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Abstract: Personally identifiable information (PII) affects individual privacy because PII combinations
may yield unique identifications in published data. User PII such as age, race, gender, and zip code
contain private information that may assist an adversary in determining the user to whom such
information relates. Each item of user PII reveals identity differently, and some types of PII are highly
identity vulnerable. More vulnerable types of PII enable unique identification more easily, and their
presence in published data increases privacy risks. Existing privacy models treat all types of PII
equally from an identity revelation point of view, and they mainly focus on hiding user PII in a
crowd of other users. Ignoring the identity vulnerability of each type of PII during anonymization is
not an effective method of protecting user privacy in a fine-grained manner. This paper proposes a
new anonymization scheme that considers the identity vulnerability of PII to effectively protect user
privacy. Data generalization is performed adaptively based on the identity vulnerability of PII as
well as diversity to anonymize data. This adaptive generalization effectively enables anonymous
data, which protects user identity and private information disclosures while maximizing the utility of
data for performing analyses and building classification models. Additionally, the proposed scheme
has low computational overheads. The simulation results show the effectiveness of the scheme and
verify the aforementioned claims.

Keywords: personally identifiable information; identity vulnerability; diversity; adaptive
generalization; privacy; utility

1. Introduction

Most organizations collect relevant customer data to improve service quality. The excessive
amount of collected data often contains information on customer demographics, finances, interests,
activities, and medical status. Research has shown that access to this data can aid organizations in
many ways. For instance, it allows them to provide customer analyses, achieve strategic goals, create
effective marketing strategies, and improve overall business performance. However, organizations are
not willing to publish person-specific data because personally identifiable information (PII) often leads
to unique individual identification. A survey [1] reported that:

About 87% of the population in the United States is likely to be identified based only on
5-digit zip code, gender, date of birth. About 50% of the U.S. population are likely to be
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uniquely identified by only place, gender, date of birth. Moreover, even at the county level,
county, gender, date of birth are likely to identify about 18% of the U.S. population.

User PII such as age, gender, place, zip code, and race are called quasi-identifiers (QIs).
Each QI affects user privacy differently, and some QIs, like zip codes and places, are highly
identity vulnerable. QIs with high identity vulnerability enable easier unique identification.
The presence of identity-vulnerable QIs in published data increases privacy risks for sensitive
attributes (SAs) such as diseases or salary information disclosure. Therefore, it is necessary to
anonymize user data in a fine-grained manner before publishing it, and in many cases, this is
achieved by employing anonymization. This is a practical approach to achieve privacy-preserving
data publishing (PPDP) [2]. The strategy mainly uses generalization and suppression techniques to
anonymize the person-specific data.

Mostly the existing anonymization schemes do not provide thorough insights into privacy,
particularly regarding the identity vulnerability of QIs and the diversity of SA-based adaptive data
generalization. Current privacy schemes mainly focus on hiding individual QIs in the crowd of other
users and treat all QIs equally from an identity revelation point of view. However, in many real-world
cases, each QI reveals identity differently (e.g., a zip code represents a local region more accurately
than a country or place). Therefore, it is mandatory to consider the identity vulnerability of each
QI and the diversity of SAs to effectively protect user privacy. Recently, information surges and
advances in machine learning tools have created unexpected privacy concerns. These tools are very
good at finding the private information of individuals from large datasets using relevant QIs with
high probabilities [3–5], which cannot be eliminated by applying the privacy models discussed so far.
The power of machine learning tools is increasing aggressively, and it is expected to double in the
next few years [6]. Therefore, considering the limitations of the existing work, and the continually
growing power of machine learning tools, PPDP has received global attention over the past few
decades. There is an emerging need to develop methods that use the capabilities of these tools to
protect user privacy.

Generally, there are two settings for privacy preserving data publishing: interactive and
non-interactive. In non-interactive settings, the data owner (e.g., hospitals, insurance companies
and/or service providers), a trusted party, publishes the complete dataset in perturbed form after
applying some operation to original data and removing directly identifiable information (e.g., name).
However, in interactive settings the data owner, a trusted party, does not publish the whole dataset in
perturbed form like in the non-interactive setting. It provides an interface to the users through which
they may pose different queries about the data and get (possibly noisy) answers. Each of the privacy
settings introduces various privacy concerns pertaining to the users sensitive and demographics data
in question. Hence, one approach cannot replace the other, and they each have a place alongside
the other.

Differential privacy (DP) [7] has emerged as a state-of-the-art method and one of the most
promising privacy models for releasing person-specific data in interactive settings. DP offers strong
privacy guarantees and it has been developed in the sequence of papers [8–11]. It provides the desired
level of privacy and based on the fact that presence or absence of any individuals in the database
does not significantly influence the results of the analyses on the dataset. However, enforcement of
these strict guarantees in real-world applications may not fulfill either strong privacy guarantees or
desired data utility requirements. The users can execute different statistical queries and can get the
noisy and aggregate answers from the differentially private systems. Currently, various approaches
have been proposed to extend the DP concept for data mining. In this regard, a comprehensive study
was given by the authors of [12], and they verified the fact that DP is typically applicable for privacy
preserving data mining. The authors of [13] study, discuss, and formalize an alternative to the standard
DP model as individual differential privacy model that introduces less amount of noise to the query
results for improving utility/accuracy. Sarathy et al. [14] reported a method for adding noise in
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response to user queries to protect privacy. After the query function is computed from the original
data set, Laplace-distributed random noise is added to the query result. Generally, the magnitude of
the noise depends on the sensitivity of the query function and desired privacy budget for that specific
query. The authors concluded that noise variance should vary with the subsequent queries to deliver
promised level of privacy at the expense of utility. There are many differentially private systems,
such as privacy-integrated queries (PINQ) [15], Airavat [16] and Gupt [17]. These systems maintain
each query budget and mediate accesses to the underlying data in a differentially-private manner.
These systems maintain various levels of privacy for different user’s applications while ensuring the
desired level of privacy and utility.

