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Abstract: The acoustic performance of the ducted Helmholtz resonator (HR) system is analyzed
theoretically and numerically. The periodic HR array could provide a wider noise attenuation band
due to the coupling of the Bragg reflection and the HR’s resonance. However, the transmission loss
achieved by a periodic HR array is mainly dependent on the number of HRs, which restricted by
the available space in the longitudinal direction of the duct. The full distance along the longitudinal
direction of the duct for HR’s installation is sometimes unavailable in practical applications.
Only several pieces of the duct may be available for the installation. It is therefore that this
paper concentrates on the acoustic performance of a HR array consisting of several periodic parts.
The transfer matrix method and the Bragg theory are used to investigate wave propagation in the
duct. The theoretical prediction results show good agreement with the Finite Element Method (FEM)
simulation results. The present study provides a practical way in noise control application of
ventilation ductwork system by utilizing the advantage of periodicity with the limitation of available
completed installation length for HRs.
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1. Introduction

In modern buildings, the ventilation ductwork system plays a significant role in maintaining
good indoor environment such as air quality, air temperature and air humidity [1,2]. However, the
accompanied duct-borne noise generated by in-ducted dampers, sensors, duct corners, and other
in-ducted elements can be a disturbance to humans [3–5]. To reduce the duct-borne noise in the
ventilation ductwork system is therefore an important matter of attention. The Helmholtz resonator
(HR) is widely and commonly used as an effective silencer in air duct noise control applications
to reduce low-frequency noise at its resonance frequency with narrow attenuation band. It is easy
to design a HR with a desired resonance frequency due to the fact its resonance frequency is only
determined by the physical geometries of the cavity and the neck [6,7]. The classical approach
approximates the HR as an equivalent spring-mass system with an end-correction length to take the
spatial distribution effects into account. The wave propagation approach in both the duct and the
HR has been investigated from a one-dimensional approach in preliminary to a multidimensional
approach to account for the effect of nonplanar waves in the cavity and neck excited at the discontinuity
area (the neck-cavity interface) [8,9].

Since the narrow-band behavior of HR is not practical for use in engineering applications, it is
therefore that a broader noise attenuation band performance of the HR has attracted the attention
of many researchers and engineers. A lot of efforts have been made in this area and could be
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found in numerous pieces of literature. Bradley [10,11] examined the propagation of time harmonic
acoustic Bloch waves in periodic waveguides theoretically and experimentally. Seo and Kim [12]
aimed to broaden the narrow band characteristics by combining many resonators and optimized
the arrangement of resonators. Wang and Mak [13] investigated the wave propagation in a duct
mounted with an array of identical resonators and presented theoretical methods of noise attenuation
bandwidth prediction. Cai and Mak [14] proposed a noise control zone comprising the attenuation
bandwidth or peak amplitude of a periodically ducted HR system. Their results indicated that the
broader the noise attenuation band, the lower the peak attenuation amplitude. Cai et al. [15] suggested
a modified ducted HR system by adding HRs on the available space in the transverse direction of the
duct to improve the noise attenuation performance and fully utilizing an available space. Seo et al. [16]
developed the prediction of the transmission loss of a silencer using resonator arrays at high sound
pressure level. Richoux [17] addressed the propagation of high amplitude acoustic pules through a
one-dimensional lattice of HR mounted on the waveguide and developed a new numerical method to
consider the nonlinear wave propagation and the different mechanisms of dissipation. Langley [18]
derived a closed-form expression for the wave transmission through disordered periodic waveguides
of either length disorder or disorder in the inter-junction properties.

