
sensors

Article

Multiple Two-Way Time Message Exchange (TTME)
Time Synchronization for Bridge Monitoring
Wireless Sensor Networks

Fanrong Shi 1,*, Xianguo Tuo 1,2,3,*, Simon X. Yang 3, Huailiang Li 1 and Rui Shi 4

1 Robot Technology Used for Special Environment Key Laboratory of Sichuan Province,
Southwest University of Science and Technology, Mianyang 621010, China; li-huai-liang@163.com

2 College of Chemistry and Environment, Sichuan University of Science and Engineering,
Zigong 643000, China

3 Advanced Robotics and Intelligent Systems (ARIS) Laboratory, School of Engineering, University of Guelph,
Guelph, ON N1G 2W1, Canada; syang@uoguelph.ca

4 State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University
of Technology, Chengdu 610059, China; shirui0601@126.com

* Correspondence: shifanrong1987@163.com (F.S.); tuoxg@cdut.edu.cn (X.T.); Tel.: +86-816-6089871 (X.T.)

Academic Editor: Vittorio M. N. Passaro
Received: 5 March 2017; Accepted: 27 April 2017; Published: 4 May 2017

Abstract: Wireless sensor networks (WSNs) have been widely used to collect valuable information in
Structural Health Monitoring (SHM) of bridges, using various sensors, such as temperature, vibration
and strain sensors. Since multiple sensors are distributed on the bridge, accurate time synchronization
is very important for multi-sensor data fusion and information processing. Based on shape of the
bridge, a spanning tree is employed to build linear topology WSNs and achieve time synchronization
in this paper. Two-way time message exchange (TTME) and maximum likelihood estimation (MLE)
are employed for clock offset estimation. Multiple TTMEs are proposed to obtain a subset of TTME
observations. The time out restriction and retry mechanism are employed to avoid the estimation
errors that are caused by continuous clock offset and software latencies. The simulation results show
that the proposed algorithm could avoid the estimation errors caused by clock drift and minimize the
estimation error due to the large random variable delay jitter. The proposed algorithm is an accurate
and low complexity time synchronization algorithm for bridge health monitoring.

Keywords: wireless sensor networks; bridge monitoring; time synchronization; time message
exchange; timeout constraint; maximum likelihood estimation

1. Introduction

Bridges are an important part of transportation systems, Structural Health Monitoring (SHM) of
bridges is indispensable and multiple sensors such as acceleration, displacement, temperature and
strain sensors [1–6] are employed to collect the real-time information about bridges. As described
in [1,5,6] synchronized sensing is necessary to ensure accuracy in SHM applications, so time
synchronization is a key technology in the wireless sensor networks (WSNs) used for SHM of bridges
and is important for collaborative tasks, intelligent sleeping and data consistency [5–8]. WSN nodes
use local hardware clock sources to set up their local times, which differ from each other. There are
two main reasons for these differences. The nodes are initialized at different moments so there is clock
offset among nodes. More than that, the clock sources have variable clock frequency offsets which are
due to the clock manufacturing techniques used and the changing environments. Hence in networks
there is clock skew and variable clock offsets. Time synchronization algorithms are proposed to correct
the local time information and force the time notions of different nodes to be consistent. It has been

Sensors 2017, 17, 1027; doi:10.3390/s17051027 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1027 2 of 18

used in many WSN applications, such as location [9–12], environmental monitoring [13–16], data
acquisition [17–19], delay measurement [20], power saving [21] and so on.

Accurate clock offset estimation is one of the key factors to improve the time synchronization.
One type of proposed time synchronization algorithms correct the clock offset between nodes [13,22,23].
These approaches provide for simple calculations and cost less to achieve, but because of the influence
of the ignored clock frequency offset, these time synchronization algorithms need re-synchronization
to maintain the precision. Some improved algorithms introduced joint skew-offset correction [9,22–31].
Additionally, these algorithms correct the relative clock speeds and reduce the clock skew, so the time
synchronization algorithms with joint skew-offset correction are better for synchronization over a long
time. Actually, almost all of the joint clock skew-offset correction time synchronization algorithms
use the existing clock offset estimations to calculate the relative clock speed and compensate the clock
skew. Obviously, accurate clock offset estimations are important for the clock skew estimate of time
synchronization algorithms.

The early time synchronization algorithms such as RBS [21] use a large number of beacon
broadcasts to synchronize a pair of receivers. The receivers record the arrival time of the beacon
signals and exchange it among each other, then the clock offset and clock skew can be calculated.
Absent MAC-layer timestamps, RBS provides a rough time synchronization. The improved CESP
algorithm [23] introduces the reference node MAC-layer time stamp into the beacons’ broadcasts. It uses
synchronization coefficient exchange instead of time information exchange and the communication
overhead is reduced. TPSN [24] is a time synchronization algorithm for sender to receiver and uses
rough time stamps, but its clock offset estimate error is nearly two times smaller than that of RBS.

FTSP [9] floods the reference time information to the networks and employs multiple MAC-layer
time stamps to improve the time stamp precision. The flooding packets, which load the send time
stamps of reference nodes, are broadcasted periodically. The receivers estimate the clock offset and
skew by exchanging their time stamps directly. PulseSyn [25] is a rapid-flooding time synchronization
algorithm that believes that all of the nodes should to broadcast the reference time information as
soon as possible. It aims to solve the problem of the amplified error caused by the delay before
a node broadcast gets its received reference time information. FCSA [26] verifies that there is a
smaller time synchronization error if the nodes have less clock frequency differences. It uses a clock
speed agreement algorithm to improve the slow-flooding time synchronization algorithm in FTSP.
There are many other algorithms which are complete distributed time synchronization algorithms.
GTSP [27] and EGSync [28] were proposed to minimize the skew of any two neighborhood nodes.
The consensus-based algorithms ATS [29], MTS [30] and CCS [31] are effective for dynamic topology
networks. These algorithms have slow convergence rates for accurate time synchronization. SHM of
bridges is a special application of WSNs, where the traditional synchronization methods may not
meet its needs and many time synchronization algorithms are proposed for the data gathering and
data fusion [7,8,32,33]. Xiao et al. [32] and Hu et al. [7] focused on the energy efficiency of time
synchronization, and improved the previous algorithms and proposed an energy balanced time
synchronization algorithm to lengthen the whole WSNs’ life. Xu et al. [8] proposed an asymmetrical
clock synchronization algorithm for bridge health monitoring WSNs to monitor real-time bridge
conditions. To improve the TPSN [24] for ensuring the synchronization accuracy without consuming
more power, Gong et al. [33] proposed a partial TPSN time offset synchronization scheme for bridge
health diagnosis WSNs.

The transmission delay results in a large error for clock offset estimation, especially for the
random variable delay portion. Specific time message exchange mechanisms are employed by time
synchronization algorithms to reduce these disadvantages. WSNs are a complete distributed system.
The hardware resources and computational power are limited. The clock frequency of a node could
not be measured directly. Its transmission delay is unknown and variable, so the time synchronization
algorithms always estimate the clock offset from time information transmissions [34,35]. One-way
broadcast time messages are employed for synchronizing receiver to receiver [25,29]. The reference

Sensors 2017, 17, 1027 3 of 18

nodes broadcast their time information packets periodically and the receivers use the time message to
correct their local times. This mechanism removes the variable delay from clock offset estimate at the
sender but a variable delay is introduced into the estimation directly at the receiver.

The two-way message exchange (TTME) clock offset estimator was first proposed in TPSN [24] for
wireless sensor network time synchronization. It uses pairs of transmissions that are named uplink and
downlink to make four time stamps. Then the time stamps are used to estimate and correct the clock
offset among nodes. Chaudhari et al. [36] and Wang et al. [37] employed an ACK mechanism TTME,
but not a dedicated time message packet. These protocols only use the uplink time stamp for clock
offset estimation. Jeske [38] proved that the MLE exists for TTME. The transmit delays were denoted
as fixed portions and variable portions as decomposed by Abdel-Ghaffar [39]. To calculate the clock
offset of MLE, it is assumed that there are a subset of TTME observations which have same fixed clock
offset. In employing the minimum observations of uplink and downlink the clock offset of MLE can be
calculated. Noh et al. [40] assumed that the probability distribution function of random variable delay
was either an exponentially distribution function or a Gaussian distribution function. They proved the
Cramer-Rao lower bounds (CRLBs) for the clock offset MLE under these different delay models.

However, a time synchronization scheme for WSNs in bridge health monitoring that has
remarkably low complexity and ease of implementation still needs to be developed. In this paper we
focus on MLE of two-way message exchange (TTME) clock offset estimation. For MLE of clock offset
estimate, a sufficiently large subset of TTME observations is a prerequisite. In addition, a same fixed
clock offset for the subset is beneficial for accurate clock offset estimation.