In this work, we focus on the non-interactive setting of person-specific data publishing, and
extend the k-anonymity [18] concept and its ramifications as a very popular privacy model within
the research community. The k-anonymity [18] is a well-known PPDP technique that protects user
privacy by introducing k-users with the same QIs in each equivalence class. Thus, the probability
of re-identifying someone in anonymized data becomes at least 1/k. This helps to protect against a
linking attack with external data sources by ensuring k or more identical tuples in each equivalence
class. However, user privacy is not guaranteed when an adversary has strong background knowledge
or when the SAs in an equivalence class are not diverse. Many attempts have been made to enhance the
protection level of k-anonymity. Three different PPDP models—`-diversity [19], (α, k)-anonymity [20],
and t-closeness [21]—have been proposed to address k-anonymity limitations. They impose more
protective requirements, consider diversity, and ensure the equal proportion of SAs in each class
to overcome private information disclosure. However, creating a feasible `-diverse dataset is very
challenging when the data is highly imbalanced (e.g., if the SA distribution is uneven). In such datasets,
maintaining user privacy through `-diversity or t-closeness is not possible in practice, and the current
schemes do not guarantee individual privacy. To overcome the aforementioned limitations, this study
proposes a new anonymization scheme that reduces the privacy risks while improving the anonymous
data utility in person-specific data publishing. When the data is anonymized, data generalization is
performed adaptively based on the identity vulnerability of the QIs as well as the diversity of SAs in
each class.

The remainder of this paper is organized as follows: Section 2 explains the background and
related work regarding well-known PPDP models. Section 3 presents the conceptual overview of
proposed anonymization scheme and outlines its principal steps. Section 4 provides a brief overview
about determining the identity vulnerability of the QIs using random forest, and Section 5 describes the
adaptive generalization algorithm. Section 6 discusses the simulation and results. Finally, conclusions
are offered in Section 7.

2. Background and Related Work

Privacy protection has remained a concern for researchers and experts because recent advances in
information technology have threatened user privacy. Information surges have made the retrieval of
QIs along with the SAs of individuals a part of day-to-day life. PPDP provides promising methods for
publishing useful information while preserving data privacy [22]. In PPDP, explicit identifiers (e.g.,
name) are removed, and QIs are generalized or suppressed to protect the SAs of individuals from
disclosure. Researchers require sensitive attributes, so they are mostly retained unchanged. In many
circumstances, k-anonymity [18] provides sufficient protection because of its conceptual simplicity. It is
a well-known PPDP model, and due to algorithmic advances in creating k-anonymous datasets [23–26],
it has become a benchmark. Figure 1a shows selected census information for a group individuals. In
this example, attributes are divided into two groups: QIs and SA. Figure 1b shows a 2-anonymous
table derived from the table in Figure 1a.

Each class has two tuples with identical QIs. However, two simple attacks—homogeneity and
background knowledge on k-anonymous datasets—allow an adversary to infer the SA of an individual
with ease. Consider the two simplest attacks on anonymous data in Figure 1b produced by the
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k-anonymity model. Juan and Tana are two Belizean friends, and one day they have dinner together.
Juan tells his friend, Tana, that he took part in a census conducted by the National Institute of Statistics
(NIS) last week. After knowing this information, Tana sets out to discover Juan’s salary. She discovers
the 2-anonymous table of current census participants published by the NIS (Figure 1b). She knows
that one of the records in this table must contain Juan’s salary information. Juan is Tana’s neighbor
also, so she knows that Juan is a 40-year-old resident of Belize. She discovers that Juan must be either
3 or 4 in Figure 1b. Now, all participants have the same finance information (e.g., salary is greater than
50,000 dollars). Therefore, Tana concludes that Juan’s salary is greater than 50,000 dollars.Tana has
a friend named Albert from Canada, who also participated in the same census, and whose financial
status also appears in the table shown in Figure 1b. Tana knows that Albert is a 35-year old who
lives in Canada permanently. Based on this information, Tana determines that Albert is represented
by either the first, second, fifth, or sixth row in Figure 1b. Without any other information, she is not
sure whether Albert has a salary higher or lower than 50,000 dollars. However, it is well known that
majority of Canadian adults have salaries less than 50,000 dollars. Therefore, Tana concludes with near
certainty (e.g., 75%) that Albert’s salary is 50 K. Thus, it is evident that k-anonymity can create groups
that are prone to leaking private information.

Figure 1. k-anonymity privacy model overview.

A stronger definition of privacy that resolves the aforementioned limitations of k-anonymity
is `- diversity [19]. The main idea behind a `-diverse dataset is that the values of the SAs in each
class should be well represented (e.g., the same as `). Class A in Figure 1b has a diversity of 2, while
classes B and C have no diversity at all. Achieving `-diversity becomes very challenging when the SA
distribution is uneven, such as with these two values: salary > 50 K (1%) and < 50 K (99%). In many
other cases as well, `-diversity is hard to achieve, such as for classes B and C in Figure 1b, which
contain only salary values higher or lower than 50 K. To overcome these issues, t-closeness [21] was
proposed. In the t-closeness model, the distribution of SAs in any QI group and the overall table
should be no more than a certain threshold. However, t-closeness does not protect from attribute
disclosure and is complex in nature. Another significant contribution regarding the implications from
the QIs to SAs made by using a local recording-based algorithm to enhance the protection level of
k-anonymity is (α, k)-anonymity [20]. The advantage of the (α, k)-anonymity model is that it can be
extended to more general cases (e.g., two or more SAs).

A growing body of literature has examined the anonymous data utility in terms of classification
models and their accuracy. A most recent review of the literature on retaining maximum utility in
anonymous data from classification accuracy perspective was offered by [27]. They make use of
DP for anonymizing and publishing data that shows considerable improvements in accuracy using
decision trees. Apart from this aspect, currently much work on the potentials of data mining has been
carried out to mine different perspectives and summaries from data and convert them into useful
information. In this regard, a comprehensive study was given by the authors of [28]; the proposed
technique has shown considerable improvements in privacy and utility based on the relations among
different attributes in the dataset. The authors make use of the of entropy and information gain to find
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the distributions of data to protect privacy. The proposed study offers the potential for finding several
relations based on data background and area of application. Another independent study to publish
useful dataset to satisfy certain research needs, e.g., classification was proposed by the authors of [29]
after adding some noise in the released data. The authors of [30] study proposed a comprehensive
solution for protecting individual privacy using a rule-based privacy model that protects against
explicit identity and private information disclosures while releasing person-specific data. It has been
suggested that the proposed model recursively generalizes data with low information loss, and ensures
promising scalability using sampling and a combination of top-down and bottom-up generalization
heuristics. A general-purpose strategy to improve structured data classification accuracy by enriching
data with semantics-based knowledge obtained by a multiple-taxonomy built over data items was
provided by the authors of [31], and this seems to be a reliable solution for producing more useful
datasets for analysis or building classification models.

