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Abstract: Similar to traditional wireless sensor networks (WSN), the nodes only have limited memory
and energy in low-duty-cycle sensor networks (LDC-WSN). However, different from WSN, the nodes
in LDC-WSN often sleep most of their time to preserve their energies. The sleeping feature causes
serious data transmission delay. However, each source node that has sensed data needs to quickly
disseminate its data to other nodes in the network for redundant storage. Otherwise, data would
be lost due to its source node possibly being destroyed by outer forces in a harsh environment. The
quick dissemination requirement produces a contradiction with the sleeping delay in the network.
How to quickly disseminate all the source data to all the nodes with limited memory in the network
for effective preservation is a challenging issue. In this paper, a low-latency and energy-efficient data
preservation mechanism in LDC-WSN is proposed. The mechanism is totally distributed. The data
can be disseminated to the network with low latency by using a revised probabilistic broadcasting
mechanism, and then stored by the nodes with LT (Luby Transform) codes, which are a famous
rateless erasure code. After the process of data dissemination and storage completes, some nodes
may die due to being destroyed by outer forces. If a mobile sink enters the network at any time
and from any place to collect the data, it can recover all of the source data by visiting a small
portion of survived nodes in the network. Theoretical analyses and simulation results show that our
mechanism outperforms existing mechanisms in the performances of data dissemination delay and
energy efficiency.

Keywords: low-duty-cycle sensor networks; data preservation; data dissemination; latency;
energy efficiency

1. Introduction

Wireless sensor networks (WSN) are kinds of ad hoc networks, which are always deployed in
harsh environments and with large amounts of autonomous nodes to perform specified tasks, such as
environment monitoring and target tracking. Each node in WSN only has limited energy and storage
space (memory), so it is important to carefully design data transmission and preservation strategies
under these limitations. Low-duty-cycle sensor networks (LDC-WSN) are a new form of WSN [1],
where duty-cycle represents the proportion of node’s awaking time t in a working period T, i.e., t/T.
Low-duty-cycle means that each node’s duty-cycle is lower than 1/3. In an LDC-WSN, the nodes keep
sleeping most of the time. Therefore, they can effectively save their energy and work for a very long
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period, i.e., network lifetime of LDC-WSN is much longer than that of traditional WSN, which benefits
the reductions of network deployment cost and maintenance cost [2].

However, the sleeping feature of nodes causes serious data transmission delay. In each
transmission, a sender node often has to wait for some time until a receiver node wakes up. Therefore,
the total latency for a source node to disseminate its data to the whole network is extremely large.
Furthermore, the latency would become worse when the network communication is unreliable.

On the other hand, each source node that has sensed data always wants to disseminate its data
to other nodes in the network for preservation as quickly as possible. This is because the source
node may be suddenly destroyed by outer forces (e.g., earthquake, flood) and lose its data. The quick
dissemination requirement produces a contradiction with the large dissemination delay in the network.

It is a challenging issue that all of the source data can be quickly disseminated to all nodes in
LDC-WSNs. Moreover, it is a challenge that the data can be effectively stored at the nodes with limited
memory. Our objective is that all of the data can be recovered even if some nodes die after the network
works for a period of time.

In this paper, a low-latency and energy-efficient data preservation mechanism named FDP (Fast
Data Preservation) is proposed. It considers the sleeping feature of the nodes in LDC-WSN and uses
a revised probabilistic broadcasting mechanism to disseminate the data. When the data is received
by the nodes in the network, they will be stored by using the LT codes. FDP is a totally distributed
mechanism, and it needs no any global information such as network topology and geographical
locations of the nodes. Each node will make its decision about whether or not to relay its received data
according to the number of its neighbors and its energy level. After the process of data dissemination
and storage is completed, a mobile sink can enter the network from any place and at any time. The
sink will recover all of the source data after it visits a proportion of survived nodes and collects the
encoded data stored at the memories of these nodes. To the best of our knowledge, this paper is the
first one that researches how to achieve effective data preservation in LDC-WSN.

The rest of the paper is organized as follows. In Section 2, we will describe related work. The
system model and problem statement will be introduced at Section 3. In Section 4, basic idea and
detailed description of our algorithm are presented. In Section 5, simulations and evaluations are
performed. Finally, we conclude the paper in Section 6.

2. Related Work

Recently, there have been many works focused on data preservation in WSN. They mainly
researched how to preserve the data in the nodes with limited memories and achieve some kind of
network resilience. According to their ways of preserving the data, existing works can be divided into
two classes: feature projection based mechanisms and network coding based mechanisms.

2.1. Feature Projection Based Mechanisms

CDP (Compressive Data Persistence) [3] firstly uses random walks [4] to disseminate the data,
where the random walks mean that each node would randomly choose one of its neighbors as a
receiver in each transmission. When a node receives data, it will compute a value of random linear
projection [5] on the data and then save the value. The value needs less memory, compared with the
data. CDP has a high decoding ratio, i.e., all of the source data can be recovered by only acquiring a
small number of the projection values. However, the random walks produce too many transmissions,
which cause large latency in the network and heavy energy consumption at the nodes.