TTME like TPSN may not meet the MLE of clock offset estimation. To simplify the description,
the TTME similar to TPSN is named traditional TTME. The traditional TTME ignores the random
variable delay and introduces it into the clock offset estimation. Additionally, the clock offset due
to the clock drift is not considered. Since the assumption that nodes have fixed clock offset is not
always valid and the TTME in TPSN is an ideal clock offset estimate model, the main clock offset
estimate error for these algorithms are caused by random variable delay and clock drift. Especially
when there are large transmission delay jitters and large software blocking latencies, the estimate
errors will increase predictably.

Our work aims to meet these requirements. The multiple TTMEs in this paper provide an effective
clock offset MLE approach for time synchronization in WSNs which is a potential application for
SHM of bridges. The proposed algorithm demands less calculation and is easy to embed in the
WSN application. This paper takes an optimized TTME approach to achieve high precision time
synchronization for the data acquisition in bridge health monitoring WSNs. We have discussed the
details of the clock offset continuously increasing, then optimized the execution time and speed of the
TTME to meet the assumption in TPSN. The maximum likelihood estimation (MLE) is employed to
reduce the clock offset estimate errors due to the random variable delay. Then the multiple TTMEs
algorithm aims to provide as many TTME observations as possible for MLE. The multiple TTMEs
is different from the traditional TTME. It employs the timeout constraint to avoid the clock offset
estimation errors due to the uncertain communication links and response delays caused by the task
blocking latencies of software. Compared to TPSN, the proposed algorithm obtains more accurate
clock offset estimations and lower clock skews.

The rest of this paper is organized as follows: in Section 2, we introduce the system model.
In Section 3, we analyze the details of the continuously increasing clock offset, and derive the restraints
for the fixed clock offset TTME. The multiple TTMEs algorithm is proposed in Section 4. The clock
offset and clock skew estimate are described in Section 5. The simulation results are shown in Section 6
and finally, we present our conclusions in Section 7.

2. System Models

In this section, we introduce the system models that are used in our work. The bridge monitoring
WSN model is defined as a graph, G = (V, E). The subset of nodes is defined as V = {1, . . . , n}.

Sensors 2017, 17, 1027 4 of 18

The bidirectional communication link (edge) subset is defined as E ⊆ (V ×V). An arbitrary node i has
a neighborhood nodes subset Ni = {i, j} ∈ E and node i can only communicate with the nodes in Ni.
The distance between arbitrary nodes {i, j} ∈ V is defined as the number of edges on the shortest path
between the two nodes. The diameter is defined as the maximum distance of any two nodes in the graph G.

2.1. Time Synchronization for SHM of Bridges

Based on the shape of bridges, the topology of bridge monitoring WSNs can be designed as
a spanning tree [1], so the time synchronization algorithm employs the tree to maintain the time
synchronization. The MAC layer time-stamping technology is employed to make time stamps. Root is
the reference node and starts the TTME to force its child nodes to synchronize to itself firstly. Then the
synchronized nodes become reference nodes and start the new TTME to synchronize their child nodes
until the network has synchronized the end node along the spanning tree.

The architecture of time synchronization for SHM of bridges is shown in Figure 1. It assumes that
a spanning tree is created. The root of the tree is the reference node of the network, which employs GPS
as an external clock source. The routers are forwarding nodes for the time synchronization. The high
level nodes always employ their parent as reference node and synchronize to it. After the spanning tree
is created, the root initializes the time synchronization by an initialization broadcast. The router node,
which has received this broadcast, is synchronized to the root, and then sets itself up as a reference
for its own nodes. The router uses two steps to flood the time synchronization through the network:
(1) it requests a synchronization response from the reference node to estimate the clock offset and clock
skew; (2) it compensates the local clock source parameter, and then transforms itself into the reference
node of its son nodes and initializes the synchronization.

Sensors 2017, 17, 1027 4 of 18

௜ࣨ. The distance between arbitrary nodes {	݅, ݆} ∈ ܸ is defined as the number of edges on the shortest
path between the two nodes. The diameter is defined as the maximum distance of any two nodes in
the graph ܩ.

2.1. Time Synchronization for SHM of Bridges

Based on the shape of bridges, the topology of bridge monitoring WSNs can be designed as a
spanning tree [1], so the time synchronization algorithm employs the tree to maintain the time
synchronization. The MAC layer time-stamping technology is employed to make time stamps. Root
is the reference node and starts the TTME to force its child nodes to synchronize to itself firstly. Then
the synchronized nodes become reference nodes and start the new TTME to synchronize their child
nodes until the network has synchronized the end node along the spanning tree.

The architecture of time synchronization for SHM of bridges is shown in Figure 1. It assumes
that a spanning tree is created. The root of the tree is the reference node of the network, which
employs GPS as an external clock source. The routers are forwarding nodes for the time
synchronization. The high level nodes always employ their parent as reference node and synchronize
to it. After the spanning tree is created, the root initializes the time synchronization by an initialization
broadcast. The router node, which has received this broadcast, is synchronized to the root, and then
sets itself up as a reference for its own nodes. The router uses two steps to flood the time
synchronization through the network: (1) it requests a synchronization response from the reference
node to estimate the clock offset and clock skew; (2) it compensates the local clock source parameter,
and then transforms itself into the reference node of its son nodes and initializes the synchronization.

Root initialize sync

Step1: child synchronize to father Step 2: router initialize sync

Level 1 Level nLevel n

~~
1 1 1 1

222 2

Reference node (Root) Router node End node

Figure 1. The architecture of time synchronization for SHM of bridges.

2.2. Clock Model

The bridge monitoring WSN nodes are driven by hardware clock sources which usually are
crystal oscillators. The time notion is created by counting the hardware clock pulses. The clock speed
of the node ݅	is the increment of its time count in the specified time range, i.e., ℎ௜(߬). ܥ௜(ݐ) is the
time counting of node ݅ at time ݐ, and ܥ௜(ݐ) is defined as: ܥ௜(ݐ) = න ℎ௜(߬)݀௧

଴ ߬ (1)

If ݂ is the nominal frequency of hardware clock in node ݅, then the granularity of the time
counter is ߜ = 1 ݂⁄ . The time notion of the node ݅ can be defined as: ܮ௜(ݐ) = (ݐ)௜ܥߜ + ௜(0) is the logic time of node ݅ at time 0 and it isݔ .ݐ is the logic time of node ݅ at time (ݐ)௜ܮ ௜(0) (2)ݔ
the initial time of node ݅. If ݐ = 0 is the moment that the nodes synchronize to each other, then the
relative time model and clock offset model of pairs nodes ݅ and ݆ are defined as: ܮ௝(ݐ) = (ݐ)௜ܮ + ௜ܱ௝(ݐ), (3)

௜ܱ௝(ݐ) = (ݐ)௝ܥ)ߜ − ((ݐ)௜ܥ + ௝(0)ݔ − ,௜(0)ݔ (4)

where ܮ௜(ݐ) and ܮ௝(ݐ) are logic time of ݅ and ݆ at time ݐ. ௜ܱ௝(ݐ) is the clock offset between ݅ and ݆ at time ݐ. The ௜ܱ௝(0) is defined as the time synchronization error.

Figure 1. The architecture of time synchronization for SHM of bridges.

2.2. Clock Model

The bridge monitoring WSN nodes are driven by hardware clock sources which usually are
crystal oscillators. The time notion is created by counting the hardware clock pulses. The clock speed
of the node i is the increment of its time count in the specified time range, i.e., hi(τ). Ci(t) is the time
counting of node i at time t, and Ci(t) is defined as:

Ci(t) =
∫ t

0
hi(τ)dτ (1)

If f is the nominal frequency of hardware clock in node i, then the granularity of the time counter
is δ = 1/ f . The time notion of the node i can be defined as:

Li(t) = δCi(t) + xi(0) (2)

Li(t) is the logic time of node i at time t. xi(0) is the logic time of node i at time 0 and it is the
initial time of node i. If t = 0 is the moment that the nodes synchronize to each other, then the relative
time model and clock offset model of pairs nodes i and j are defined as:

Lj(t) = Li(t) +Oij(t), (3)

Sensors 2017, 17, 1027 5 of 18

Oij(t) = δ(Cj(t)−Ci(t)) + xj(0)− xi(0), (4)

where Li(t) and Lj(t) are logic time of i and j at time t. Oij(t) is the clock offset between i and j at time
t. The Oij(0) is defined as the time synchronization error.