A related review of the literature on utility-aware anonymization was offered by [32,33].
They draw attention to attribute-level anonymization via retaining the original values of some useful
QIs to the greatest extent possible to enhance the utility of the anonymous data. The main weakness of
their studies is that they make no attempt to consider the identity vulnerability of the QIs in terms
of privacy. Recently, classification models for anonymous data have gained popularity. However,
this requires the identification and modeling of privacy threats when releasing data [34]. Likewise,
knowledge of the dependencies between QIs and SAs (e.g., male patients are less likely to have breast
cancer) [35,36], the underlying anonymization methods [37], and the combination of QI values [38], may
affect privacy. However, such types of threats have been overlooked in previous work. Data mining
reveals knowledge patterns that apply to many people in the data [39], and the existing privacy models
often ignore these receptive patterns. An independent study in 2008 [40] discussed k-anonymity in data
mining and seemed to be reliable. Anonymity is achieved by extending the general k-anonymity model
with the data mining model, and the proposed algorithm provides reasonable privacy in data mining.

A number of studies have explored a closely-related method used in data publishing for improved
classification utility and privacy, such as InfoGain Mondrian [41], top down refinement (TDR) [42],
information-based anonymization for classification given k (IACk) [43] and k-anonymity of
classification trees using suppression (kACTUS) [44]. Interestingly they produced the same
2-anonymous table as the one shown in Figure 1a with partial or full suppression of age or country
attributes. Mondrian [41] is a multidimensional method that partitions the data into disjointed
rectangular regions according to QI values. Each rectangular region contains at least k-data points
to facilitate value generalization. A serious weakness of the Mondrian method is its unnecessary
suppression, which fully hides the QI values. kACTUS [44] and TDR [42] will produce the same results
by employing the information gain versus anonymity and classification trees, respectively, during
anonymization. These approaches are not well suited to privacy because consideration is not given
to the probability that each attribute will reveal an individual’s identity. The IACk [43] algorithm
reasonably improves the classification accuracy by considering mutual information when selecting
the generalization level. However, SA diversity is not considered, which makes private information
disclosure obvious. An even greater source of concern is the need to control the suppression of
QIs having less identity vulnerability as much as possible to facilitate utility [45]. Suppression is a
convenient solution to preserve privacy, and most of the machine learning tools can handle suppressed
values as missing values. However, in large datasets, full column suppression of less vulnerable QI
values potentially hurts utility. Apart from this utility aspect, most of the existing privacy algorithms
over-fit anonymized data to QIs, and this over-generalization results in high information losses [46].
Therefore, anonymous data produced by the existing schemes have less utility. Accordingly, identity
cannot be effectively protected and private information disclosure cannot be adequately prevented in
a fine-grained manner. The contributions of this research in the field of PPDP can be summarized as
follows: (1) it can be used for the anonymization of any dataset, balanced or imbalanced; (2) it uses
random forest, a machine learning method, to determine the identity vulnerability values of QIs to
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reduce the unique identifications caused by the highly identity vulnerable QIs; (3) the Simpson index is
used to determine the diversity of classes. A threshold value for the comparison of each class diversity
is provided, and considerable attention is paid to low diverse classes to overcome privacy breaches;
and (4) we proposed an adaptive generalization scheme for anonymizing data considering the identity
vulnerability of QIs as well as the diversity of SAs in equivalence classes to improve both user privacy
and utility as compared to existing PPDP algorithms.

3. The Proposed Anonymization Scheme

The QI identity vulnerability- and SA diversity-aware anonymization scheme is necessary to
account for the privacy issues stemming from the highly identity vulnerable QIs and low diverse
classes. This scheme not only protects privacy, it augments utility by controlling over-generalization of
less identity-vulnerable QIs in diverse classes. This section presents the conceptual overview of the
proposed anonymization scheme and outlines its procedural steps. Figure 2 shows the conceptual
overview of our proposed anonymization scheme.

Figure 2. Conceptual overview of the proposed anonymization scheme.

To anonymize any person-specific data containing QIs and SAs, the following five principal
concepts are introduced: (1) the concept of QI’s identity vulnerability (IV); (2) highest similarity user
ranking based on QIs values; (3) the formation of equivalence classes (Ci) using privacy parameter k;
(4) calculating the diversity (D) and evenness (E) of the equivalence classes; and (5) adaptive data
generalization considering both the identity vulnerability of the QIs and diversity of the SA in
equivalence classes. This approach is chosen to enhance user privacy in any dataset and to reduce
privacy breaches caused by the highly identity-vulnerable QIs and low diverse classes. The identity
vulnerability of each QI is determined using random forest, and diversity is determined using the
Simpson index. Both measures are considered during data anonymization. Brief details of the principal
components with equations and procedures are as follows.
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3.1. Determining the Identity Vulnerability Values of QIs

To provide fine-grained privacy, the identity vulnerability (IV) of each QI is determined before
data anonymization. Random forest (RF) [47], a machine learning method, is used to determine the
identity vulnerability of the QIs. This provides a formal solution to treat each QI according to its
identity revelation ability. A detailed procedure for determining the identity vulnerability of the QIs
using RF is explained in Section 4.

3.2. Highly Similar Users Ranking and Formation of Equivalence Classes

Based on QI values, similar users are ranked, this is done by means of cosine similarity given as:

Sim(U1, V1) =
∑N

n=1 U1(n) ×V1(n)√
∑N

n=1(U1(n))2 ×
√

∑N
n=1(V1(n))2

(1)

where U1 and V1 are two different users having QIs, U11, V11, U12, V12, . . . , U1n, V1n. The resultant
matrix contains highly similar users. Later, the user matrix is partitioned into different equivalence
classes (C1, . . . , CN) based on the privacy parameter (k). The value of k is selected by the data owner,
and it can be any whole number. If highly similar users are N, the number of equivalence classes (Ci)
can be obtained using Equation (2).

Ci =
N
k

(2)

3.3. Calculate and Compare Diversity and Evenness of Equivalence Classes

Ensuring sufficient diversity in each equivalence class (Ci) has a range of advantages, including
better privacy preservation. To calculate the diversity (D) and evenness (E) of each equivalence class,
Ci, the Simpson index is employed [48]. It is a very simple and reliable measure. The following
procedure is used to calculate the D and E values. The complete procedure of calculating diversity
and evenness of each equivalence class is given below.