The periodic structure could provide a much broader noise attenuation band due to the coupling
of the Bragg reflection and the resonance of HR. The number of HRs and the periodic distance are
significant parameters for the achieved transmission loss. It should be noted that the noise attenuation
capacity of every single HR in the system remains unchanged. It indicates that the number of HRs
determines the noise attenuation performance of the whole system. However, a complete distance
along the longitudinal direction of the duct for HR’s installation is sometimes unavailable in practical
applications. Only several pieces of the duct may be available for the installation. The present work
therefore concentrates on the acoustic performance of ducted HR system consist of several periodic
parts. The Bragg theory and the transfer matrix method are used to investigate wave propagation in
the duct. The acoustic performance of a periodic HR array and a HR array consist of several periodic
parts are analyzed theoretically and numerically. The theoretical prediction results are verified by the
Finite Element Method (FEM) simulation and show a good agreement with the FEM simulation results.
The present study provides a practical way in noise control application of ventilation ductwork system
by utilizing the advantage of periodicity and considering the unavailable completed duct length for
HR’s installation.

2. Theoretical Analysis of a Periodic Helmholtz Resonator Array

2.1. A Single Helmholtz Resonator

The sound fields inside an HR are clearly multidimensional due to the discontinuities at the
neck-cavity interface. The multidimensional modelling approach for a HR includes the effect of
nonplanar waves excited at the discontinuity area. The classical approach approximates the HR as
an equivalent spring-mass system with end-correction length to take the nonplanar wave effects into
account. In view of the inherent narrow-band behavior of the HR, the multidimensional approach
provides a more accurate HR design than the classical approach [19]. However, the main purpose here
is to investigate the acoustic performance of the ducted HR system. It is therefore that the classical
approach with end-correction length according to Ingard [6] is adopted in this study and is given as:

Zr = j(ω
ρ0l′n
Sn
− 1

ω

ρ0c0
2

Vc
) (1)

where Zr is the acoustic impedance of the HR, ρ0 is air density, c0 is the speed of sound in the air,
l′n and Sn are the neck’s effective length and area respectively, Vc is the cavity volume, ω is the
circular frequency.
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A single side-branch HR is illustrated in Figure 1. Once the resonator impedance has been
obtained, the transmission loss of the single side-branch HR can be determined by the four-pole
parameter method [20,21] as:

TL = 20 log10(
1
2

∣∣∣∣2 + ρ0c0

Sd

1
Zr

∣∣∣∣) (2)

where Sd is the cross-section area of the duct.
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where k is the number of waves, ( 1)nx n d   represents the local coordinates, d is the periodic 
distance, and nI  and nR  represent respective complex wave amplitudes. Considering the 
continuity condition of sound pressure and volume velocity at the point x = nd yields:  
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Figure 1. A single side-branch Helmholtz resonator.

2.2. Theoretical Analysis of a Periodic Helmholtz Resonator Array

A periodic HR array installed on the duct is shown in Figure 2. A periodic unit is composed of a
connection tube and a HR. The diameter of the HR’s neck is assumed to be negligible compared with
the length of the connection tube in a periodic unit. It is therefore that the length of the connection
tube is considered as the periodic distance. As low frequency range is the main concern in ventilation
ductwork noise control, the frequency range considered in this paper is well below the cutoff frequency
of the duct. Only planar wave is assumed to be exist in the duct propagation. The transfer matrix
method is used to investigate wave propagation in the connection tube. The characteristics of sound
in the nth unit could be described as sound pressure pn(x) and particle velocity un(x). Assuming a
time-harmonic disturbance in the form of ejωt, both the sound pressure and the particle velocity are a
combination of positive-x and negative-x directions and could be expressed as:

pn(x) = Ine−jk(x−xn−ωt) + Rnejk(x−xn+ωt) (3)

un(x) =
In

ρ0c0
e−jk(x−xn−ωt) − Rn

ρ0c0
ejk(x−xn+ωt) (4)

where k is the number of waves, xn = (n − 1)d represents the local coordinates, d is the periodic
distance, and In and Rn represent respective complex wave amplitudes. Considering the continuity
condition of sound pressure and volume velocity at the point x = nd yields:[

In+1

Rn+1

]
=

[
exp(−jkd) 0

0 exp(jkd)