For the arbitrary node i ∈ V and arbitrary node j ∈ Ni, the local skew is defined as the maximum
relative clock offset Oij(t) between nodes i and j at time t, i.e., Maximumi∈V,j∈Ni

{
Oij(t)

}
. For the

arbitrary node i, j ∈ V, the global skew is the maximum relative clock offset Oij(t) between nodes i
and j at time t, i.e., Maximumi∈V,j∈V

{
Oij(t)

}
. The time synchronization algorithm is employed to

enforce Oij(t)→ 0 .

2.3. TTME Clock Offset Estimation Model

To simplify the description, j is defined as the reference node and i is defined as an asynchronous
node. The details of traditional TTME are shown in Figure 2. The node i needs to be synchronized. j is
the reference node. The TTME has two steps. In the first step, i sends a short message to j. This message
is just filled with the identity number of nodes i and j. Once the message is sent successfully, i will
create a local logic time stamp T1. The node j will make the local logic time stamp T2 after the message
is received. This step aims to create time stamps T1 and T2 and is defined as uplink. The second
step is downlink. The reference node j respond with the TTME at T3. j sends another short message
which contains the time stamps T2 and T3 to i. Node i records the time of the message arrival as time
stamp T4. This step aims to create time stamps T3 and T4. u is the duration time for TTME uplink, i.e.,
u , T2 − T1 = D + dx +Ox. v is the duration time for TTME uplink, i.e., v , T4 − T3 = D + dy −Oy.
D is defined as the fixed transmission delay between i and j. dx and dy are the variable transmission
delay. Ox and Oy are the clock offset of i relative to j.

Sensors 2017, 17, 1027 5 of 18

For the arbitrary node ݅ ∈ ܸ	and arbitrary node ݆ ∈ ௜ࣨ, the local skew is defined as the maximum
relative clock offset ௜ܱ௝(ݐ) between nodes ݅ and ݆ at time ݐ, i.e., ݉ݑ݉݅ݔܽܯ௜∈௏,௝∈ࣨ೔{	 ௜ܱ௝(ݐ)}. For the
arbitrary node ݅, ݆ ∈ ܸ	, the global skew is the maximum relative clock offset ௜ܱ௝(ݐ) between nodes ݅
and ݆ at time ݐ, i.e., ݉ݑ݉݅ݔܽܯ௜∈௏,௝∈௏{	 ௜ܱ௝(ݐ)}. The time synchronization algorithm is employed to
enforce ௜ܱ௝(ݐ) → 0.

2.3. TTME Clock Offset Estimation Model

To simplify the description, ݆ is defined as the reference node and ݅ is defined as an
asynchronous node. The details of traditional TTME are shown in Figure 2. The node ݅ needs to be
synchronized. ݆ is the reference node. The TTME has two steps. In the first step, ݅ sends a short
message to ݆ . This message is just filled with the identity number of nodes ݅ and ݆ . Once the
message is sent successfully, ݅ will create a local logic time stamp ଵܶ. The node ݆	will make the local
logic time stamp ଶܶ after the message is received. This step aims to create time stamps ଵܶ and ଶܶ
and is defined as	݈݇݊݅݌ݑ. The second step is ݈݀݇݊݅݊ݓ݋. The reference node ݆ respond with the TTME
at ଷܶ . ݆ sends another short message which contains the time stamps ଶܶ and ଷܶ to ݅ . Node ݅
records the time of the message arrival as time stamp ସܶ. This step aims to create time stamps ଷܶ
and ସܶ. ݑ is the duration time for TTME uplink, i.e., ݑ ≜ ଶܶ − ଵܶ = ܦ + ݀௫ + ௫ܱ.	ݒ is the duration
time for TTME uplink, i.e.,	ݒ ≜ ସܶ− ଷܶ = ܦ + ݀௬ − ௬ܱ is defined as the fixed transmission delay ܦ .
between ݅ and ݆. ݀௫ and ݀௬ are the variable transmission delay. ௫ܱ and ௬ܱ are the clock offset of ݅ relative to ݆.

u=D+dx+Ox

node i

node j

Tshif t

Twai t
uplink downlink

v=D+dy-Oy

T1

T2 T3

T4

Figure 2. Two-way time message exchange between nodes ݅ and ݆; there are reasonable different
clock offsets caused by clock frequency, as ୶ܱ	for uplink and	 ௬ܱ for downlinks.

௦ܶ௛௜௙௧ is the time interval between ଵܶ and ସܶ on node ݅ . It is the duration time of TTME. ௦ܶ௛௜௙௧ ≜ ସܶ− ଵܶ. The ௪ܶ௔௜௧ is the time interval between ଶܶ and ଷܶ on node ݆. It is the response delay
of TTME. ௪ܶ௔௜௧ ≜ ଷܶ− ଶܶ . ௪ܶ௔௜௧ is a variable latency from software delay, such as the interrupt
response delay, priority queuing delay, software blocking latencies. Furthermore, ௦ܶ௛௜௙௧ = ௪ܶ௔௜௧ ݑ+ + ݒ . ݀௫ and ݀௬ are described as the random variable with exponential distribution. For this
reason we assume that ௦ܶ௛௜௙௧ is random and variable with exponential distribution, and the mean is
unknown.

Traditional TTME clock offset estimation is given by Equation (5). There is clock offset ௜ܱ௝ for
the TTME ݈݇݊݅݌ݑ and ݈݀݇݊݅݊ݓ݋ among nodes ascribed to the clock frequency offset. ௬ܱ ≜ ௫ܱ +௜ܱ௝. ௫ܱ and ௬ܱ are relative clock offset for node ݅ during TTME. ෠ܱ௫ = (ଶܶ − ଵܶ) − (ସܶ − ଷܶ)2 , (5)

Equation (5) can be rewritten as:

௫ܱ = ෠ܱ௫ + ൫݀௫ − ݀௬൯2 + ௜ܱ௝2 , (6)

Figure 2. Two-way time message exchange between nodes i and j; there are reasonable different clock
offsets caused by clock frequency, as Ox for uplink and Oy for downlinks.

Tshi f t is the time interval between T1 and T4 on node i. It is the duration time of TTME.
Tshi f t , T4 − T1. The Twait is the time interval between T2 and T3 on node j. It is the response delay of
TTME. Twait , T3 − T2. Twait is a variable latency from software delay, such as the interrupt response
delay, priority queuing delay, software blocking latencies. Furthermore, Tshi f t = Twait + u + v. dx and
dy are described as the random variable with exponential distribution. For this reason we assume that
Tshi f t is random and variable with exponential distribution, and the mean is unknown.

Traditional TTME clock offset estimation is given by Equation (5). There is clock offset Oij for
the TTME uplink and downlink among nodes ascribed to the clock frequency offset. Oy , Ox + Oij.
Ox and Oy are relative clock offset for node i during TTME.

Ôx =
(T2 − T1)− (T4 − T3)

2
, (5)

Sensors 2017, 17, 1027 6 of 18

Equation (5) can be rewritten as:

Ox = Ôx +

(
dx − dy

)
2

+
Oij

2
, (6)

where Ox is the clock offset at the beginning of TTME between node i and j. Ôx is the estimation for Ox.
TTME time synchronization uses Ôx to correct the local logic time instead of Ox. Equation (6) shows
that estimate errors are mainly caused by dx, dy and Oij.

The TTME uses time stamps to estimate the clock offset, so it is necessary to discuss the time
stamping method. For different approaches, there are differences in the precision of time stamps. RBS
creates the time stamp at the application layer and an uncertainty delay at the sender is introduced
into the time stamp. TPSN creates its time stamping at the MAC-layer when the packet is about to be
transmitted. This reduces the error caused by any uncertainty delay. FTSP uses multiple MAC-layer
time stamps which were created by bytes transmission and alignment to reduce the jitter of time
stamping. The multiple MAC-layer time stamps approach can obtain a higher precision time stamp so
it is also employed by this paper.

3. Preliminaries for TTME Clock Offset Estimate

The proposed algorithm has proven that dx is not equal to dy and special probability distribution
functions are employed to estimate them [39]. Additionally, dx is not equal to dy and Oij is not equal
to zero. In this Section, we analyze the details of clock offset changing and then the multiple TTMEs
method is proposed to create the subset of fixed clock offset observations for MLE.

3.1. Increasing Clock Offset

The clock source of bridge monitoring nodes is usually driven by a rough crystals oscillator.
The max frequency offset amax could be up to dozens of ppm or even hundreds of ppm. If the clock
frequency offset is relatively stable in a short time then the clock offset increase speed is fixed, the max
clock offset can be calculated.