CNCDS (Compressed Network Coding based Distributed data Storage) [6] considers energy
efficient performance of the data dissemination and then proposes an adaptive data dissemination
based data preservation mechanism. In the process of data dissemination, each node will choose
a proper probability to relay data according to the number of its neighbors. All of the data can be
received by all of the nodes in the network with low latency and low energy consumption.
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CDP and CNCDS only consider how to use a node’s spatial correlation to compute the
projection, and do not consider the temporal correlation among the nodes. ST-CNC (Spatio- Temporal
Compressive Network Coding) [7] considers the spatial-temporal correlation among the nodes and
then redesigns the rules of data projection. It achieves a higher decoding ratio.

P-STCNC (Practical Spatio-Temporal Compressive Network Coding) [8] considers not only the
spatial-temporal correlation, but also the situation that the data is sparse in real networks. Then, a new
data dissemination mechanism that can adaptively adjust the communication footstep is proposed.
P-STCNC achieves lower energy consumption than ST-CNC.

In general, the feature projection based mechanisms can achieve a high decoding ratio, which
benefits the recovery of the data. However, they need complex matrix computations, which are difficult
to perform at the nodes with limited computation ability. Moreover, they require that the data has
high correlation, which is not suitable for the applications for which the data has little correlation.
Therefore, it is difficult for these mechanisms to be widely applied.

2.2. Network Coding Based Mechanisms

Network coding based mechanisms have comparatively lower computation complexity, and
they are more suitable for being used in the network composed of nodes with limited computation
ability. Moreover, they do not require data correlation. Therefore, they have wider application range.
According to the types of codes, existing works can be classified into two categories: random linear
codes based mechanisms and fountain codes based mechanisms. In random linear codes [9], each
encoded piece of data is the random linear combination of several sources of data in a finite field.
In fountain codes [10], a set of source data can produce infinite encoded data, and all of the source
data can be recovered as long as the users get a set of encoded data whose number is equal to or a
little larger than the number of the source data. Next, we will introduce the existing works of the two
categories in detail.

2.2.1. Random Linear Codes Based Mechanisms

PRLC (Priority Random Linear Codes) [11] decides its coding degree according to the importance
of the data, where the coding degree is the number of source data used to forms the linear combination.
It assigns the data with higher importance with a lower coding degree. By this way, the sink can
recover the importance data after it collects lesser encoded data. On the other hand, the data with
lower importance will be assigned a higher coding degree, so the information volume in each node’s
memory and the use ratio of the memory are increased. However, the data with lower importance
need more encoded data to be recovered.

RLC (Random Linear Coding) [12] is focused on the application that the network is deployed in
a dangerous field that even a mobile sink cannot visit. In the network, the nodes have to exchange
their encoded data with their neighbors continuously. Finally, the encoded data is disseminated to
the border of the network. The sink can collect the encoded data at the border and need not enter the
network. However, the nodes at the border are required to store large amounts of data, which is not
practical for the nodes that only have a limited memory.

DEC-EaF (Decentralized Erasure Codes based Encode-and-Forward) [13] considers the energy
efficiency of data dissemination. Each node chooses a target node to receive its data, which avoids the
use of random walks. In the process of data transmission, relay nodes would encode and store the
data. However, DEC-EaF requires that the source nodes know the geographic information of all other
nodes in the network, which is also not practical.

RRA (Robust Randomized Algorithm) [14] assumes that there are two classes of nodes in the
network: normal nodes and strong nodes. A normal node’s memory only has one unit of space, and
a strong node’s memory has multiple space units. Each normal node can randomly choose several
strong nodes and send its data to them. If a strong node receives the data from a normal node, it will
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encode the data using random linear codes and then store the encoded data. RRA can achieve high
decoding ratio, but its scalability is low for it requires the existence of the strong nodes.

2.2.2. Fountain Codes Based Mechanisms

EDFC (Exact Decentralized Fountain Codes) [15] firstly requires the source nodes to disseminate
multiple copies of their data to the network by using random walks. The copies will be saved
temporally by some nodes that receive them after they have been transmitted for given numbers of
times. After the data dissemination, each node will encode the data copies received according to LT
codes. EDFC is not energy efficient, for it uses random walks to disseminate the data copies. Moreover,
it requires each node to have a large memory space to save the copies, which is not suitable for the
networks in which the nodes only have limited memories.

ECPC (Erasure Coding with randomized Power Control) [16] improves EDFC by using
probabilistic broadcast to disseminate the data directly and not the copies. The nodes can directly
encode the data received and need not temporally save them. Therefore, ECPC has the advantages
of low data dissemination latency, high energy efficiency and low memory requirement. However, it
requires a communication radius of the nodes to be large enough to cover almost the whole network.
Moreover, it needs to know some global information such as the number of source nodes, which is
hard to be acquired in practical applications.

LTDC (LT codes based Distributed Coding) [17] improves ECPC by using multicast to disseminate
the data, which lowers the redundancy of data reception and transmission in broadcast and achieves
higher energy efficiency. However, it still requires global information such as the number of source
nodes in the network.