][
(1− ρ0c0/2SdZr) −ρ0c0/2SdZr

ρ0c0/2SdZr (1 + ρ0c0/2SdZr)

][
In

Rn

]
= T

[
In

Rn

]
(5)

T is the transfer matrix. It can be seen from Equation (5) that the characteristic of sound in
arbitrary unit could be obtained once the initial sound pressure is given. Owing to the periodicity,
Equation (5) could be rewritten in the form of Bloch wave theory [10] as:[

In+1

Rn+1

]
= exp(−jqd)

[
In

Rn

]
= T

[
In

Rn

]
(6)

where q is the Bloch wave number and is allowed to be a complex value. According to Equation (6),
the analysis of the periodic ducted HR system translates to an eigenvalue and its corresponding



Sensors 2017, 17, 1029 4 of 12

eigenvector issue. In general, the eigenvalue λ = exp(−jqd) describes the propagation property of
a characteristic wave type, and its corresponding eigenvector defines the characteristic wave type.
There are two solutions for λ: λ1 and λ2 with corresponding eigenvectors [vI1, vR1]

T and [vI2, vR2]
T

respectively. Note that the determination of transfer matrix T is unit for a passive system [22]. The
two relation of two solutions could be given as: λ1λ2 = 1. Assuming λ1 describes the positive-x
propagation, it means that |λ1| < 1, |λ2| > 1. Then Equation (6) could be rewritten in another form as:[

In+1

Rn+1

]
= T

[
In

Rn

]
= T2

[
In−1

Rn−1

]
= ... = Tn

[
I1

R1

]
= A0λn

1

[
vI1

vR1

]
+ B0λn

2

[
vI2

vR2

]
(7)
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The initial condition gives:  
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The complex constants A0 and B0 could be achieved according to the boundary conditions.
Assuming termination of the duct is anechoic, the reflection coefficient α = 0 gives:

Rn+1ejk(x−xn+1+ωt)

In+1e−jk(x−xn+1−ωt)
=

A0λ1
nvR1ejkLend + B0λ1

nvR2ejkLend

A0λ1
nvI1e−jkLend + B0λ1

nvI2e−jkLend
= α = 0 (8)

The initial condition gives:

p0 = I0e−jk(x+d) + R0ejk(x+d)
∣∣∣
x=−Lstart

= (A0λ1
−1vI1 + B0λ2

−1vI2)e−jk(d−Lstart) + (A0λ1
−1vR1 + B0λ2

−1vR2)ejk(d−Lstart)
(9)

Therefore, the average transmission of the system could be expressed as:

TL =
20

n + 1
log10

∣∣∣∣ I0

In+1

∣∣∣∣ = 20
n + 1

log10

∣∣∣∣∣A0λ1
−1vI1 + B0λ2

−1vI2

A0λ1
nvI1 + B0λ2

nvI2

∣∣∣∣∣ (10)

When the duct ends with an anechoic termination, no negative-x propagation wave exists in the
last part of the duct. This indicates that B0 = 0 is required in this situation. The average transmission
loss of the system is then simplified as TL = −20 log10|λ1|. Equation (5) indicates that λ1 is a function
of the frequency, periodic distance and acoustic impedance of the HR.

The introduction of a periodic structure may help to achieve a wider noise attenuation band at the
resonance frequency of the HR. The noise attenuation band of a periodic structure is induced physically
by two mechanisms: the resonance of HR and the Bragg reflection. When the Bragg reflection frequency
is intended to coincide with the designed resonance frequency, a broader noise attenuation band could
be obtained. It is therefore that the periodic distance is chosen as d = m× λ0/2 (m is integer) to meet
the requirement of coupling. In terms of practical application, the periodic distance is often chosen
as d = λ0/2 for the sake of the coupling of HR’s resonance and the first Bragg reflection to achieve a
relatively broader noise attenuation band [23].
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3. Theoretical Analysis of a Helmholtz Resonator Array Consist of Several Periodic Parts