Assume that the frequency of nominal clock source r is f . The frequency offset of the arbitrary
clock source i is ai ppm. β = 106. The frequency of clock source i can be rewritten as fi in Equation (7).
Both ai and fi are unknown:

fi = f (1 + αi/β) (7)

Ttick = 1/ f (8)

Ttick in Equation (8) is the timing granularity of node i. It is the ideal clock period for a logic time
counter but not the real period of clock i. When set the angular rate wi = 2π fi, the real time phase is
ϕi(t) = wit. The real time phase difference ϕr(t) between i and r can be written as:

ϕr(t) = ϕ f (t)− ϕi(t) = 2παi f t/β (9)

γr(t) = ϕr(t)/2π = αi f t/β (10)

Or(t) = γr(t)Ttick = αit/β (11)

where ϕ f (t) is the phase of r at t. ϕi(t) is the phase of i at t. γr(t) in Equation (10) is the counts of
differences for i compared to r at time t. The Or(t) in Equation (11) is the relative clock offset model of
node i. The reference clock is r. Or(t) is a continuous clock offset for the hardware clock.

In short, the clock offset Or(t) is increasing continuously. 1 + ai/β is the increasing speed of clock
i and is due to the frequency offset, so there is variable clock offset in TTME. The estimate errors of
clock offset Ôx in Equation (6) are unavoidable.

Sensors 2017, 17, 1027 7 of 18

3.2. Fixed Clock Offset for Logic Time

The fixed clock offset does not exist in the hardware clock, but in logic time notion. Nodes employ
a counter or timer to set up the logic time. This time notion is not a continuous time but a discrete time
which increases by an integer multiple time of granularity Ttick. We define Li as the logic time of node
i. Ni is the clock pulse count of i at t. Ti is the actual period of clock i. Then we can write Li(t) as:

Li(t) = NiTtick (12)

Ni = bt/Tic = b(1 + αi/β) f tc (13)

The time granularity of logic time Li is Ttick, but not the period Ti = 1/ fi and Ttick 6= Ti. Ni is
rounded down t/Ti. The logic time Li is a discrete representation of the real time t. By rewriting
Equations (10) and (11), we have the logic time offset of nodes i and j given as:

γL(t) = bαi f t/βc (14)

OL(t) = Li(t)− Lj(t) = TtickγL(t) (15)

where γL(t) ∈ N is the number of cycles difference between nodes. OL(t) is the logic time offset of
nodes i and j. The logic time offset is different from hardware clock offsets. As Equations (14) and (15)
show, t and ai are variable. For the fixed t, the larger clock frequency offset leads to larger clock offset.
If αi < αj, in a bounded time t f ixed:

lim
ai→amax

OL

(
t f ixed

)
= Ttickamax f t f ixed/β (16)

lim
ai→0

OL

(
t f ixed

)
= 0 (17)

Assumption 1. If the increment of OL(t) is not larger than 1 Ttick, then there is a fixed logic clock offset OL(t).

The logic time offset OL(t) is gradually increasing as shown in Figure 3. In the period that γL(t)
is non-integer, OL(t) is a fixed value. The TTME clock offset is OL(t) but not Or(t).

Sensors 2017, 17, 1027 7 of 18

(ݐ)௜ܮ = ௜ܰ ௧ܶ௜௖௞ (12)

௜ܰ = /ݐہ ௜ܶۂ = 1)ہ + (13) ۂݐ݂(ߚ/௜ߙ

The time granularity of logic time	ܮ௜ is ௧ܶ௜௖௞, but not the period ௜ܶ = 1 ௜݂⁄ and ௧ܶ௜௖௞ ≠ ௜ܶ. ௜ܰ is
rounded down ݐ/ ௜ܶ. The logic time ܮ௜ is a discrete representation of the real time ݐ. By rewriting
Equations (10) and (11), we have the logic time offset of nodes ݅ and ݆ given as: ߛ௅(ݐ) = (ݐ)௅ܱ (14) ۂߚ/ݐ௜݂ߙہ = (ݐ)௜ܮ − (ݐ)௝ܮ = ௧ܶ௜௖௞ߛ௅(ݐ) (15)

where ߛ௅(ݐ) ∈ ܰ is the number of cycles difference between nodes. ܱ௅(ݐ) is the logic time offset of
nodes ݅ and ݆. The logic time offset is different from hardware clock offsets. As Equations (14) and (15)
show, ݐ and ܽ௜ are variable. For the fixed ݐ, the larger clock frequency offset leads to larger clock
offset. If ߙ௜ < ௙௜௫௘ௗ: lim௔೔→௔೘ೌೣݐ ௝, in a bounded timeߙ ܱ௅൫ݐ௙௜௫௘ௗ൯ = ௧ܶ௜௖௞ܽ௠௔௫݂ݐ௙௜௫௘ௗ/(16) ߚ lim௔೔→଴ܱ௅൫ݐ௙௜௫௘ௗ൯ = 0 (17)

Assumption 1. If the increment of ܱ௅(ݐ) is not larger than 1 ௧ܶ௜௖௞, then there is a fixed logic clock
offset ܱ௅(ݐ).

The logic time offset ܱ௅(ݐ) is gradually increasing as shown in Figure 3. In the period that ߛ௅(ݐ)
is non-integer, ܱ௅(ݐ) is a fixed value. The TTME clock offset is ܱ௅(ݐ) but not 	 ௥ܱ(ݐ).

0 2 4 6

1

3

7

continue real clock offset

discrete logic clock offset

Time (second)

5

C
lo

ck
 O

ff
se

t (
T t

ic
k)

Figure 3. The hardware clock offset and logic clock offset. Assume there is fixed clock frequency offset,
the real clock offset ௥ܱ(ݐ) is linear and continually increases. The logic clock offset is discrete, since
the logic clock is driven by the clock granularity ௧ܶ௜௖௞, the logic clock offset is the integer multiple of ௧ܶ௜௖௞. The term	߬ is the cost of the clock offset increment in one ௧ܶ௜௖௞, set (ݐ)ߛ = 1 in Equation (10),
then ߬ = ݐ = ߚ ⁄௠௔௫ߙ ݂.

Therefore the fixed clock offset for TTME exists with restrictions. As Figure 3 shows, the logic
time offset is a discrete integer multiple time granularity so that at the range of ݊߬ and (݊ − 1)߬
(݊ ∈ ାܰ), there is a fixed logic clock offset. When there is phase offset among the clock sources, the
valid pulse edge for different clock sources arrives at the time counter alternately, so there is an
unavoidable clock offset of less than	 ௧ܶ௜௖௞. If the valid pulse edge of ݅ arrives ahead and the clock
offset is ߙ ௧ܶ௜௖௞	(ߙ < 1), the clock offset is (1 − (ߙ ௧ܶ௜௖௞ when the valid pulse edge of ݅ arrives. This
will reduce the precision of clock offset estimation and intensify the clock skew.

Figure 3. The hardware clock offset and logic clock offset. Assume there is fixed clock frequency offset,
the real clock offset Or(t) is linear and continually increases. The logic clock offset is discrete, since
the logic clock is driven by the clock granularity Ttick, the logic clock offset is the integer multiple of
Ttick. The term τ is the cost of the clock offset increment in one Ttick, set γ(t) = 1 in Equation (10),
then τ = t = β/αmax f .

Therefore the fixed clock offset for TTME exists with restrictions. As Figure 3 shows, the logic time
offset is a discrete integer multiple time granularity so that at the range of nτ and (n− 1)τ (n ∈ N+),
there is a fixed logic clock offset. When there is phase offset among the clock sources, the valid pulse
edge for different clock sources arrives at the time counter alternately, so there is an unavoidable clock

Sensors 2017, 17, 1027 8 of 18

offset of less than Ttick. If the valid pulse edge of i arrives ahead and the clock offset is αTtick(α < 1),
the clock offset is (1− α)Ttick when the valid pulse edge of i arrives. This will reduce the precision of
clock offset estimation and intensify the clock skew.

4. The Multiple TTMEs for Time Synchronization

Based on the above analysis the estimate error of Equation (6) is given by Oij. The define the
time stamp T1 of TTME as the time origin, set t = 0, while for the logic time notion the clock offset
increment is given by OL but not Or, so Oij = OL. Based on Assumption 1 the clock offset model is
given by:

Oy =

{
Ox t ≤ To

Ox + OL(t) t > To
(18)

where To is the time cost that the clock offset increment grows from zero to one Ttick. As Equations (14),
(15) and (18) show, for a shorter τ, there is the greater probability that Ox equal to Oy in Equation (13)
and the smaller estimate error Oij for Ôx. So if Tshi f t < To, Oy = Ox. Set γL(t) = 1, To = t and
OL(t) = Ttick, Equation (15) can be rewritten as:

To < β/αmax f (19)

where To in Equation (19) will satisfy Equation (18). If the cost time of TTME is less than To, then its
observations has a fixed clock offset. aij < αmax is the relative frequency offset between i and j.