1. Calculate the proportion (pi) of each SA’s category in an equivalence class using (Equation (3)).

pi =
ni
k

(3)

2. Sum and square the individual proportions (p1, p2, p3, . . . , pn) of each SA’s category in an
equivalence class.

n

∑
n=1

P2
i = (p1)

2 + (p2)
2 + (p3)

2+, .....,+(pn)
2 (4)

3. Reciprocate the value obtained from Equation (4). The result is diversity denoted with D.

D = 1/
n

∑
n=1

P2
i (5)

4. To find E, divide D by the total number of unique SA categories (n) in an equivalence class.

E = D/n (6)

Later, we compare the D and E values with a defined threshold (Td = 1.75 for D, Te = 0.75 for E)
for each class to preserve users privacy in better way. These values can be adjusted according to the
protection level and objectives of data publishing.

3.4. Adaptive Data Generalization

Adaptive generalization selects the generalization level for each QI based on its identity
vulnerability as well as the corresponding class’s diversity. Great care must be taken during the
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anonymization of less diverse classes to protect privacy. After the appropriate generalization level
selection, the original values are replaced with generalized values to anonymize the data. A detailed
discussion about the adaptive data generalization along with algorithm and its flow-chart is provided
in Section 5.

4. Finding the Identity Vulnerability of Quasi Identifiers

This section presents the proposed mechanism by which the identity vulnerability of the QIs is
determined using RF [47]. RF is a machine learning method, and we used it to quantify the identity
vulnerability values of each QI and to identify vulnerable QIs that explicitly reveal users identities.
Determining the identity vulnerability of QIs enables a formal solution to be derived that can effectively
protect individual privacy in a fine-grained manner. Without considering the identity vulnerability of
the QIs, it is not clear whether the anonymous tuple (e.g., full attribute set representing an individual)
produced by any anonymization scheme to tackle user privacy is suitable for use in many real-world
cases or not. Knowledge of the identity vulnerability of each QI to a fine level of granularity leads to
better privacy preservation and fewer private information disclosures. It is worth looking at RF in
greater detail, as well as at the procedure of determining the identity vulnerability of QIs.

RF is a versatile machine learning method and a special type of ensemble learning technique.
It was selected because among currently available algorithms, it is highly accurate. It considers the
interaction between attributes and gives high accuracy values. It has been used extensively to build
classification and regression models. It produces an ensemble of classification and regression trees
(CARTs) using bagged samples of training data [49] as shown in Figure 3. By employing the bagging
concept, each tree selects only a small set of QIs to split the tree node, which enables the algorithm
to quickly build classifiers for highly dimensional data. RF is potentially attractive for handling
large amounts of data and variables. It is the best among existing methods in dealing with missing
values and outliers that exist in the training data, and gives better accuracy values [50]. It provides
more than six different numerical measures regarding the observations (number of records used as
input), including classification accuracy, misclassification rate, precision, recall, F-statistic, and variable
importance. However, the most important measure among them is variable importance because it
assists in categorizing QIs according to their identity revelation ability. A QI having high importance
reveals an identity more easily than other QIs. RF has only two parameters—the number of trees
(ntree) and the number of QIs required at the node split (mtry)—so it is very easy to tune them. In
standard terms, these are called parameter settings, which allow data practitioners to modify these
two parameter values subject to their data and purpose. A general procedure to quantify the identity
vulnerability of QIs using RF is presented visually in Figure 3, and the corresponding algorithm pseudo
code is provided in Algorithm 1. There are three major steps used to obtain the desired values of
the identity vulnerability of the QIs—the data input, parameter settings, and building of the CARTs.
The complete pseudo-code used to quantify the identity vulnerability of the QIs using RF is presented
in Algorithm 1.

In Algorithm 1, a user dataset containing N number of records, and a set of QIs (P), a number of
trees (B), and a small subset of QIs (m) used to split the tree node is provided as input. The identity
vulnerability (IV) values of the QIs are obtained as output. RF builds an ensemble of CARTs and
calculates the out-of-bag (OOB) error (Lines 1–5). We partition the original dataset into two parts
during experiments, training data and testing data. So, two-thirds in Line 4 is the amount of training
data (e.g., the data on which the algorithms were tested) containing 30,162 tuples out of 45,222 tuples
and the remaining one-third of the data in Line 5 containing 15,060 was used for validation and
testing purposes.
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Algorithm 1: Finding identity vulnerability values of the QIs
Input : (1) Dataset DN×P where N are the number of users with P QIs

(2) Number of trees (B)
(3) Number of QIs for splitting tree node (m)

Output : Identity vulnerability (IV) values of QIs
Procedure :

1 for each QI i ∈ P do
2 for b = 1 to B
3 Draw a bootstrap sample Z∗ of size N from DN×P.
4 Build CARTs Tb using 2/3 of data.
5 Predict classification of the leftover 1/3 data using trees,and calculate OOB error, namely eb.
6 if (eb > 10) then
7 Tune RF parameters and repeat (step 3 and 4);
8 else
9 for each QI i, permute the values of QI in column.

10 Repeat (step 3 & 4), record OOB error values with ( Eb)
11 subtract both OOB errors (d = Eb − eb), before and after values permutation.
12 End for
13 end
14 End for
15 Find commutative-OOB error ( dj ) from all trees (B).
16 Find average-OOB(x̄), Variance ( s2) and standard deviation ( s) using (Equations (7)–(9))

respectively.
17

x̄ =
1
B

B

∑
j=1

dj (7)

18

s2 =
1

B− 1

B

∑
j=1

(dj − x̄)2 (8)

19

s =

√√√√ 1
B− 1

B

∑
j=1

(dj − x̄)2 (9)

20 Calculate identity vulnerability (IV) of the QI i using Equation (10).

(IVi) =
s
x̄

(10)

21 End for

Integer 10 in line 6 represents the desired value of OOB error called misclassification produced
by the random forest while building random trees. The desired values of accuracy should be higher
than 90% to correctly measure the vulnerability values of quasi-identifiers. Therefore, we rigorously
compare OOB error with integer 10 to keep the accuracy values higher. However, accuracy values can
be adjusted according to the protection level and objectives of data publishing. If the OOB is high,
then a parameter setting is performed to achieve the appropriate accuracy (Lines 6 and 7). In contrast,
if the OOB falls within the acceptable range, then the values of each QI are shuffled in a column, and
its impact on the OOB is observed (Lines 9–12). The same process is repeated for all QIs in a dataset.
After getting the OOB values for all of the QIs, the mean (x̄), variance (s2) and standard deviation (s)
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are calculated using Equations (7)–(9). Subsequently, the identity vulnerability (IV) of each QI is
calculated using Equation (10).

Figure 3. Steps of determining the identity vulnerability of QIs.