DDSLT (Distributed Data Storage based on LT codes) [18] needs no global information. It uses
random walks to disseminate data, and the nodes can calculate the number of source nodes by
receiving the data. It achieves the same encoding ratio with EDFC, but the energy consumption of
data dissemination is much larger than ECPC and LTDC.

APBDP (Adaptive Probabilistic Broadcast-based Data Preservation) [19] considers the factors of
energy consumption, latency and global information requirement in data dissemination. Firstly, it uses
the Extrema Propagation technology [20] to get the information of total number of source nodes. Then,
it adopts probabilistic broadcast to disseminate data to the nodes in the network for encoding and
storage. Only a small part of the nodes in the network need to relay the data, which benefits the data
dissemination to achieve low latency and low energy consumption.

However, the above mechanisms are mainly based on traditional wireless sensor networks, in
which the nodes would not sleep to save their energies. Therefore, they cannot perform well in
LDC-WSN and new mechanisms for LDC-WSN should be designed.

3. System Model and Problem Statement

3.1. System Model

Assume the network is deployed in a square field A of M ×M, in which n nodes are randomly
distributed. Each node’s communication radius is r, i.e., two nodes can communicate with each other,
if the distance between them is smaller or equals r. All of the nodes form a connected network G(V, E),
where V = {v1, v2, . . . , vn} is the set of the nodes and E is the set of communication edges among the
nodes. The nodes perform periodic tasks, such as environment surveillance or hazard monitoring. The
working period of the nodes is divided into cycles.

Similar to [1,2], we assume that each cycle is composed of m time units {t1, t2, . . . , tm}. A node
only wakes up in one of the time units, and sleeps in all of the other time units if it has no data to
transmit. The waking time unit of a node is chosen randomly, and it would not be changed. A node
can only receive data in its waking time unit but can wake up to transmit data when its neighbors
wake up. A node can achieve local synchronization with its neighbors and know all the waking time
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units of its neighbors. If a node needs to transmit more than two data packets, it will save the data in a
FIFO (First Input First Output) queue for transmission in sequence.

The powers of data transmission and reception are fixed. Each node will consume Es energy
in transmitting 1-bit data, and it will consume Er energy in receiving 1-bit data. This assumption is
made only for easy analysis, and our mechanism can be used in the network that the powers of data
transmission and reception are adjustable. On the other hand, the links among the nodes are unreliable,
and the successful ratio of data transmission on each link is unknown. When a node receives a data
packet, it will send back an ACK (Acknowledgement) message to the sender for conformation. Only
once the sender node gets all the conformation of its neighbors, does it stop transmitting data.

Different nodes should have different storage capacities. However, in order to make our
mechanism applicable in the worst case, we assume that each node has the minimum storage capacity,
i.e., each node can store 1 piece of data. If there are multiple pieces of data that need to be stored,
a node must perform an XOR (eXclusive OR) operation to combine them into an encoded data. The
size of each data (or encoded data) is d bits. Each data xi will be encapsulated into a packet packet(xi)
for transmission.

The network needs to periodically collect the data, and its working period is divided into rounds.
A round is defined as the maximal time duration that all data can be collected by the sink. We mainly
consider the data preservation in a round. At the start of each round, the number of nodes in the
network is n. In different rounds, there may have different numbers of nodes, for some nodes may die
at former rounds. In each round, there are three phases:

(1) Data production phase. In this phase, all of the nodes monitor the field, and k ≤ n nodes sensed the
data, i.e., there are k source nodes and k source data. The source nodes will disseminate a short
message that contains its ID to the network to let other nodes know of its existence. After all
source nodes disseminate their short messages, all of the nodes in the network know the number
k of source nodes (or source data).

(2) Data dissemination and storage phase. In this phase, the k source nodes will disseminate their data
to the network for storage. Since each node can only store one piece of data, the node will encode
the data received before storing it.

(3) Data collection phase. In this phase, the nodes wait for the coming of the mobile sink. Some nodes
may die due to being broken by outer force. A mobile sink can enter the network from any place
in the network and at any time in this phase. It should visit some survival nodes to collect their
encoded data. The collected encoded data is expected to recover all of the source data. On the
other hand, if a node senses new data, it can continue to disseminate its data to the network for
storage. However, since this dissemination cannot be guaranteed to be completed before the
coming of the sink, these data cannot be guaranteed to be recovered. The problem of how to store
the new data or update the old data is outside the scope of our research, so we will research it in
the future and not discuss it in this paper.

Time durations of the three phases above should be decided by applications. In a normal situation,
the time duration of the third phase is much larger than that of the other two phases. In each round,
all data should be collected. Therefore, a round should contain enough cycles for the three phases.

3.2. Problem Statement

According to the system model, the nodes only have limited resources such as energy levels,
communication ranges, computation abilities and storage capacities. Moreover, they would sleep
for most of their time in each cycle, and they may die due to being broken by outer force in the data
collection phase.