The multiple TTMEs are proposed based on TTME. Firstly, we need to calculate the To f f set which
is the time cost for the increase in one Ttick. If Oij = Ttick, t = To f f set and Or(t) = Ttick, Equation (11)
can be rewritten as:

To f f set = βTtick/αmax (20)

For a known Ttick, To f f set is determined by αmax. As shown by Equation (18), the time cost of
the local clock offset increment is smaller than one Ttick when the time cost is smaller than To f f set in
Equation (20), so the TTME observations at the period of To f f set have the same fixed clock offset which
is defined as Oa.

The multiple TTMEs algorithm is proposed to establish n times TTME at the period To f f set and
obtain the TTME observations set {(Uk, Vk)}n

k=1. dk,x is the variable delay of uplink for the TTME k.
dk,y is fixed delay of downlink for the TTME k. Tk,1 ∼ Tk,4 is the time stamps for the TTME k. Tshi f t,N is
the time cost for the N times TTME, Tshi f t ,N = (TN,4 − T1,1). N is the expectation of multiple times for
multiple TTMEs, i.e., the number of observations (Algorithm 1, line 2). It is important parameter for
multiple TTMEs time synchronization algorithm and should be set as constant. The multiple TTMEs
are defined as Algorithm 1.

Algorithm 1. Multiple TTMEs with timeout constraint

� Initialization
1. set Ttickβ/amax → To f f set .
2. set ρTo f f set → Tlimit , num = 1.
� TTME

3. run the Two-way message exchange.
4. Unum = Tnum,2 − Tnum,1.
5. Vnum = Tnum,4 − Tnum,3.
� Timeout detection

6. Tshi f t,N ← (Tnum,4 − T1,1) , num = num + 1.
7. if Tshi f t,N < To f f set then jump to 3.
8. N = num, save {(Uk, Vk)}N

k=1.

Sensors 2017, 17, 1027 9 of 18

Multiple TTMEs employ To f f set as time out restraint (Algorithm 1, line 1). To f f set determines the
times of TTME. The Tlimit is ρTo f f set and 0 ≤ ρ ≤ 1/N. The temporary variable num is used to record
the number of valid observations. TTME is repeated until there is timeout (Algorithm 1, line 3–6).
Timeout detection is employed to guarantee the TTME observations to have the same fixed clock
offset (Algorithm 1, line 6, 7). The details of the multiple TTMEs protocol are shown in Figure 4.
The observations Uk , Tk,2 − Tk,1, Vk , Tk,4 − Tk,3. The fixed clock offset Oa is:

Oa =
Uk −Vk

2
−

dk,x − dk,y

2
. (21)

The estimation k for Oa is Ôa,k, k ∈ (1, n), Equation (21) is rewritten as:

Ôa,k =
Uk −Vk

2
= Oa +

dk,x − dk,y

2
. (22)

Sensors 2017, 17, 1027 9 of 18

the same fixed clock offset (Algorithm	1, line	6,7). The details of the multiple TTMEs protocol are
shown in Figure 4. The observations ܷ௞ ≜ ௞ܶ,ଶ − ௞ܶ,ଵ, ௞ܸ ≜ ௞ܶ,ସ − ௞ܶ,ଷ. The fixed clock offset ௔ܱ is:

௔ܱ = ܷ௞ − ௞ܸ2 − ݀௞,௫ − ݀௞,௬2 . (21)

The	estimation	݇ for ௔ܱ is ෠ܱ௔,௞, ݇ ∈ (1, ݊), Equation (21) is rewritten as: ෠ܱ௔,௞ = ܷ௞ − ௞ܸ2 = ௔ܱ + ݀௞,௫ − ݀௞,௬2 . (22)

~

~

node j

node i
T1,1 T1,4

T1,2 T1,3

Tn,4 Tn,4

Tn,2 Tn,3

: Two-way Time Message Exchange

d1,y dn,x dn,y

Oa

d1,x

Tshif t,N

Figure 4. Multiple TTMEs . The TTME is repeated for ݊ rounds under the restriction that it should
continue until ௦ܶ௛௜௙௧,ே < ௢ܶ௙௙௦௘௧. The TTME observations have a same fixed clock offset ௔ܱ.

Compared to Equations (6) and (15), the observations satisfy Equation (22) when ௦ܶ௛௜௙௧ < ୭ܶ.
According to Equation (19), there is a larger ௢ܶ for the smaller clock frequency offset ܽ. Then there
is a larger expectation for the multiple TTMEs number ܰ ௦ܶ௛௜௙௧,ே so that it is more reliable to
estimate the delay with a distribution function. The multiple TTMEs guarantee a same fixed clock
offset for the time stamps and aim to obtain an observation set as large as possible. The clock offset
estimate error for ෠ܱ௔,௞ is mainly due to the random variable delay ݀௫ and ݀௬.

The constant ߩ needs to be set at an appropriate value. A smaller ߩ leads to a smaller ௟ܶ௜௠௜௧
and a tighter restriction for timeouts. There will be a smaller ௦ܶ௛௜௙௧,ே for a reliable TTME so that the
TTME has greater probability of getting a fixed clock offset for time stamps and higher precision of
clock offset estimation for time synchronization. Conversely, a larger ߩ means that there is a loose
constraint for TTME. The probability for the fixed clock offset time stamps is smaller. There will be
rough clock offset estimation for TTME. In addition, ߩ does not only determine the precision of clock
offset estimation, but also relates to the efficiency of time synchronization. A tight timeout restriction
leads to a greater probability of TTME retries (Algorithm 1, line 7), and can even lead the TTME into
an infinite loop (Algorithm 1, line 7), so a maximum retry number should be employed to avoid this
worse case. Therefore, an exact ߩ will balance the accuracy and convergence speed of time
synchronization algorithm. A big ௦ܶ௛௜௙௧,ே makes the TTME of Equation (5) invalid. The multiple
TTMEs hold the ௦ܶ௛௜௙௧,ே and avoids the additional error ௜ܱ௝.
5. The Clock Offset and Clock Speed Correction

The multiple TTMEs aim to correct the relative clock offset and clock speed. The clock offset
estimation refers to the precision of time synchronization, while the clock speed estimation refers to
the clock skew for networks. 	 ෠ܱ௜௝(ε) is defined as the ε time relative clock offset estimation at node ݅. ℎ௜௝(ݐ) is defined as the
relative clock speed offset at ݐ for node ݅. ℎ෠௜௝(ݐ) is the estimation for ℎ௜௝(ݐ). The root node ݎ has ℎ௥௥(ݐ) = ℎ෠௥௥(ݐ) = 1.

Figure 4. Multiple TTMEs . The TTME is repeated for n rounds under the restriction that it should
continue until Tshi f t,N < To f f set. The TTME observations have a same fixed clock offset Oa.

Compared to Equations (6) and (15), the observations satisfy Equation (22) when Tshi f t < To.
According to Equation (19), there is a larger To for the smaller clock frequency offset a. Then there is a
larger expectation for the multiple TTMEs number N Tshi f t,N so that it is more reliable to estimate the
delay with a distribution function. The multiple TTMEs guarantee a same fixed clock offset for the
time stamps and aim to obtain an observation set as large as possible. The clock offset estimate error
for Ôa,k is mainly due to the random variable delay dx and dy.

The constant ρ needs to be set at an appropriate value. A smaller ρ leads to a smaller Tlimit
and a tighter restriction for timeouts. There will be a smaller Tshi f t,N for a reliable TTME so that the
TTME has greater probability of getting a fixed clock offset for time stamps and higher precision of
clock offset estimation for time synchronization. Conversely, a larger ρ means that there is a loose
constraint for TTME. The probability for the fixed clock offset time stamps is smaller. There will be
rough clock offset estimation for TTME. In addition, ρ does not only determine the precision of clock
offset estimation, but also relates to the efficiency of time synchronization. A tight timeout restriction
leads to a greater probability of TTME retries (Algorithm 1, line 7), and can even lead the TTME into an
infinite loop (Algorithm 1, line 7), so a maximum retry number should be employed to avoid this worse
case. Therefore, an exact ρ will balance the accuracy and convergence speed of time synchronization
algorithm. A big Tshi f t,N makes the TTME of Equation (5) invalid. The multiple TTMEs hold the
Tshi f t,N and avoids the additional error Oij.

5. The Clock Offset and Clock Speed Correction

The multiple TTMEs aim to correct the relative clock offset and clock speed. The clock offset
estimation refers to the precision of time synchronization, while the clock speed estimation refers to
the clock skew for networks.