5. Determining the Best Generalization Level

Apart from the full suppression of all QIs in a tuple, complete safeguarding against the background
knowledge and linking attacks as explained in Section 2, is very difficult. However, adaptive data
generalization can play a significant role in guarding against these attacks to an acceptable level.
This section presents the proposed adaptive generalization scheme appropriate generalization level
selection from taxonomies based on the identity vulnerability of QIs and diversity of SA to effectively
protect user privacy. After determining the identity vulnerability of the QIs, ranking highly similar
users, and forming equivalence classes using k, it is now possible to calculate and compare the diversity
of classes and determine the generalization level to anonymize QIs. When anonymizing the data,
data generalization is performed adaptively based on the identity vulnerability of the QIs as well as
the diversity. Apart from class diversity (D), evenness (E) is also calculated to determine the relative
abundance of the SA values. Both of these measures are calculated using the Simpson index. The D
and E values are calculated using Equations (3)–(6) (this procedure is explained in Section 3). Values
with defined thresholds (Td and Te) are subsequently compared. Because certain data statistics such as
the identity vulnerability of the QIs and the diversity of classes are determined in advance, adaptive
generalization (i.e., taxonomy positions are established) can be performed. For less diverse user classes,
great care is taken in the corresponding QI group. The proposed adaptive generalization method,
which couples the identity vulnerability of the QIs with the diversity of the SAs, ultimately provides
considerable protection against various attacks. The adaptive generalization facilitates superior data
anonymity, thereby protecting identities and preventing private information disclosures. At the same
time, the data utility is also preserved. The technique shows clear improvements over existing methods
of privacy protection that determine the generalization level based on mutual information or heuristics.

5.1. Higher and Lower Level Generalization

Data generalization to anonymize QI values is based on either domain generalization
hierarchy/taxonomy or value generalization hierarchy/taxonomy. A domain generalization taxonomy
is defined to be a set of domains that is totally ordered by the relationship from lower limit to higher
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limit in numeric data, and all possible values ordered semantically or logically in case of alphabetic
data. We can consider the taxonomy as a chain of nodes, and if there is an edge from node Da (bottom
node) to another node Db (top node) of the same branch in generalization taxonomy, it means that Db
is the direct generalization of Da. Similarly, if Domx is a set of domains in a domain generalization
taxonomy of a QI from QIs set, Q = {q1, q2, q3, . . . , qn}. For every Da, Db and Dc belonging to Domx

if Da < Db and Db < Dc, then Da < Dc. In this case, domain Dc is an implied generalization of Da.
Figure 4 shows an example of generalization taxonomies of race attribute. Domain generalization
taxonomy of race is given in Figure 4a. Meanwhile, the value generalization functions associated
with the domain generalization taxonomy induces a corresponding value-level taxonomy based on
the actual QI values. In value generalization taxonomy, edges are denoted by r, i.e., direct value
generalization, and paths are denoted by r+, i.e., implied value generalization. Figure 4b shows a
value generalization taxonomy with each value in the race, e.g., colored = r (black) and ∗ belongs
r+ (black). For all QIs, Q = {q1, q2, q3, . . . , qn} consisting of multiple values, each with its own
domain. The domain generalization hierarchies of the individual attributes can be combined to form
generalization lattices and combine taxonomies to be used for anonymizing QIs values. In Algorithm 2,
we mainly refer to direct generalization (generalization at lower levels close to original values, e.g.,
level 1 or 2 in Figure 4) as lower level generalization, and implied generalization (generalization at
higher levels close to the root node, e.g., level 2 or 3 in Figure 4) as higher level generalization. When
the diversity of sensitive attributes is less than desired threshold then higher level generalization is
preferred to limit privacy breaches. Meanwhile, lower level generalization is performed to preserve
anonymous data utility for performing analysis or building different classification models.

Figure 4. Example of domain and value generalization taxonomies of the race attribute.

5.2. Adaptive Data Generalization Algorithm

In this section, we present proposed adaptive generalization algorithm and its working with the
help of flowchart and pseudo-code. The proposed algorithm performs two major steps to produce
anonymous data from the original data: finding D and E values and their analyses, and adaptive
data generalization. The D and E analyses steps involve comparing each class diversity and evenness
with their defined thresholds (Td and Te). However, the adaptive data generalization step selects
the most appropriate generalization level to anonymize QI values. Figure 4 shows three different
levels to anonymize race values given in the dataset. As we climb up in the taxonomy tree, the
distance from the original values increase and information becomes less specific. Data generalization
near the root of the tree offers strong privacy guarantees but utility will be very low. In either case,
data generalization at lower levels of the taxonomy tree gives promising utility but privacy will be
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low. This results in a trade-off between privacy and utility which can be exploited by designing an
adaptive data generalization mechanism where the identity vulnerability of each QI and diversity
of sensitive attributes are integrated to reduce the privacy issues while improving the anonymous
data utility. We obtain vulnerability and diversity values and use them in generalizing each QI
values. A comprehensive overview of the proposed algorithm working in the form of the flow chart is
presented in Figure 5.

Figure 5. Adaptive generalization algorithm’s flow chart.

Apart from the visual flow chart, a complete pseudo-code of the adaptive generalization is listed
in Algorithm 2. Lines 1–3 implement the D and E calculations as well as the comparison with the
relevant thresholds (Td and Te). Lines 5–11 perform the lower level generalization for the highly diverse
classes, and Lines 13–19 implement the higher-level generalization for low diverse classes. Lines 5–11
and 13–19 are the two blocks of i f –else. The initial three steps in both blocks are identical, the main
difference lies in Line number 8 and Line number 16, where higher level and lower level generalizations
are performed respectively. Finally, anonymous data (AD

′
) is returned by combining both classes

of anonymity (Lines 22,23). The complete pseudo-code used to determine the generalization level
adaptively for QI anonymization is presented in Algorithm 2.
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Algorithm 2: Adaptive data generalization algorithm
Input : (1) Dataset DN×Ci where Ci are equivalence classes and N is the number of users

having QIs, q1, q2, . . . , qm.
(2) Generalization taxonomies T1, T2, . . . , Tn

(3) IV of QIs, IVq1 , IVq2 , . . . , IVqn

Output :Anonymous dataset AD
′

Procedure :
1 for each class Ci ∈ DN×Ci do
2 Find Di&Ei using Equations (3)–(6)
3 Compare obtained Di and Ei of class Ci with Td and Te.
4 if (Di > Td) ∧ (Ei > Te)) then
5 for each QI in Ci
6 Acquire generalization taxonomy T1 of q1.
7 Obtain Identity vulnerability IVq1 of q1.
8 Perform adaptive generalization (d

′
), Preferable at lower levels of T1.