Therefore, there are two challenges that exist in each round of data preservation: (1) how can a
source node disseminate its message or data to all the nodes in LDC-WSN with low latency in the data
production phase and the data dissemination and storage phase? and (2) how can every node with limited
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memory save more data in the data dissemination and storage phase so that a mobile sink can recover all
the source data after visiting as few as possible survival nodes in the data collection phase?

Our research objective is to solve the two challenges above. Therefore, our problem is how to
design a distributed, energy-efficient and fast data preservation mechanism for which all source nodes
can disseminate their messages or data to all the nodes in LDC-WSN with low latency, and then the
data can be stored by all the nodes effectively so that a mobile sink can recover them after visiting as
few as possible survival nodes.

4. Algorithm Description

4.1. Basic Idea

In order to reduce the data dissemination latency and improve energy efficiency, we design a
new probabilistic broadcast mechanism for LDC-WSN. In the new mechanism, each node will decide
whether to become a relay node with specified probability. The probability is computed according to
the number of the node’s neighbors and the node’s energy level. If a node decides to relay a packet, it
will wake up at the time units that its neighbors wake up and then send its packet to the neighbors.
After it sends a packet to a neighbor, it will wait for an ACK message from the neighbor. If it does not
receive the ACK message, it will retransmit its packet to the neighbor at the next cycle. If it receives all
of the ACK messages from its neighbors, it stops to relay the packet. If a node receives a data packet
(not short message) for the first time, it will use LT codes to encode the data and store it.

In the above idea, the keys for algorithm implementation are how the nodes decide their
probabilities of relaying nodes and how can the nodes use LT codes to encode the data. The
implementation process will obviously affect the successful ratio of data recovery. Therefore, we
need to design it carefully. Next, we will introduce the new probabilistic broadcast mechanism. Then,
we present our data preservation mechanism by using LT codes.

4.2. Data Dissemination Mechanism

Currently, there are a lot of works focused on the design of probabilistic broadcast in traditional
networks. However, they do not consider the feature that nodes would sleep for a long time in
LDC-WSN. Therefore, they are not suitable to be used in LDC-WSN. A new probabilistic broadcast
method for LDC-WSN should be designed.

Lemma 1 [21]. In a wireless ad hoc network with n nodes, there is a key probability pc. If n is large enough and
the nodes in the network can rebroadcast a packet with probability pi ≥ pc when they receive the packet for the
first time, all nodes in the network can receive the packet when there are no nodes that rebroadcast the packet in
the network (i.e., the process of dissemination completes). However, if pi < pc, only a few nodes can receive the
packet when the dissemination completes.

This lemma is the analysis result of the percolation theory [22]. It points out that all the nodes
in the network can receive a packet if every node can relay the packet with a probability equals or
larger than the key probability pc. However, pc’s value should be computed according to the topology
of the whole network, which is global information, and it is difficult for individual nodes to know it.
Therefore, we need to design a method to help the nodes estimate the key probability and then decide
their probabilities to relay a packet.

In our mechanism, the nodes with higher energy levels should have higher probability to relay
a packet, so as to balance the energy consumption among the nodes to extend network lifetime.
Therefore, we set that each node vi will relay a packet with probability pi = pc’ + a when it receives the
packet for the first time, where pc’ is the estimated key probability, a = (ei − avg)/avg is a adjust factor
based on node’s energy, and avg is the average energy of vi and its neighbors. Next, we will analyze
how each node vi can compute its probability pi.
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Consider a communication graph Gc(Vc, Ec) that uses the network G as its base map. Gc is empty
at first. When a node vi broadcasts a packet, vi is added into Vc. After vi sends its packet to its neighbor
vj successfully, the edge (vi, vj) is added into Ec. When the process of data dissemination is completed,
Gc is a sub-graph of G. If all nodes receive the packet, Gc equals G.

Lemma 2 [23]. For any sub-graph Gc of a connected graph G, Gc can equal G with a probability close to 1 if
every node vi’s degree di in Gc is larger than the minimal expected degree Em(d) in G.

According to Lemma 2, all nodes in the network can receive a packet, if there are at least Em(d)
neighbors that receive the packet at each time of transmission. Among the neighbors, a proportion of
nodes will continue to rebroadcast the packet. The number of rebroadcasting nodes is decided by a
key probability, which we need to compute as follows. Therefore, our target is to make every node’s
degree d in Gc be larger than Em(d). The target can be formulated as:

E(d) ≥ Em(d). (1)

Since Em(d) = log(n)/loglog(n) [24], Formula (1) can be changed as:

E(d) ≥ log(n)/loglog(n). (2)

According the feature of E(d), i.e., E(d) = ∑d dP(d), we have:

∑d dP(d) ≥ log(n)/loglog(n), (3)

⇒∑d d2P(d) ≥ d log(n)/loglog(n) . (4)

Since the nodes are randomly distributed in the field, their degrees can be modelled as a Poisson

distribution P(d) = ∑∞
i=d

(
i
d

)
pd(1− p)i−dP(i). Therefore, Formula (4) can be changed as:

⇒∑∞
d=0 d2 ∑∞

i=d

(
i
d

)
pd(1− p)i−dP(i) ≥ d log(n)/loglog(n) ,

⇒∑∞
d=0 P(i)∑∞

i=d d2

(
i
d

)
pd(1− p)i−d ≥ d log(n)/loglog(n),

⇒∑∞
d=0 P(i)