The periodic structure could provide a much broader noise attenuation band due to the coupling
of the Bragg reflection and the HRs’ resonance. However, the noise attenuation capacity of every
single HR in the system remains unchanged [14]. The transmission loss of the whole system is fairly
dependent on the number of HRs. Besides, the complete distance along the longitudinal direction of
the duct for HRs’ installation is sometimes unavailable in practical applications. Only several pieces of
the duct are available for the installation. It is therefore that the ducted HR system consist of several
periodic parts should be taken into account in practical applications. The present study concentrates
on the acoustics performance of the ducted HR system consisting of two periodic parts, as illustrated in
Figure 3. The periodic distance of the two periodic part remains the same. The length of the connection
tube between two periodic parts is Ld. The number of HRs installed in each periodic part is depended
on the available length of the duct. As discussed above, the characteristics of sound wave propagation
in these two periodic part could be described as the transfer matrix given in Equation (5). Once the
periodic distance in each periodic part is chosen to be the same. It indicates that the eigenvalues λ1 and
λ2 with corresponding eigenvectors [vI1, vR1]

T and [vI2, vR2]
T are also the same in these two periodic

parts. It is therefore that the characteristics of sound wave propagation in these two periodic parts
could be expressed as:[

In

Rn

]
= Tn−1

[
I1

R1

]
= A0λn−1

1

[
vI1

vR1

]
+ B0λn−1

2

[
vI2

vR2

]
(11)

[
I′m
R′m

]
= Tm−1

[
I′1
R′1

]
= A′0λm−1

1

[
vI1

vR1

]
+ B′0λm−1

2

[
vI2

vR2

]
(12)

where n and m are the number of HRs installed in periodic parts respectively, A′0 and B′0 are also the
complex constant related to the boundary conditions.
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Only planar waves are assumed to exist in the duct propagation in the present study. The wave
propagation in the connection tube of the two periodic parts can be given as:[

I′1
R′1

]
=

[
(1− ρ0c0

2SdZr
) exp(−jkLd)

ρ0c0
2SdZr

exp(−jkLd)
ρ0c0

2SdZr
exp(jkLd) (1 + ρ0c0

2SdZr
) exp(jkLd)

][
In

Rn

]
=

[
T11 T12

T21 T11

][
In

Rn

]
= Td

[
In

Rn

]
(13)

Td is the transfer matrix of the connection tube between two periodic parts. Combining
Equations (11)–(13), the relation of complex constants of first periodic part and second periodic
part could be given as:{

A′0vI1 + B′0vI2 = T11(A0λ1
n−1vI1 + B0λ2

n−1vI2) + T12(A0λ1
n−1vR1 + B0λ2

n−1vR2)

A′0vR1 + B′0vR2 = T21(A0λ1
n−1vI1 + B0λ2

n−1vI2) + T22(A0λ1
n−1vR1 + B0λ2

n−1vR2)
(14)
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Similar to the periodically ducted HR system, the initial condition in this situation gives the same
equation as Equation (9). According to Equation (8), the end condition gives:

R′mejk(x−xm+ωt)

I′me−jk(x−xm−ωt)
=

A′0λ1
m−1vR1ejkLend + B′0λ1

m−1vR2ejkLend

A′0λ1
m−1vI1e−jkLend + B′0λ1

m−1vI2e−jkLend
= α (15)

where xm = (n− 1)d + Ld represents the local coordinates in the second periodic part.
Therefore, the average transmission of the system could be expressed as:

TL =
20

n + m
log10

∣∣∣∣ I0

I′m

∣∣∣∣ = 20
m + n

log10

∣∣∣∣∣ A0λ1
−1vI1 + B0λ2

−1vI2

A′0λ1
m−1vI1 + B′0λ1

m−1vI2

∣∣∣∣∣ (16)

The complex constants A0, B0, A′0 and B′0 could be derived by combining the boundary conditions
(Equations (9) and (15)) and their interrelationship (Equation (14)). When the duct ends with an
anechoic termination (α = 0), B′0 = 0 is similarly compulsory.