9 Repeat: ∀ QIs, q1, q2, q3, . . . , qm

10 return d
′

11 End for
12 else
13 for each QI in Ci
14 Acquire generalization taxonomy T1 of q1.
15 Obtain Identity vulnerability of IVq1 of q1.
16 Perform adaptive generalization (d

′′
), Preferable at higher levels of T1.

17 Repeat: ∀ QIs, q1, q2, q3, . . . , qm.
18 return d

′′

19 End for
20 end
21 End for
22 AD

′
= combine (d

′′
1 + d

′′
2 + d

′′
3+, .......d

′′
n and d

′
1 + d

′
2 + d

′
3+, .......d

′
n).

23 return AD
′

6. Simulation Results

This section demonstrates the output of the concepts discussed. The improvements of the
proposed method are compared using three criteria—the improvements in user privacy, the anonymous
data utility, and the computational overheads—with benchmark privacy-preserving algorithms.
To benchmark the proposed method with other existing methods, the proposed method is compared
with InfoGain Mondrian [41] and IACk [43], both of which have been demonstrated as being better
than other methods in terms of utility and privacy when anonymizing data. Some readers may
wonder why we compared our proposed algorithm results with Mondrian [41] and IACk [43] only.
Basically, there are many similarities between our proposed algorithm and these two algorithms
in terms of generalization level selection for anonymizing QI values, developing some criteria for
data generalization, overcoming the information loss incurred from the generalization to improve
anonymous data. Additionally, for building different data mining models, many adjustments for
maintaining domain consistency in generalization process are required that are common among all
three algorithms. Considering the identity vulnerabilities and diversities of the attributes result in
significant improvements over these two algorithms results. That is why we compared our algorithm
results with these two algorithms.
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6.1. Dataset Description

The adult dataset originally extracted from census bureau database and currently found at
U.C. Irvine Machine Learning Repository [51] has become a benchmark dataset for comparing
k-anonymity algorithms. This dataset has been used by most of the k-anonymity studies (e.g., [52–56]).

The original dataset contains 48,842 instances, comprises of six numerical and eight
categorical/non-numerical attributes and is 5.4 MB in size. Four attributes are used as QIs, and
one attribute is used as the target class or SA. Other non-QI attributes from the dataset are ignored.
There are several records in the dataset with missing values. The two-thirds division of actual data in
the presence of missing values gives 32,561 instances as training data and 16,281 instances as testing
data. We eliminated the records with unknown values before conducting experiments and resulting
data set contains 45,222 tuples. The two-thirds division of refined data after eliminating missing values
gives 30,162 instances as training data and 15,060 instances as testing data. A complete description
of the dataset along with the generalization taxonomy levels used in the experiments is provided in
Table 1.

Table 1. Description of the adult dataset.

Attributes Type Quasi-identifier Description

Age Numerical Yes Taxonomy tree of height 7
Race Categorical Yes Taxonomy tree of height 3

Gender Categorical Yes Taxonomy tree of height 2
Country Categorical Yes Taxonomy tree of height 4
Salary Categorical No Sensitive Attribute

In Table 1, the distinct values descend in the order of age (74), country (41), race (5), and gender (2).
Salary is a sensitive attribute or target class with only two distinct values.

6.2. Improvements in Privacy

The first set of analyses shows the improvements in user privacy provided by proposed scheme.
The overall response to this criterion is good, and the anonymous data produced by the scheme is
more resistant toward many attacks as compared to existing work. Identity revelation is reduced via
the adaptive generalization, which considers the diversity of classes and identity vulnerability of each
QI. The table shown in Figure 1a is used to highlight the major differences between existing studies
and the present work. In this small subset of data, the age attribute potential was determined for
identity revelation as compared to the country attribute because most of the tuples belong to the same
territory. Age and country have IV values of 0.063 and 0.027, respectively. These findings confirm that
age needs considerable attention during anonymization. Three classes—A, B, and C—are considered,
as mentioned in Figure 1b. Determining class diversity is equally important because it limits private
information disclosure. The Simpson index is employed to determine class diversity. Class A has a
diversity of 2, which is higher than the threshold, but B and C do not have diversity. This indicates
that age is highly capable of revealing identities, which is helpful information when anonymizing
data. This study prefers higher level generalization rather than suppression to maintain data utility.
One might argue that higher level generalization adversely affects utility, but at the same time, a lower
level generalization of QIs with lower identity vulnerability and highly diverse classes will cancel this
effect. Hence, there is no drastic change in data utility. Anonymous data produced by the scheme
using the original data from Figure 1a is presented in Figure 6.

Six records are selected to show the major differences of the anonymization scheme with existing
work. Adaptive data generalization ensures better protection for QIs with high identity vulnerability
and less diverse classes. If the attacker already knows an individual‘s QIs, the scheme is still better at
preserving privacy than the previous work. Two attacker scenarios with the possession of some QIs
are also depicted in Figure 6. The proposed scheme on average achieves 37% better privacy protection
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regarding the linking attack. In Figure 6 symbol P represents the probability of re-identifying someone
from an anonymous data. The probability of re-identification is close to the threshold (e.g., 1/k) as
standard k-anonymity model. This ensures high-level protection even in class A for the QI that can
potentially reveal an individual’s identity—i.e., age. Class A has sufficient diversity, and country is
less identity vulnerable. Therefore, its values are retained as original (i.e., lower level generalization).
In contrast, higher level generalization is recommended for classes B and C because they are not diverse
and leak private information explicitly. The privacy improvements of the proposed scheme were
compared with the IACk algorithm. Usually, the privacy analysis is based on auxiliary information
(e.g., the information an adversary can get from the external sources). Therefore, our scheme made
37% improvements in the presence of auxiliary information with the standard deviation (s) of 0.11 and
mean 0.5 as compared to IACk algorithm which has standard deviation (s) and mean (x̄) values of 0.17
and 0.87 respectively.

Figure 6. Comparison of privacy between the information-based anonymization for classification given
k (IACk) algorithm and the proposed scheme.