(
ip(1− p) + i2 p2

)
≥ d log(n)/loglog(n),

⇒ p2E
(

d2
)
+ p(1− p)E(d) ≥ d log(n)/loglog(n) . (5)

For any node vi, E(d) can be approximated as the number of its neighbors |N(vi)|, E(d2) can be
approximated as |N(vi)|2 + |N(vi)| according to the feature of Poisson distribution, and d equals the
number of its neighbors. We have:

p2
(
|N(vi)|2 + |N(vi)|

)
+ p(1− p)|N(vi)| ≥ |N(vi)| log(n)/loglog(n),

p2(|N(vi)|+ 1) + p(1− p) ≥ log(n)/loglog(n),

p2|N(vi)|+ p ≥ log(n)/loglog(n). (6)
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Since 0 ≤ p ≤ 1, Formula (6) can be approximated as:

p2|N(vi)| ≥ log(n)/loglog(n),

⇒ p ≥

√
log(n)

|N(vi)|loglog(n)
. (7)

According to Lemma 2, min p =
√

log(n)
|N(vi)|loglog(n) can be taken as a value of the key probability.

Therefore, we have pc’ =
√

log(n)
|N(vi)|loglog(n) . As a result, the relay probability pi of a node vi can be

formulated as:

pi = p′i + a =

√
log(n)

|N(vi)|loglog(n)
+ (ei − avg)/avg. (8)

Theorem 1. In an LDC-WSN with n nodes, if n is large enough and each node vi rebroadcasts a packet with

probability pi =
√

log(n)
|N(vi)|loglog(n) + (ei − avg)/avg when it receives the packet for the first time, all nodes in the

network can receive the packet with a probability near 1, when the process of dissemination completes.

Proof. Combining Lemma 1 and Lemma 2, the conclusion is obvious. �

Based on Theorem 1, we design a function Transmission(packet(vj)) for each node vi to relay a
received packet packet(vj), as shown in Algorithm 1. Note that the function can also be used for relay
short messages.

Algorithm 1. Function Transmission (packet(vj))

1 if (packet(vj) is the first time received by vi)
2 temp = rand(1);
3 If (temp ≤ pi) or (vi == vj)
4 T(vi) = N(vi); // N(vi) is the set of vi’s neighbours
5 While T(vi)! = {}
6 Wake up for one time slot when a node vk in T(vi) wakes up;
7 Send the message packet(vj) to vk;
8 If receives a message ACK(vk) from vk
9 Remove vk from T(vi);
10 End
11 End
12 End
13 End

In Algorithm 1, when a node vi receives a packet packet(vj) for the first time, it will decide whether
to rebroadcast it with probability pi or not. Moreover, the node vi will surely broadcast the packet if it
is a source node, i.e., vi == vj. If vi decides to relay the packet, it firstly saves the set of its neighbors
N(vi) into a set of neighbors that do not receive the packet T(vi). If T(vi) is not empty, vi would wake
up at the time that the first node vk in T(vi) wakes up and sends the packet to vk. If vi receives vk’s
ACK message, it deletes vk from T(vi) and then waits for the current first node in T(vi) to wake up and
then sends the packet to it. If vi does not receive vk’s ACK message at an expected time period, vi will
continue to wait for the second node in T(vi) to wake up and then sends the packet to it. The above
process will continue until T(vi) is empty.
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4.3. Data Storage Algorithm

We will use LT codes to preserve the data. Therefore, we will firstly introduce LT codes, and then
present the design of the data storage algorithm.

4.3.1. LT Codes

LT codes [25] are a class of rateless erasure codes, and they are the practical implementation
of fountain codes. Given k source data {x1, x2, . . . , xk}, LT codes can produce infinite encoded data
{y1, y2, . . . .}. LT codes have low encoding and decoding complexities, which benefits them for being
applied in sensor networks in which the nodes only have limited computation ability. In LT codes,
a probability distribution Ω(j) is used to produce an encoded degree dm for each encoded data ym,
i.e., ym is the combination of dm source data by Xor operations, where 1 ≤ j ≤ k, 1 ≤ dm ≤ k. In the
process of decoding, all source data can be recovered with probability 1 − δ by using k + ε encoded
data, where ε = O

(√
kln2

(
k
δ

))
, 0 < δ < 1.

In LT codes, Robust Soliton distribution is often used as Ω(j). Its definition is shown as follows.
First, an Ideal Soliton distribution is defined:

Ωis(j) =

{
1
k , j = 1

1
j(j−1) , j = 2, 3, . . . , k . (9)

Then, a variable R = c ln
(

k
δ

)√
k is used to produce a function τ(j) as follows, where c > 0 is

a constant:

τ(j) =


R
jk , j = 1, . . . , k

R − 1

R
ln( R

δ )
k , j = k

R
0, j = k

R + 1, . . . , k

. (10)

Finally, the Robust Soliton distribution can be presented as:

Ω(j) =
τ(j) + Ωis(j)

β
, j = 1, 2 . . . k, (11)

where β = ∑k
j=1(τ(j) + Ωis(j)).

