1

 (31)
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H =
[

1 0 0
]

(32)

We also consider the opto-electronic platform tracking servo system with unknown time-varying
delay, which ranges from 40 ms to 80 ms. For those constant time-delay methods, assume d(t) satisfies:

d(t) = (dmin + dmax)/2 = 60 ms (33)

From Equation (33) we can see that d(t) is three times the sample period Ts and this 60 ms
constant-delay can be compensated by three steps Kalman filter/H∞ filter. The tracking error of
Kalman filter/H∞ filter for tracking 10◦ 0.2 Hz signal is separately shown in Figure 8a,b.
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As shown in Table 1, we make a comparison of tracking accuracy according to the experiment.
The RMS error of Kalman filter is 0.3022◦ and RMS error of H∞ filter is 0.1839◦. Both of them cannot
satisfy engineering indicator 1.5 mrad (0.0860◦). It seems that they are unable to compensate unknown
time-varying delay in opto-electronic platform tracking servo system. It also indicates that our method
is effective for compensating unknown time-varying delay and satisfied engineering indicator in the
opto-electronic platform tracking servo system.

Table 1. Tracking accuracy comparison.

Situation/Method RMS Error

without compensating delay 1.6474◦/28.75 mrad
Kalman filter 0.3022◦/5.274 mrad

H∞ filter 0.1839◦/3.209 mrad
Proposed method 0.0673◦/1.175 mrad

Note: Input signal of all the Situations/Methods is 10◦ 0.2 Hz.

In order to verify the simulation result of proposed method above, we do tracking experiments on
the opto-electronic platform. As shown in Figure 9, we fix the opto-electronic platform and make the
moving-target move with 10◦ 0.05 Hz, 10◦ 0.1 Hz, and 10◦ 0.2 Hz, separately. We can know the tracking
error by outputting the miss-distance data in the opto-electronic platform. The result of tracking error
with 10◦ 0.05 Hz, 10◦ 0.1 Hz, and 10◦ 0.2 Hz moving-target is shown in Figures 10–12, respectively.

By tracking experiments of moving target with amplitude 10◦ and frequency less than 0.2 Hz,
we obtain the relationship of tracking error and frequency, as shown in Figure 13. It shows that tracking
error is less than 1.253 mrad under the situation that amplitude is 10◦ and frequency is less than 0.2 Hz,
which is similar to simulation result (1.175 mrad).
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5. Conclusions

Miss-distance delay in the opto-electronic platform tracking servo system reduces the bandwidth
and tracking accuracy, even causing the system to oscillate. To compensate for this unknown
time-varying delay in the opto-electronic platform tracking servo system, we setup the Markovian
process model and design a new feed-forward forecasting controller based on robust H∞ controller
in this paper. Simulation based on double closed-loop PI control system indicates that the proposed
method is effective for compensating unknown time-varying delay. The bandwidth is improved
from 3 Hz to 18 Hz. Finally, tracking experiments on the opto-electronic platform indicate that
root-mean-square (RMS) error is 1.253 mrad when tracking 10◦ 0.2 Hz signal.
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