6.3. Improvements in Anonymous Data Utility

During the anonymization of any data, information losses are inevitable. When data is distorted,
some specific values are always lost. Meanwhile, many data values must be maintained in as original
form as possible to enhance anonymous data utility. However, this can only be achieved when the
data owner is fully aware of the data statistics (i.e., QIs having less identity vulnerability and classes
with sufficient diversity). Therefore, an identity vulnerability- and diversity-aware anonymization
scheme is needed to provide such valuable statistics to the data owner. By using these statistics for
each attribute, over-generalizations can be controlled to reduce information losses, and the anonymous
data better preserves the utility. To test utility, two criteria are used—information loss and classification
model accuracy. Information loss is calculated using two metrics—distortion measures and coverage
of generalized values. Both metrics are calculated using Equations (11) and (12), as explained in
Section 6.3.1. A new variable—IV—is introduced in the formulas to take into account the identity
vulnerability of each QI. Classification accuracy is calculated using three machine learning methods
with the help of Equation (14) from Section 6.3.2. Table 2 shows the identity vulnerability values
of different QIs present in the adult dataset. These measures are calculated with RF with a series
of experiments.
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Table 2. Adult dataset: identity vulnerability values of QIs.

Sr.No Quasi-Identifiers Actual Values Relative Values

1 Age 0.03 81.72
2 Gender 0.01 16.92
3 Race 0.00047 0.83
4 Country 0.00011 0.53

Race and country are less identity vulnerable because the value distributions of these two
attributes are skewed. For example, most records have United States listed as the country value,
and the remaining records list many other countries. Therefore, these low-frequency values are more
likely to appear in small-sized classes, and one can remove these low-frequency values. This explains
why the identity vulnerability of these two attributes is lower as compared to age and gender. In
contrast, the distribution of the gender attribute is almost even. Hence its vulnerability value is higher
than those of country and race. Age has the highest number of distinct values and the distribution is
even for all distinct values other than country, which has only one value with almost 90% of the overall
values. Therefore, age has the highest identity vulnerability. The following setting with RF is used in
order to determine the identity vulnerability of the QIs:

Number of trees (ntree) = 500, QIs used to split the tree node (mtry) = 3, RF
model = classification, variable importance = true, keep.forest = true, data = users - data,
predictors = (age, gender, race, country) and target = salary.

A parameter settings are performed, and Algorithm 1 is applied to determine the accurate values
of the identity vulnerability of the QIs.

6.3.1. Reduction in Information Losses

Data analysis applications want lower information losses with anonymous data to ensure
better data utility. However, information loss is an unfortunate and inevitable consequence of
any anonymization scheme. In the present experiments, information losses that occur during
anonymization are quantified using two metrics—the distortion measure (DM) and the coverage
of generalized values. Distortion is defined as the height of the taxonomy from the original value to
the updated value [57] and it can be obtained using Equation (11).

DM =
N

∑
n=1

Q

∑
q=1

Li
Lt
× IVq (11)

where Li is the level in the generalization taxonomy for which data is generalized, and Lt represents
the total number of levels in a taxonomy of QI values. IVq is the identity vulnerability of a QI. All
distortion values from each QI and tuple are summed for all users in the dataset.

Tables 3 shows the distortion measures achieved with the experiments on the adult dataset.
Anonymous data produced by the adaptive generalization have lower average information losses
as compared to existing schemes. The distortion is computed using Equation (11) and the average
measures for different values of k are obtained and presented in Table 3. The proposed algorithm has
less distortion as compared to existing schemes which do not take into account the identity vulnerability
of each QI. Moreover, most of the improvements achieved by our proposed scheme regarding utility
are derived from the fact that diversity and vulnerability are considered simultaneously during
data generalization.

The coverage of generalized values is the total number of descendant leaf nodes of generalized
values in the taxonomy [57].
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Table 3. Distortion measures (DM) comparison.

Values of k Existing Schemes Proposed Scheme

5 0.024 0.01
10 0.025 0.011
50 0.033 0.019
100 0.033 0.020
150 0.035 0.022
200 0.037 0.025

Mean 0.03 0.01
Standard Deviation 0.005 0.006

Let T be the generalization taxonomy of a QI attribute. The coverage of a generalized QI value va∗,
denoted by coverage[va∗], is given by the number of the descendant leaf values of value va∗ in T. The
base of the taxonomy T is denoted by base(T), is the number of leaf values in the taxonomy. For
example, in Figure 4b, base(Trace) = 4 since there are four leaf nodes in the generalization taxonomy,
and coverage[va∗ = colored] = 3 since individuals having race values black, Asian-Pac-Islander and
Amer-Indian-Eskimo can be generalized to colored in the generalization taxonomy from top to bottom.
The information caused by the complete tuple in coverage of generalized values can be calculated by
using Equation (12).

IL(t∗) = ∑
q∈Q

(IL(t∗, q1)× IV(q1)) (12)

where IL(t∗, q1)is the information loss caused by the coverage of the generalized values of a single
QI computed from Equation (13), Q is a set of QIs, and IV is the identity vulnerability of specific
QI q1. The information loss caused by the coverage of generalizing for each QI is calculated using
Equation (13).

IL(t∗, q1) =
Q

∑
q=1

coverage[va∗]− 1
base(Tq)− 1

i f base[Tq] > 1 (13)

Table 4 shows the comparison of the coverage of generalized values of proposed scheme with
existing schemes. The present scheme consistently produces better average results for most values of k.

Table 4. Coverage of generalized values comparison.

Values of k Existing Schemes Proposed Scheme

5 8.3 2.5
10 12.3 3.7
50 16.3 4.9
100 33 9.9
150 68 52.5
200 160 60.5

Mean 49.6 22.3
Standard Deviation 58.32 26.70

6.3.2. Improvements in Classification Accuracy

In this section, the classification accuracy values obtained by building classification models on
the anonymous data produced by this scheme are presented and compared with those of other
schemes. Three different methods—RF, classification trees (CT), and support vector machines
(SVMs)—are used to test the effectiveness of the proposed scheme regarding classification accuracy.
Classification accuracy is calculated using the three machine learning methods (i.e., CT, SVM, and RF)
and Equation (14).
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Accuracy(Acc.) =
Tp + Tn

N
(14)

where Tn is the number of true negatives, Tp is the number of true positives, and N is the total number of
users in the dataset. For classification utility, generalization is not an issue. Only domain consistency is
important, so by making use of the identity vulnerability of the QIs, domain consistency is maintained.
The classification accuracy is compared with that of InfoGain Mondrian [41], a benchmark utility-aware
anonymization algorithm, and IACk [43], an extension of Mondrian that preserves classification utility
using mutual information.

The implementation of the three methods is obtained using an R-tool [58], Weka [59], Matlab and
Salford Predictive Modeller [60]. These environments are chosen for implementation because they are
well-known, highly effective tools for statistical computing. The test dataset is independent of the
corresponding training datasets. Generalization levels are determined from only the training data and
are validated from testing data.