4.3.2. Algorithm Description

According to the rules of LT codes, each node vi firstly computes an encoded degree di. When
vi receives a packet for the first time, it will store the data with probability di/k. If vi decides to store
the data, it will combine the data with the encoded data that has been stored in its memory by using
an XOR operation, i.e., each node would only store one encoded piece of data. The algorithm of data
storage is shown in Algorithm 2.

In Algorithm 2, if a node vi is a source node, it will store its data directly. Then, vi puts its data into
a packet packet(vi). Since vi receives the packet for the first time, it will use the function Transmission
(packet(vi)) to send the packet to its neighbors. If vi is not a source node and receives the packet for the
first time, it will firstly store the data with probability di/k, and then use the function Transmission
(packet(vi)) to send the packet to its neighbors.
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Algorithm 2. Data Storage Algorithm Ran on Each Node vi:

1 Upon vi generates a source data xi:
2 yi = xi;
3 Put xi into a message packet(vi); // the message packet(vi) is generated by vi, and vi takes the message as a
new message that is received by it for the first time.
4 Transmission(packet(vi));
5
6 Upon vi receives a message packet(vj) that contains a data xj:
7 If packet(vj) is received by vi for the first time
8 temp = rand(1);
9 If (temp ≤ di/k)
10 yi = yi XOR xj;
11 End
12 Transmission(packet(vj));
13 End

Theorem 2. In an LDC-WSN with n nodes and k source data, if n is large enough and every node uses our
algorithms to disseminate and store the data, a mobile sink can recover all the source data with probability 1 − δ

after it visiting k + ε nodes, where ε = O
(√

kln2
(

k
δ

))
, 0 < δ < 1.

Proof. According to Theorem 1, each node can receive all the data with probability near 1. When a
node receives a data for the first time, it will store the data with probability di/k. di is got by using the
Robust Soliton distribution. Therefore, the encoding degree of the encoded data stored in the node is
in coincidence with the requirement of LT codes, i.e., the source data can be recovered with probability
1 − δ by using k + ε encoded data. On the other hand, each node only stores encoded data. Therefore,
a mobile sink can recover all the source data with probability 1 − δ after it visits k + ε nodes, according
to the feature of LT codes, as shown in Section 4.3.1. �

4.4. Performance Analyses

Since data preservation is mainly performed in the second phase of each round, we analyze
several key performances of our mechanism in this phase.

4.4.1. Time Complexity

Our mechanism contains two operations: data dissemination and data storage. In data
dissemination, each relay node needs to wake up at the time units that its neighbors wake up to
transmit data. The number of neighbors for each node is O(logn) [19]. At the worse situation, a node
needs to relay all the source data. Therefore, the worse time complexity of data transmission in a node
is O(klogn). In data storage, a node will perform XOR operations on the data received for the first time,
which needs at most O(k) time. Therefore, the time complexity of data storage in a node is O(k). As a
result, the time complexity of our mechanism is O(klogn + k).

4.4.2. Energy Consumption

The main energy consumption of data preservation is the process of data dissemination.
We proposed a new probabilistic broadcast mechanism, by which only a small proportion of nodes need
to relay the data and the other nodes only need to receive the data. Considering the effect of unreliable
links, each relay node needs to wake up O(|N(vi)|) times to send its data to the neighbors when
there is a piece of data that needs to be transmitted, and each non-relay-node needs to wake up O(1)
times to receive the data. Since there are k data in the network, a relay node needs to perform at most
O(k|N(vi)|)transmissions, and each non-relay-node needs to receive the data for O(k) times. Moreover,
the size of each data packet is b bits, and a node will consume Es (or Er) energy in transmitting (or
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receiving) 1-bit data. Therefore, the energy consumption of a relay node is O(bk|N(vi)|Es), and the
energy consumption of each non-relay-node is O(bkEr).

4.4.3. Latency of Data Dissemination

The latency is defined as the time duration from the time unit that the data is disseminated to the
time unit that there are no nodes to relay the data. The latency is highly correlated to the latency of
the probabilistic broadcast mechanism. In traditional WSN, the data dissemination latency by using
probabilistic broadcast is O(1/r) [26]. However, in LDC-WSN, the nodes would sleep or wake up
periodically. A relay node must wait for the wakeup of its neighbors, and, after that, it can perform
the transmission. Moreover, due to the unreliability of communication links, a relay node has to wait
and retransmit a piece of data in the following working periods if failures happen in the transmission.
Since the length of a working period is T, the latency of each transmission is O(T). As a result, the
whole latency of data dissemination is O(T/r).

4.4.4. Decoding Performance in a Small-Scale Network

According to Theorem 1, the sufficient condition that all nodes in the network can receive all
of the data is that the scale of the network should be large enough, i.e., n is large enough. On the
contrary, we can conclude that the probabilistic broadcast cannot guarantee that all nodes receive the
data in small-scale networks. However, we can show that our mechanism is still feasible in small-scale
networks as follows.