Sensors 2017, 17, 1027 10 of 18

Ôij(ε) is defined as the ε time relative clock offset estimation at node i. hj
i(t) is defined as

the relative clock speed offset at t for node i. ĥj
i(t) is the estimation for hj

i(t). The root node r has
hr

r(t) = ĥr
r(t) = 1.

Algorithm 2. MLE clock offset and linear regression clock speed, if I is not root, j is reference node for i.

� Initialization
1. set ε = 1.
2. set ĥj

i(t) = 1, M ∈ N+.
3. receive and save ĥr

j (t).
� Clock offset MLE

4. load {(Uk, Vk)}n
k=1.

5. {(Uk, Vk)}n
k=1 → Ôij(ε) .

6. save Ôij(ε), ε = ε + 1.
� Linear regression clock speed

7. if ε < Mthen then jump to 12.

8. else load
{

Ôij(k)
}ε

k=ε−M
.

9.
{

Ôij(k)
}ε

k=ε−M
→ ĥj

i(t) .

10. ĥr
i (t) = ĥr

j (t) + ĥj
i(t), ε = 1.

11. broadcast ĥr
i (t), correct clock speed.

12. quit.

The term r provides the global reference clock. Both the clock offset correction and clock skew
compensation of the time synchronization algorithm are used to force the logic time between node i and
r to be consistent. In the initialization period of multiple TTMEs, ε is defined as a counter to record the
number for clock offset estimation Ôij (Algorithm 2, line 1). The constant M is employed to limit the
number of MLE observations (Algorithm 2, line 2). ĥr

j (t) is the relative clock speed offset estimation

for j. Once node j estimates the ĥr
j (t) successfully, it broadcasts a time synchronization packet which is

filled with ĥr
j (t) immediately (Algorithm 2, line 3). The clock offset MLE is initialized once multiple

TTMEs are finished. The clock offset estimations Ôij(ε) are recorded as the set of observations for

clock speed offset estimate (Algorithm 2, line 4–6). The clock speed offset hj
i(t) is calculated once

the set of Ôij is big enough (Algorithm 2, line 7–9). The relative clock speed offset ĥr
i (t) is the sum

of ĥj
i(t) and ĥr

j (t) (Algorithm 2, line 10). Node i employs ĥr
i (t) to compensate its local clock speed

to root r, at the same time the ĥr
i (t) is broadcasted to help its son nodes to correct clock speed offset

(Algorithm 2, line 11).

5.1. MLE Clock Offset Estimation

The MLE for clock offset with unknown fixed delay D is proven by Jeske [38]. The random
variable delay dx and dy are described as an exponential distribution. The CRLBs of MLE is proven by
Noh et al. [40]. The clock offset MLE is given by [38]:

Ô =

min
1≤k≤N

Uk − min
1≤k≤N

Vk

2
(23)

where Ô is the MLE for clock offset. Its CRLBs is given by [40]:

Var
(
Ô
)
=

a2

4N2 (24)

Sensors 2017, 17, 1027 11 of 18

where α is defined as the mean of dx and dy, N is number of times for TTME, and also is number
of observations. The mean square errors (MSEs) of clock offset estimation Ô under exponential
distribution are shown in Figure 5.Sensors 2017, 17, 1027 11 of 18

Figure 5. CRLB and MSE of clock offset estimation, assuming the variable delay is an exponentially
distributed random variable with mean ߙ = 1.

As the TTME observations increase, the MLE achieves a higher precision for clock offset
estimation. The traditional time synchronization algorithms like TPSN yield rough clock offset
estimations, while the clock offset estimations error of MLE are reduced as the TTME observations
increase. The MSEs of MLE fall faster and closer to the CRLB.

If ௦ܶ௛௜௙௧ < ୭ܶ there is the largest probability to satisfy the implicit premise that all the
observations have the same fixed clock offset, so the number of observation is limited by ߙ௜௝ and the
speed of TTME. The proposed multiple TTMEs algorithm maximizes the ܰ by optimizing the
TTME. The improvement of multiple TTMEs for clock offset MLE is shown in Figure 6.

Figure 6. The clock offset estimation improvement to MLE. Compared to the traditional method, the
MLE estimation error is reduced fast in the first five observations and slows down after the eighth
point.

5.2. Linear Regression Clock Speed Estimation

The clock offset correction is just to force nodes to have a consistent logic time at the correction
time. While the ℎ(߬) of nodes based on the clock frequency offset is different, these nodes get
different (ݐ)ܥ at the time range ݐ, so the clock offset is continuously changing and clock skew is
introduced. Many time algorithms employ resynchronization to restrain the skew but this is not
efficient for WNS, so clock speed correction is important and efficient to optimize the clock skew for
WSN time synchronization protocols.

We use the latest ܯ observations ൛ ௜ܱ௝(݇)ൟ௞ୀଵெ of clock offset estimation to estimate the clock
speed. The least squares method is used to regress these observations. The slope of the regression
function is the clock speed offset ℎ෠௜௝(ݐ). There is jitter for the clock frequency and the jitter is caused

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

Number of Observations

M
S

E
s

CRLB

MLE
Traditional TTME

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of Observations

E
st

im
at

io
n

E
rr

or
(%

)

Figure 5. CRLB and MSE of clock offset estimation, assuming the variable delay is an exponentially
distributed random variable with mean α = 1.

As the TTME observations increase, the MLE achieves a higher precision for clock offset estimation.
The traditional time synchronization algorithms like TPSN yield rough clock offset estimations, while
the clock offset estimations error of MLE are reduced as the TTME observations increase. The MSEs of
MLE fall faster and closer to the CRLB.

If Tshi f t < To there is the largest probability to satisfy the implicit premise that all the observations
have the same fixed clock offset, so the number of observation is limited by αij and the speed of TTME.
The proposed multiple TTMEs algorithm maximizes the N by optimizing the TTME. The improvement
of multiple TTMEs for clock offset MLE is shown in Figure 6.

Sensors 2017, 17, 1027 11 of 18

Figure 5. CRLB and MSE of clock offset estimation, assuming the variable delay is an exponentially
distributed random variable with mean ߙ = 1.

As the TTME observations increase, the MLE achieves a higher precision for clock offset
estimation. The traditional time synchronization algorithms like TPSN yield rough clock offset
estimations, while the clock offset estimations error of MLE are reduced as the TTME observations
increase. The MSEs of MLE fall faster and closer to the CRLB.

If ௦ܶ௛௜௙௧ < ୭ܶ there is the largest probability to satisfy the implicit premise that all the
observations have the same fixed clock offset, so the number of observation is limited by ߙ௜௝ and the
speed of TTME. The proposed multiple TTMEs algorithm maximizes the ܰ by optimizing the
TTME. The improvement of multiple TTMEs for clock offset MLE is shown in Figure 6.

Figure 6. The clock offset estimation improvement to MLE. Compared to the traditional method, the
MLE estimation error is reduced fast in the first five observations and slows down after the eighth
point.

5.2. Linear Regression Clock Speed Estimation

The clock offset correction is just to force nodes to have a consistent logic time at the correction
time. While the ℎ(߬) of nodes based on the clock frequency offset is different, these nodes get
different (ݐ)ܥ at the time range ݐ, so the clock offset is continuously changing and clock skew is
introduced. Many time algorithms employ resynchronization to restrain the skew but this is not
efficient for WNS, so clock speed correction is important and efficient to optimize the clock skew for
WSN time synchronization protocols.

We use the latest ܯ observations ൛ ௜ܱ௝(݇)ൟ௞ୀଵெ of clock offset estimation to estimate the clock
speed. The least squares method is used to regress these observations. The slope of the regression
function is the clock speed offset ℎ෠௜௝(ݐ). There is jitter for the clock frequency and the jitter is caused

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

Number of Observations

M
S

E
s

CRLB

MLE
Traditional TTME

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of Observations

E
st

im
at

io
n

E
rr

or
(%

)

Figure 6. The clock offset estimation improvement to MLE. Compared to the traditional method, the
MLE estimation error is reduced fast in the first five observations and slows down after the eighth point.

5.2. Linear Regression Clock Speed Estimation

The clock offset correction is just to force nodes to have a consistent logic time at the correction
time. While the h(τ) of nodes based on the clock frequency offset is different, these nodes get different
C(t) at the time range t, so the clock offset is continuously changing and clock skew is introduced.
Many time algorithms employ resynchronization to restrain the skew but this is not efficient for

Sensors 2017, 17, 1027 12 of 18

WNS, so clock speed correction is important and efficient to optimize the clock skew for WSN time
synchronization protocols.