It should be noted that the above theoretical analysis approach could also be applied to a ducted
HR system consisting of several periodic parts (n parts). It indicates that the total number of complex
constants is 2n. According to the initial condition and the end condition, Equations (9) and (15) could
be derived, respectively. The transfer matrix of connection tube between each periodic parts could be
obtained according to Equation (13). It means that the number of equations described the relation of
complex constants in each periodic part equals 2(n − 1). Then the numbers of complex constants to be
solved and independent equations are both 2n. The complex constants in the first and last periodic
part could be solved by a set of equations. Therefore, the average transmission of the system could be
achieved by Equation (16).

4. Results and Discussion

The periodic HR array installed on the ducted and the ducted HR system consist of two periodic
parts are illustrated in Figures 2 and 3 respectively. The geometries of the HR used in this study are:
neck area Sn = 4π cm2, ln = 2.5 cm2, and cavity volume Vc = 101.25π cm3. The cross-section area
of the main duct is Sd = 36 cm2. The anechoic termination is applied at the end of the duct in both
systems to avoid reflected waves from the termination. An oscillating sound pressure at a magnitude of
P0 = 1 is applied at the beginning of the duct as the initial boundary condition. The three-dimensional
FEM simulation is used to validate the theoretical predictions. A detailed description of the FEM for
time-harmonic acoustics in the present study, which are governed by the Helmholtz equation, can be
found in numerous references and could be considered as a reliable validation method [24]. All models
in this study are divided into more than 150,000 tetrahedral elements by mesh. The mesh divides each
neck and cavity into more 3000 and 6000 tetrahedral elements respectively. With the purpose of the
accuracy, a fine mesh spacing of less than 6 cm is adopted for the models. The maximum element with
a side length of around 5.8 cm could be found in the duct domain; the minimum element is observed
in the neck-cavity interface domain with a side length of around 2.1 mm.

4.1. Validation of the Theoretical Predicitons of a Periodic Helmholtz Resonator Array

The average transmission loss of a periodic HR array is expressed as TL = −20 log10|λ1|. λ1 is a
function of the frequency, periodic distance and acoustic impedance of the HR. For a certain HR used in
this paper, it means that acoustic impedance of the HR is determined by Equation (1). Then, the shape
of the TL is only dependent on the periodic distance in the frequency domain. The number of HRs
installed on the duct is n = 10 here. When the periodic HR array chooses d = 0.42λ0/2 or d = 0.68λ0/2
as the periodic distance, it can be seen from Figure 4 that the HRs’ resonance and the Bragg reflection
have separated effects on the noise attenuation band. A broader noise attenuation band will not be
achieved without the coupling effects. The comparison of the analytical predictions and the FEM
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simulation results are also illustrated in Figure 4. The solid lines represent the analytical predictions
and the dotted crosses represent the FEM simulation results. It can be seen that the predicted results
show a good agreement with the FEM simulation results.
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Figure 4. The noise attenuation band of a periodic HR array due to Bragg reflection and HR’s
resonance separately (lines represents the theoretical predictions, and dotted crossed represent the
FEM simulation results).