Theorem 3. In a small-scale LDC-WSN (i.e., n is not large enough), if each node uses our mechanism to
complete the dissemination and storage of k source data, a mobile sink can recover all the source data with
probability 1 − δ after it visits Ω(k) nodes.

Proof. In a small-scale LDC-WSN, some nodes only receive parts of the source data after the data
dissemination. Therefore, the encoded data’s actual encoded degrees in these nodes are not equal
to the theoretical encoded degrees computed by Robust Soliton distribution. Next, we first analyze
the distribution of actual encoded degrees for all of the nodes in the network, and then deduce the
decoding performance of our mechanism. �

Assume A and B are two random variables, and they represent the actual encoded degrees and
theoretical encoded degrees of nodes, respectively. p’ is the probability that a node receives an arbitrary
data packet. Since some nodes may not receive some packets, p’ < 1. The probability that a node vi

achieves an encoded degree of di’ is:

Pr(A = d′i|B = di) =

(
k
d′i

)
p′d
′
i
(
1− p′

)k−d′i . (12)

Therefore, the actual encoded degree is:

Pr
(

A = d′i
)
= ∑k

di=1 Pr(B = di)Pr(A = d′i
∣∣∣B = di

)

= ∑k
di=1 Ω(di)

(
k
d′i

)
p′d
′
i
(
1− p′

)k−d′i . (13)

We use Ψ(j) = Pr
(

A = d′i
)

to represent the distribution of actual encoded degrees. Then, we set
a variable Cij to represent whether data xj is received by a node vi or not, i.e., Cij = 1 means that xj is
received by vi, and Cij = 0 means that it is not received. For each node vi, we have:
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Pr
(
Cij = 1

)
= ∑k

di=1 Pr(B = di)Pr(Cij = 1|B = di),

= ∑k
di=1 Ψ(di)di/k =

∑k
di=1 Ψ(di)di

k
= E′(di)/k, (14)

where E′(di) is the expected encoded degree according to Ψ(j) distribution. Since some nodes may not
receive some data, we have E′(di) ≤ EΩ(di), where EΩ(di) is the expected encoded degree according

to Robust Soliton distribution. Since EΩ(di) ≤ ∑k+1
i=2

1
i−1 + ∑

k
R−1
i=1

R
k + ln

(
R
δ

)
[25], E′(di) ≤ ∑k+1

i=2
1

i−1 +

∑
k
R−1
i=1

R
k + ln

(
R
δ

)
. Combined with Formula (14), we have:

Pr
(
Cij = 1

)
≤
(

∑k+1
i=2

1
i− 1

+ ∑
k
R−1
i=1

R
k
+ ln

(
R
δ

))
/k. (15)

We set another variable Dj to represent whether a source data xj can be recovered after the mobile
sink vising m nodes, i.e., Dj = 1 means yes, and Dj = 0 means no. If xj cannot be recovered, it means
that all of the m node does not receive the data before. The probability of this situation is:

Pr
(

Dj = 0
)
= ∏m

i=1 Pr
(
Cij = 0

)
,

= ∏m
i=1(1− Pr

(
Cij = 1

))
,

≥

1−
∑k+1

i=2
1

i−1 + ∑
k
R−1
i=1

R
k + ln

(
R
δ

)
k


m

. (16)

We set F to be the event that k source data can be recovered after the mobile sink visiting m nodes,
and we have:

Pr(F) = ∏k
j=1

(
1− Pr

(
Dj = 0

))
,

≤ (

1−

1−
∑k+1

i=2
1

i−1 + ∑
k
R−1
i=1

R
k + ln

(
R
δ

)
k


m)

k

. (17)

If we need all of the source data to be recovered with probability 1 − δ, there are:

1− δ < Pr(F) ≤ (

1−

1−
∑k+1

i=2
1

i−1 + ∑
k
R−1
i=1

R
k + ln

(
R
δ

)
k


m)

k

,

⇒ ln(1− δ) ≤ k ln (

1−

1−
∑k+1

i=2
1

i−1 + ∑
k
R−1
i=1

R
k + ln

(
R
δ

)
k


m). (18)

If θ < 1, we have ln(1 − θ)=−∑∞
n=1

θn

n ≈ −ciθ, where ci is a constant. Therefore,

− ciδ ≤ −kc2

1−
∑k+1

i=2
1

i−1 + ∑
k
R−1
i=1

R
k + ln

(
R
δ

)
k


m

,
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⇒

1−
∑k+1

i=2
1

i−1 + ∑
k
R−1
i=1

R
k + ln

(
R
δ

)
k


m

≥ c1δ

c2k
,

⇒ m ln

1−
∑k+1

i=2
1

i−1 + ∑
k
R−1
i=1

R
k + ln

(
R
δ

)
k

 ≥ ln
c1δ

c2k
,

⇒ m ≥
ln c1δ

c2k

ln

(
1− ∑k+1

i=2
1

i−1+∑
k
R−1
i=1

R
k +ln( R

δ )
k

) ≈ c3k

∑k+1
i=2

1
i−1 + ∑

k
R−1
i=1

R
k + ln

(
R
δ

) ≈ c4k. (19)

As a result, m = Ω(k).