We use the latest M observations
{

Oij(k)
}M

k=1 of clock offset estimation to estimate the clock
speed. The least squares method is used to regress these observations. The slope of the regression
function is the clock speed offset ĥj

i(t). There is jitter for the clock frequency and the jitter is caused by

the environment changes. We assume that the clock frequency offset and hj
i(t) is fixed for a limited

time. Equations (25) and (26) are the models for the clock offset and clock speed:

Ôij(t) = hj
i(t)t + Oij(0) (25)

hj
i(t) = hj(t)− hi(t) (26)

Ôij(t) is the MLE for the relative clock offset between node i and j at time t. t is the local time
of node i estimating clock offset, i.e., the time stamps

{
Tk,1
}n

k=1. j is the reference node, if hj(t) = 1,

hi(t) + hj
i(t) = 1. If hj

i(t) > 0 and the clock speed of node j is faster than i, node i should speed up

hi(t). If hj
i(t) < 0 and the clock speed of node j is slower than i, node i should slow down hi(t). hi→j(t)

is speed correction coefficient and the logic clock of i could be rewritten as:

Li(t) = δhi→j(t)Ci(t) + xi(0) (27)

hi→j(t) = hj(t) = hi(t) + hj
i(t) (28)

The clock speed correction coefficient hi→j(t) of node i is given by Equation (28). The algorithm

employs hj
i(t) to optimize the local clock speed hi(t), and aims to make node i and j have the same

clock speed.
M should be set at an appropriate value. A small M leads to a small subset of clock offset estimate

observations for linear regression. The clock offset estimate error of any observation will introduce a
larger error into the clock speed offset estimation. Although more clock offset estimate observations
lead to a better linear regression, a long time is needed to collect these observations, so it is not efficient.
Even worse, if the environment is changing during this period, the relative clock speed is never fixed
and continuously changing, so linear regression is unusable.

6. Simulation Results and Discussion

A simulation platform based on the True-Time 2.0 toolbox was established to perform the
experiment. As we have discussed, TPSN is a typical traditional TTME algorithm, we compared
the performances of our algorithm with TPSN. We set the hardware clock frequency as 32.768 kHz,
amax = 40 ppm the clock drift as 0.2 ppm. For both traditional TTME in TPSN and the multiple TTMEs
the statistical properties were compared.

The line model with five nodes was established. The nodes identification numbers were set as
1 to 15. The networks topology was set as line 8→ 7→ 6→ 5→ 4→ 3→ 2→ 1← 9← 10← 11←
12 ← 13 ← 14 ← 15. Node 1 was root and in the middle of bridge. ρ = 0.1, N = 15, M = 9.
The interval of re-synchronization was 20 s. Both the interrupt handling delays of sender and receiver
were random variables value with an exponential distribution, λ = 150 µs.

6.1. The Synchronization Error

The accuracy clock offset estimation is the important factor for both setting up time
synchronization and holding that time synchronization. The time synchronization is set up by
correction of Ôij(t) and ĥij(t) of j. The accurate clock offset estimations are important for an efficient
bridge monitoring WSN time synchronization algorithm.

Sensors 2017, 17, 1027 13 of 18

For arbitrary i and j (j ∈ Ni), the synchronization error errorij(t) = Ôij(t) −Oij(t). Its max
estimate error errormax(t) = max(errorij(t)). The average estimate error is erroraverage(t) ={

errorij(t)
}

i∈V,j∈Ni
. Figure 7 show that the max error of traditional TTME is 542 µs. Figure 8 show

that the max error of multiple TTMEs algorithm is 50 µs, we set a small value for Twait so that the
max estimate error caused buy clock drift is a single Ttick, i.e., Ôij(t) ∈ {0, 30.518} µs, while the time
synchronization error is mainly caused by dx and dy. The multiple TTMEs for MLE clock offset estimate
reduce the error efficiently.Sensors 2017, 17, 1027 13 of 18

Figure 7. The absolute synchronization error of traditional TTME.

Figure 8. The absolute synchronization error of multiple TTMEs.

The average error of traditional TTME is about 75	μs, the standard deviation of its estimation
error is 74	μs. The average error of multiple TTMEs algorithm is about 13	μs, the standard deviation
of its estimation error is 8	μs. The other statistical property shows in Table 1. The probability for the
multiple TTMEs algorithm that the time synchronization error is smaller than ௧ܶ௜௖௞		is 95 percent,
while the probability for traditional TTME is 32 percent, so the multiple TTMEs algorithm is better to
restrict the estimate errors caused by variable delays.

Table 1.The synchronization error probability.

Probability (%)

<Average Error <࢑ࢉ࢏࢚ࢀ

Traditional TTME 62 (75 μs) 32 (30 μs)

Multiple TTMEs 51 (13 μs) 95 (30 μs)

Since the ideal clock source granularity ௧ܶ௜௖௞ = 30.518	μs (clock source period), as discussed in
Equations (12) and (13), it’s reasonable that if the hardware clock offset is less than one ௧ܶ௜௖௞ it is
difficult to estimate this clock offset. Figure 9 shows the MSE of an average clock offset estimation.
Because of the increasing number of observations, the MSE is significantly smooth. It shows that the
multiple TTMEs algorithm is better than traditional TTME.

20 40 60 80 100 120 140 160

100

200

300

400

500

Observations

S
yn

ch
ro

ni
za

tio
n

er
ro

r(
μ

s)

Max error

Average error

20 40 60 80 100 120

10

20

30

40

50

60

Observations

S
yn

ch
ro

ni
za

tio
n

er
ro

r(
μ

s)

Max error

Average error

Figure 7. The absolute synchronization error of traditional TTME.

Sensors 2017, 17, 1027 13 of 18

Figure 7. The absolute synchronization error of traditional TTME.

Figure 8. The absolute synchronization error of multiple TTMEs.

The average error of traditional TTME is about 75	μs, the standard deviation of its estimation
error is 74	μs. The average error of multiple TTMEs algorithm is about 13	μs, the standard deviation
of its estimation error is 8	μs. The other statistical property shows in Table 1. The probability for the
multiple TTMEs algorithm that the time synchronization error is smaller than ௧ܶ௜௖௞		is 95 percent,
while the probability for traditional TTME is 32 percent, so the multiple TTMEs algorithm is better to
restrict the estimate errors caused by variable delays.

Table 1.The synchronization error probability.

Probability (%)

<Average Error <࢑ࢉ࢏࢚ࢀ

Traditional TTME 62 (75 μs) 32 (30 μs)

Multiple TTMEs 51 (13 μs) 95 (30 μs)

Since the ideal clock source granularity ௧ܶ௜௖௞ = 30.518	μs (clock source period), as discussed in
Equations (12) and (13), it’s reasonable that if the hardware clock offset is less than one ௧ܶ௜௖௞ it is
difficult to estimate this clock offset. Figure 9 shows the MSE of an average clock offset estimation.
Because of the increasing number of observations, the MSE is significantly smooth. It shows that the
multiple TTMEs algorithm is better than traditional TTME.

20 40 60 80 100 120 140 160

100

200

300

400

500

Observations

S
yn

ch
ro

ni
za

tio
n

er
ro

r(
μ

s)

Max error

Average error

20 40 60 80 100 120

10

20

30

40

50

60

Observations

S
yn

ch
ro

ni
za

tio
n

er
ro

r(
μ

s)

Max error

Average error

Figure 8. The absolute synchronization error of multiple TTMEs.

The average error of traditional TTME is about 75 µs, the standard deviation of its estimation
error is 74 µs. The average error of multiple TTMEs algorithm is about 13 µs, the standard deviation
of its estimation error is 8 µs. The other statistical property shows in Table 1. The probability for the
multiple TTMEs algorithm that the time synchronization error is smaller than Ttick is 95 percent, while
the probability for traditional TTME is 32 percent, so the multiple TTMEs algorithm is better to restrict
the estimate errors caused by variable delays.

Table 1. The synchronization error probability.

Probability (%)

<Average Error <Ttick

Traditional TTME 62 (75 µs) 32 (30 µs)
Multiple TTMEs 51 (13 µs) 95 (30 µs)

Sensors 2017, 17, 1027 14 of 18

Since the ideal clock source granularity Ttick = 30.518 µs (clock source period), as discussed in
Equations (12) and (13), it’s reasonable that if the hardware clock offset is less than one Ttick it is difficult
to estimate this clock offset. Figure 9 shows the MSE of an average clock offset estimation. Because of
the increasing number of observations, the MSE is significantly smooth. It shows that the multiple
TTMEs algorithm is better than traditional TTME.Sensors 2017, 17, 1027 14 of 18

Figure 9. The normalization MSE of the average synchronization error.