We calculated and compared the mean and standard deviation (SD) of accuracy values obtained
from three different methods. Using the classification tree method, the proposed scheme gives the
mean accuracy value of 82.08, as compared to IACk and Mondrian algorithms that give mean accuracy
values of 80.75 and 80.25, respectively. We got 1.11 as the value of the SD of our proposed algorithm
as compared to the IACk algorithm with an SD value of 0.98 and that of the Mondrian algorithm
with an SD value of 0.93. Using the support vector machines method, we got a mean accuracy value
of 84.08 of our proposed algorithm as compared to IACk and Mondrian algorithms that give mean
accuracy values of 77.75 and 73.6 each. Our proposed scheme gives SD value of 1.51, as compared
to IACk and Mondrian algorithms that give SD values of 4.3 and 2.3 respectively. The proposed
scheme gives less estimates of SD as compared to other algorithms. However, the main reason is
the difference between mean accuracy and each individual accuracy value for different values of k.
As most of the individual accuracy values are close to the mean of accuracy, therefore the difference
between actual value and mean (x− x̄) is not sufficiently large. Due to this reason, the SD value of the
proposed scheme is lower than the other two algorithms. Apart from classification tree and support
vector machines, we calculated and compared the classification accuracy measures using random
forest method too. The proposed scheme gives mean accuracy value of 88, as compared to Mondrian
algorithm that gives mean accuracy values of 76.6. Our proposed scheme produces improved results
while comparing SD value that is 1.47 as compared to Mondrian algorithms that give a SD value of 1.97.
These results have further strengthened our confidence in anonymous data utility while providing
sufficient privacy guarantees.

Figures 7–9 show the classification accuracy of the three different methods using four attributes
on k-anonymized datasets with the proposed algorithm, InfoGain Mondrian [41] and IACk [43].
The proposed scheme also considers SA diversity in the anonymized datasets, which is often
overlooked by classification-aware methods. Most classification-aware methods open the values
that are suppressed by the methods discussed in the related work, while SA diversity, which makes
private information disclosures obvious, is ignored. The accuracy of the models built on top of the
anonymous dataset produced by our scheme is as good as the original data. The proposed algorithm is
consistently better than those of Mondrian and IACk. The obtained accuracy values make the findings
more reliable.
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Figure 7. Accuracies: proposed scheme versus IACk and Mondrian algorithms.

Figure 8. Accuracies: proposed scheme versus IACk and Mondrian algorithms.

Figure 9. Accuracies: proposed scheme versus Mondrian algorithm.

Generally, high accuracy of anonymous data is evaluated low in privacy in many real-world
cases. Meanwhile, highly accurate data is evaluated low in privacy only when sensitive attribute
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diversity is not considered and considerable attention has not been paid to each QI identity revelation
ability. However, the proposed scheme offers superior privacy protection considering the diversity and
identity revelation ability of attributes and allows data users to classify two different income levels,
such as, < or > than 50,000 dollars while using either some or all QIs as predictors.

We tested the algorithm on modified dataset containing a sensitive attribute in numbers and
changing predictors; the RF can handle all types (e.g., numeric and categorical) of the predictor variable
besides the type, the number of variables and data size. When the target/sensitive variable is numeric
then the RF model will be "regression" rather than "classification" which is used for categorical variables.
In adaptive data generalization, each attribute has domain generalization and corresponding value
generalization taxonomy to create the anonymous version of original data. Therefore, data type will
not affect the generalization process and data owners can create the data generalization taxonomies or
can use the existing generalization taxonomies. The proposed scheme can work well with all types of
the data.

6.4. Decrease in Computational Overheads

The identity vulnerability of the QIs is determined as an off-line task, and adaptive generalization
is performed as an on-line task. Meanwhile, the running time of the proposed scheme sums both
processes. Table 5 shows the execution time in seconds (s) and comparison of the present scheme with
the InfoGain Mondrian scheme. The running time of proposed algorithm and Mondrian on the same
data sets with different values of k were compared on a PC computer running windows operating
system with CPU of 2.6 GHz and 8.00 GB RAM. When comparing the running times, the proposed
anonymization scheme is faster.

Table 5. Running time (in s) of the proposed scheme versus Mondrian.

Values of k Proposed Algorithm Mondrian Algorithm

10 15 s 20 s
20 15 s 20 s

100 16 s 19 s
150 18 s 18 s
200 18 s 19 s

These results emphasize the validity of the proposed scheme with respect to achieving better
privacy protection, improved anonymous data utility, and low computational overheads. This study
provides additional support for highly imbalanced data anonymization as compared to current state of
the art methods. The findings appear to be well substantiated for both privacy and utility. The proposed
scheme performs well regarding user privacy and anonymous data utility for two reasons: (1) the
identity vulnerability of QIs is introduced, which helps to treat QIs according to their identity revelation
ability and effectively protects user privacy; and (2) the adaptive generalization, which considers
the identity vulnerability of the QIs and diversity of the SAs, improves the anonymous data utility
by controlling over-generalization of diverse classes and less identity-vulnerable QIs. The proposed
scheme resolves privacy issues stemming from low diverse classes and highly identity-vulnerable QIs,
and it overcomes the difficulty of creating feasible `-diverse datasets.

7. Conclusions

In this paper, we proposed a personally identifiable information (PII) vulnerability- and
diversity-aware anonymization scheme to reduce the privacy risks while improving the anonymous
data utility in the person-specific data publishing. The main goals of the proposed scheme are to
reduce the unique identification and private information disclosures, and enhance anonymous data
utility in the privacy preserving data publishing. We propose a mechanism for quantifying the identity
vulnerability of each item of PII using random forest to reduce the unique identifications caused by the
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highly identity-vulnerable PII. We adapt Simpson index for calculating the diversity of equivalence
classes to overcome the privacy breaches caused by low diverse classes. Furthermore, the proposed
adaptive generalization scheme anonymizes data considering the identity vulnerability of PII as well
as the diversity of equivalence classes. The adaptive generalization scheme resolves the privacy issues
stemming from the highly identity-vulnerable PII and low diverse classes, and improves data utility
by controlling the over-generalization of less identity-vulnerable PIIs. The proposed scheme results
are promising with respect to privacy, utility, and computational overheads. Through simulations and
comparison with the existing schemes, on average, our scheme reduces the privacy risks of identity
and private information disclosures by 37%. From the anonymous data utility point of view, it lowers
the information losses by 18%, and improves the classification models accuracy up to 6%.
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