5. Simulations

We developed a simulation platform by using Matlab 7 to test the performances of our mechanism
and existing mechanisms. In our simulations, the field of the network is set to be 100 m × 100 m.
n nodes are randomly distributed in the field. The communication radius of the nodes is r = 25.
In a round, the working time of the network is divided into periods, and each working period T
contains m = 100 time units. Each node only wakes up at one time unit that is randomly chosen by
it, and it would sleep in the other time units, except that it needs to send packets to its neighbors.
The communication links among the nodes are unreliable [27,28]. The communication successful
ratio of each link is selected among the section (0,1) randomly. We mainly simulate the process of
data dissemination and storage in the second phase of a data collection round, since this process is
the main operation of data preservation. Assuming that there are k = 0.1n source nodes, they will
disseminate their data to the network for preservation. The size of data packet is 1000 bits. The unit
energy consumption of sending 1-bit data is Et = 100 nJ/bit, and the unit energy consumption of
receiving 1-bit data is Er = 50 nJ/bit [29]. Since the network works in rounds, we mainly test the
performances in a round.

Typical data preservation mechanisms such as EDFC, DDSLT, P-STCNC and DEC-EaF are
selected to compare with ours. We will compare the performances of successful decoding probability
and latency.

Definition 1. Successful decoding probability means that the probability that all of the k source data
can be recovered from the collected encoded data.

Definition 2. Decoding ratio is the ratio that measures the amount of collected encoded data relative
to k.

Definition 3. Latency is defined as the number of working periods when the process of data
preservation completes.

5.1. Comparison of Decoding Performance

We will test the decoding performances of the mechanisms in two networks with n = 100 and
n = 500, respectively. The simulation results are shown in Figure 1.

In Figure 1, we can see that FDP, EDFC and DDSLT achieve almost the same successful decoding
probability. This is because all three of the mechanisms use LT codes to preserve the data, and they can
guarantee that all of the source data are received by all nodes for encoding. Moreover, we can see that
the three mechanisms can achieve a successful decoding probability that nears 1 when the decoding
ratio is around 2.8 in the network with n = 100 nodes and k = 10 source data, as shown in Figure 1a.
Moreover, the three mechanisms can achieve a successful decoding probability that nears 1 when the
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decoding ratio is around 1.8 in the network with n = 500 nodes and k = 50 source data, as shown in
Figure 1b. This is because all of the source data can be recovered by using k + ε encoded data in LT
codes. As a result, although the numbers of nodes and source nodes increase largely, all of the source
data can be recovered by only using a few more encoded data.
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Figure 1. Comparison of decoding performance.

On the other hand, the three mechanisms achieve higher successful decoding probability than
P-STCNC and DEC-EaF. This is because they are optimized to adapt to the sleeping feature of nodes in
LDC-WSN and can disseminate all the source nodes to other nodes in the network for effective storage.

5.2. Comparison of Energy Consumption and Latency

We will test the performances of energy consumption and latency in the networks with n = 100,
200, 300, 400 and 500, respectively. The simulation results are shown in Figure 2.
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In Figure 2, we can see that FDP achieves much lower energy consumption and latency, compared
with the other four mechanisms. In Figure 2a, FDP’s energy consumption is only 0.03%, 0.01%,
0.07% and 0.04% of the energy consumptions of EDFC, DDSLT, P-STCNC and DEC-EaF, respectively.
Therefore, FDP has much better energy saving performance. In Figure 2b, FDP’s latency is only
0.04%, 0.02%, 0.05% and 0.08% of the latencies of EDFC, DDSLT, P-STCNC and DEC-EaF, respectively.
Therefore, FDP has much better latency performance. The reason why FDP is much better than the
four other mechanisms is that it adopts a new probabilistic broadcast to disseminate the data, which is
much faster and needs much fewer relay nodes than that of the four other mechanisms.

6. Conclusions

In this paper, we research the problem of how to design a fast and energy-efficient data
preservation mechanism for LDC-WSN. In order to prevent the data loss caused by node destruction
in harsh environments, the source nodes would disseminate their data to other nodes in the network
for preservation as quickly as possible. However, the nodes would sleep for a long time in LDC-WSN,
which produces large latency. Moreover, the nodes only have limited memory, so they cannot store all
the data. In order to solve these problems, we proposed a probabilistic broadcast and LT codes based
data dissemination and storage mechanism. The mechanism is totally distributed, i.e., it does not need
the support of global information. Moreover, it can disseminate all the data to the whole network for
encoding and storing with low latency. After the data preservation, a mobile sink can enter the network
from anywhere and at any time. It can recover all the source data after visiting a few nodes that are still
survived. Theoretical analyses and simulations results show that our mechanism has a high successful
decoding ratio, and has much lower energy consumption and latency than existing works.

In the future, we plan to consider a node’s mobility in the networks. The mobility would seriously
affect the connectivity of the networks and bring new challenges for effectively disseminating data
with low latency. Moreover, data update should be considered in the process of data preservation,
which allows new data to be disseminated and stored in time.
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