In order to obtain a broader noise attenuation band, the Bragg reflection is intended to coincide
with the HR’s resonance frequency. It is therefore that the periodic distance is chosen as d = m× λ0/2
(m is an integer) to meet the requirement of coupling. Figure 5 exhibits a broader noise attenuation
band due to the coupling of the Bragg reflection and HR’s resonance. It can be seen in Figure 5 that
with the increasing in periodic distance (integer m increases from 1 to 6), the width of noise attenuation
band decreased. For the sake of a broader noise attenuation band, the periodic distance is often selected
as d = λ0/2 to meet the requirement of the coupling of HR’s resonance and the first Bragg reflection in
practical applications. Figure 6 compares the theoretical predictions with the FEM simulation results
in respect of different periodic distances (or different integer m), and the predicted results fit well with
the FEM simulations results.
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4.2. Validation of the Theoretical Predicitons of a Helmholtz Resonator Array Consist of Serveral Periodic Parts

By taking the advantage of the coupling of the Bragg reflection and the HR’s resonance, the
periodic structure could provide a broader noise attenuation band. However, the complete distance
along the longitudinal direction of the duct is sometimes unavailable for HR installation in practical
applications. Only several pieces of the duct may be available for the installation. A HR array
consisting of two periodic parts is sketched in Figure 4. The periodic distance of the two periodic
parts is both adopted as d = λ0/2 to meet the coupling requirement of the HR’s resonance and the
first Bragg reflection for the sake of a broader noise attenuation band. The total number of HRs used
in the HR array consist of two parts is 10 (n + m = 10). Two arrangement cases are investigated in
this study: n = m = 5 and n = 3, m = 7. Figure 7a compares TL of case (n = m = 5) with different Ld
(Ld = 3× 0.5λ0, 3.3× 0.5λ0) to periodic ducted HR system (ten HRs and Ld = 0.5λ0). When the Ld
is chosen as integral multiple of half-wavelength of HR’s resonance frequency (Ld = 3× 0.5λ0), it
has less effects on the noise attenuation band than Ld = 3.3× 0.5λ0. The reason is that the Bragg
inflection coincides with the HR’s resonance by considering the wave propagation from the last HR
in the first periodic part to the first HR in the second periodic part when Ld = 3× 0.5λ0 rather than
Ld = 3.3× 0.5λ0. Compared with the periodic HR array, the HR array consisting of two periodic parts
with a connection tube length Ld = 3× 0.5λ0 also has acceptable noise attenuation band bandwidth,
especially at the designed resonance frequency. However, with the increasing value of Ld, the Bragg
reflection effects results in a more fluctuation noise attenuation band instead of the a dome-like band, as
shown in Figure 7b. A good agreement between the theoretical predicted TL and the FEM simulation
results can be seen in Figure 8.



Sensors 2017, 17, 1029 9 of 12
Sensors 2017, 17, 1029 9 of 12 

 

 
Figure 7. The average transmission loss of the HR array with respect to different connection tube 
lengths Ld between the two periodic parts: (a) the periodic one versus two arrays with 

03 0.5dL    and 03.3 0.5dL    respectively; (b) three arrays with 03  0.5dL   ,

04 0.5dL   , and 010 0.5dL    respectively. 

 

 
Figure 8. Comparison of theoretical predictions and the FEM simulation with respect to different 
connection tube lengths Ld between the two periodic parts (solid lines represent the theoretical 
predictions, and dashed lines represent the FEM simulation results): (a) n = m = 5, 03 0.5dL   ; (b) 
n = m = 5, 03.3 0.5dL   ; (c) n = m = 5, 04 0.5dL   ; (d) n = m = 5, 010 0.5dL   . 

The comparison of two arrangement cases (n = m = 5 and n = 3, m = 7) with identical number of 
HRs and connection tube length Ld is illustrated in Figure 9. The average transmission loss of the two 
arrangement cases with identical Ld is nearly the same. This means that the arrangement of HRs in 
periodic parts has no effect on the average transmission loss. The connection tube length and the 
periodic distance are the significant parameters in ventilation ductwork noise control. The results 
provide a useful way in noise control application by utilizing the advantage and considering the 
insufficient duct length for a periodic HR array. The theoretical predictions fit well with the FEM 
simulation results, as shown in Figure 10. 

Figure 7. The average transmission loss of the HR array with respect to different connection
tube lengths Ld between the two periodic parts: (a) the periodic one versus two arrays with
Ld = 3× 0.5λ0 and Ld = 3.3× 0.5λ0 respectively; (b) three arrays with Ld = 3× 0.5λ0, Ld = 4× 0.5λ0,
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Figure 8. Comparison of theoretical predictions and the FEM simulation with respect to different
connection tube lengths Ld between the two periodic parts (solid lines represent the theoretical
predictions, and dashed lines represent the FEM simulation results): (a) n = m = 5, Ld = 3× 0.5λ0;
(b) n = m = 5, Ld = 3.3× 0.5λ0; (c) n = m = 5, Ld = 4× 0.5λ0; (d) n = m = 5, Ld = 10× 0.5λ0.

The comparison of two arrangement cases (n = m = 5 and n = 3, m = 7) with identical number
of HRs and connection tube length Ld is illustrated in Figure 9. The average transmission loss of the
two arrangement cases with identical Ld is nearly the same. This means that the arrangement of HRs
in periodic parts has no effect on the average transmission loss. The connection tube length and the
periodic distance are the significant parameters in ventilation ductwork noise control. The results
provide a useful way in noise control application by utilizing the advantage and considering the
insufficient duct length for a periodic HR array. The theoretical predictions fit well with the FEM
simulation results, as shown in Figure 10.
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Figure 9. Comparison of two arrangement cases (n = m = 5 and n = 3, m = 7) with identical number
of HRs and connection tube length Ld: (a) two different arrangements with same Ld = 3× 0.5λ0;
(b) two different arrangements with same Ld = 10× 0.5λ0; (c) two different arrangements with same
Ld = 3.3× 0.5λ0.
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Figure 10. The average transmission loss of the HR array consist of two periodic parts (n = 3, m = 7) with
different connection tube length Ld (solid lines represent the theoretical predictions, and dashed lines
represent the FEM simulation results): (a) Ld = 3× 0.5λ0; (b) Ld = 3.3× 0.5λ0; (c) Ld = 10× 0.5λ0.
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5. Conclusions

A periodic HR array could provide a broader noise attenuation band due to the coupling of the
Bragg reflection and the HRs’ resonance. However, the transmission loss achieved by a periodic ducted
HR system is mainly depended on the number of HRs. The number of HRs is restricted by the available
space in the longitudinal direction of the duct. The full distance along the longitudinal direction of the
duct is sometimes unavailable for HR installation in practical applications. Only several pieces of the
duct may be available for the installation. The acoustic performance of a periodic HR array and a HR
array consist of several periodic parts are analyzed theoretically and numerically. For a periodic HR
array, an appropriate periodic distance can broaden the noise attenuation band compared to a single
resonator due to the coupling of the Bragg reflection and the HRs’ resonance. For a HR array consist of
several periodic parts, the comparison of two arrangement cases with different connection tube lengths
Ld between the two periodic parts shows that the arrangement of HRs on periodic parts has no effect
on the average transmission loss. The average transmission loss is only related to the connection tube
length. When the Ld is chosen as integral multiple of half-wavelength of HR’s resonance frequency,
it has less effects on the noise attenuation band than the non-integral multiple of half-wavelength.
The reason is that the Bragg inflection coincides with the HRs’ resonance by considering the wave
propagation from the last HR in the first periodic part to the first HR in the second periodic part when
integral multiple is chosen rather than non-integral multiple. However, with the increasing of Ld, the
Bragg reflection effects results in a more fluctuation noise attenuation band instead of the a dome-like
noise attenuation band of a periodic HR array. The results indicate that the shorter the connection
tube length, the less effect on the transmission loss. The theoretical prediction results show a good
agreement with the FEM simulation results. The present study provides a useful method for noise
control application of ventilation ductwork systems by utilizing the advantage of the periodicity to
broaden the noise attenuation band and considering the insufficient duct length for a pure periodic HR
array. It has a potential application in actual noise control application with the limitation of available
completed duct length for HRs’ installation.
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