6.2. The Clock Skew

The clock offset estimate error is always introduced to the clock speed estimation and manifests
as clock skew. To restrain the clock skew could improve the precision of synchronization and extend
its hold time. To get a long time synchronization without frequently resynchronizing, it’s an efficient
way to employ an accurate clock speed estimation to restrain the clock skew.

The multiple TTMEs algorithm provides a more accurate clock offset estimate and the clock
skew estimation error needs to be discussed. We have simulated the clock speed estimate efficiency
of traditional TTME and multiple TTMEs. Figure 10 shows the convergence rate. The multiple TTMEs
algorithm is faster and smoother. The multiple TTMEs algorithm needs fewer observations to obtain
a higher precision clock speed estimation, it has more advantages for the WSN time synchronization
applications with poor storage and calculation ability.

Figure 10. Clock offset estimate precision and clock speed regress precision.

The clock skew could be reduced visibly when the time synchronization algorithm employs
clock speed compensation. Figures 11 and 12 show the local clock skew and global skew for
traditional TTME and multiple TTMEs. The first 50	s is the initialization period for time
synchronization. The accurate ℎ෠௜(ݐ) estimation is due to the high precision clock offset estimation
and it will minimize the clock skew. The local skew of multiple TTMEs algorithm is better than
traditional TTME. The skew of the multiple TTMEs algorithm is smaller than that of traditional
TTME.

0 20 40 60 80 100 120

10
0

Observations

M
S

E
s

Multiple TTME

Traditional TTME

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Observations

C
lo

ck
 s

pe
ed

 e
st

im
at

io
n

er
ro

r

Multiple TTME

Traditional TTME

Figure 9. The normalization MSE of the average synchronization error.

6.2. The Clock Skew

The clock offset estimate error is always introduced to the clock speed estimation and manifests
as clock skew. To restrain the clock skew could improve the precision of synchronization and extend
its hold time. To get a long time synchronization without frequently resynchronizing, it’s an efficient
way to employ an accurate clock speed estimation to restrain the clock skew.

The multiple TTMEs algorithm provides a more accurate clock offset estimate and the clock skew
estimation error needs to be discussed. We have simulated the clock speed estimate efficiency of
traditional TTME and multiple TTMEs. Figure 10 shows the convergence rate. The multiple TTMEs
algorithm is faster and smoother. The multiple TTMEs algorithm needs fewer observations to obtain a
higher precision clock speed estimation, it has more advantages for the WSN time synchronization
applications with poor storage and calculation ability.

Sensors 2017, 17, 1027 14 of 18

Figure 9. The normalization MSE of the average synchronization error.

6.2. The Clock Skew

The clock offset estimate error is always introduced to the clock speed estimation and manifests
as clock skew. To restrain the clock skew could improve the precision of synchronization and extend
its hold time. To get a long time synchronization without frequently resynchronizing, it’s an efficient
way to employ an accurate clock speed estimation to restrain the clock skew.

The multiple TTMEs algorithm provides a more accurate clock offset estimate and the clock
skew estimation error needs to be discussed. We have simulated the clock speed estimate efficiency
of traditional TTME and multiple TTMEs. Figure 10 shows the convergence rate. The multiple TTMEs
algorithm is faster and smoother. The multiple TTMEs algorithm needs fewer observations to obtain
a higher precision clock speed estimation, it has more advantages for the WSN time synchronization
applications with poor storage and calculation ability.

Figure 10. Clock offset estimate precision and clock speed regress precision.

The clock skew could be reduced visibly when the time synchronization algorithm employs
clock speed compensation. Figures 11 and 12 show the local clock skew and global skew for
traditional TTME and multiple TTMEs. The first 50	s is the initialization period for time
synchronization. The accurate ℎ෠௜(ݐ) estimation is due to the high precision clock offset estimation
and it will minimize the clock skew. The local skew of multiple TTMEs algorithm is better than
traditional TTME. The skew of the multiple TTMEs algorithm is smaller than that of traditional
TTME.

0 20 40 60 80 100 120

10
0

Observations

M
S

E
s

Multiple TTME

Traditional TTME

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Observations

C
lo

ck
 s

pe
ed

 e
st

im
at

io
n

er
ro

r

Multiple TTME

Traditional TTME

Figure 10. Clock offset estimate precision and clock speed regress precision.

Sensors 2017, 17, 1027 15 of 18

The clock skew could be reduced visibly when the time synchronization algorithm employs clock
speed compensation. Figures 11 and 12 show the local clock skew and global skew for traditional TTME
and multiple TTMEs. The first 50 s is the initialization period for time synchronization. The accurate
ĥi(t) estimation is due to the high precision clock offset estimation and it will minimize the clock skew.
The local skew of multiple TTMEs algorithm is better than traditional TTME. The skew of the multiple
TTMEs algorithm is smaller than that of traditional TTME.Sensors 2017, 17, 1027 15 of 18

Figure 11. The skew of traditional TTME.

Figure 12. The skew of multiple TTMEs.

As the local skew increases, the global skew will inevitably increase. Since the max frequency
offset is 40	ppm, if the time synchronization algorithm has no clock skew estimation, the global skew
increasing rate is up 2400	μs for every 60	s by Equation (11).

The global skew of traditional TTME increases at the speed nearly 438	μs for every 60	s. The
average speed of local skew increase for traditional TTME is nearly 108	μs for every 60	s, and the
max speed is near 160	μs for every 60	s.

The global skew of the multiple TTMEs algorithm increases at a slower rate, as the speed is
nearly 47	μs for every 60	s . The speed of increase of the local skew for the multiple TTMEs
algorithm is lower also, as the average value is near 14	μs for every 60	s, and the max value is nearly 27	μs for every 60	s.
7. Conclusions

This paper presents an easy method for MLE time synchronization for bridge monitoring
wireless sensor networks. Various sensors are employed for sensing the real-time information of a
bridge and these sensors are deployed on the bridge in the wireless bridge monitoring system, so a
same time notion is important for multiple sensor data fusion. Time synchronization algorithms aim
to build a consistent time notion. The proposed time synchronization algorithm promises an effective
observations set for MLE. We have discussed the error sources of TTME clock offset estimation and
details of different clock offset models. Based on the important assumption that there is fixed offset
for TTMEs, a multiple TTMEs mechanism is proposed to guarantee this assumption. With multiple

100 150 200 250 300 350 400

10
2

10
3

Time(s)

S
ke

w
(μ

s)

Global skew

Max local skew
Average local skew

60 70
0

50

150

100 150 200 250 300 350 400

10
1

10
2

Time(s)

S
ke

w
(μ

s)

Global skew

Max local skew
Average local skew

60 70
0

30

Figure 11. The skew of traditional TTME.

Sensors 2017, 17, 1027 15 of 18

Figure 11. The skew of traditional TTME.

Figure 12. The skew of multiple TTMEs.

As the local skew increases, the global skew will inevitably increase. Since the max frequency
offset is 40	ppm, if the time synchronization algorithm has no clock skew estimation, the global skew
increasing rate is up 2400	μs for every 60	s by Equation (11).

The global skew of traditional TTME increases at the speed nearly 438	μs for every 60	s. The
average speed of local skew increase for traditional TTME is nearly 108	μs for every 60	s, and the
max speed is near 160	μs for every 60	s.

The global skew of the multiple TTMEs algorithm increases at a slower rate, as the speed is
nearly 47	μs for every 60	s . The speed of increase of the local skew for the multiple TTMEs
algorithm is lower also, as the average value is near 14	μs for every 60	s, and the max value is nearly 27	μs for every 60	s.
7. Conclusions

This paper presents an easy method for MLE time synchronization for bridge monitoring
wireless sensor networks. Various sensors are employed for sensing the real-time information of a
bridge and these sensors are deployed on the bridge in the wireless bridge monitoring system, so a
same time notion is important for multiple sensor data fusion. Time synchronization algorithms aim
to build a consistent time notion. The proposed time synchronization algorithm promises an effective
observations set for MLE. We have discussed the error sources of TTME clock offset estimation and
details of different clock offset models. Based on the important assumption that there is fixed offset
for TTMEs, a multiple TTMEs mechanism is proposed to guarantee this assumption. With multiple

100 150 200 250 300 350 400

10
2

10
3

Time(s)

S
ke

w
(μ

s)

Global skew

Max local skew
Average local skew

60 70
0

50

150

100 150 200 250 300 350 400

10
1

10
2

Time(s)

S
ke

w
(μ

s)

Global skew

Max local skew
Average local skew

60 70
0

30

Figure 12. The skew of multiple TTMEs.

As the local skew increases, the global skew will inevitably increase. Since the max frequency
offset is 40 ppm, if the time synchronization algorithm has no clock skew estimation, the global skew
increasing rate is up 2400 µs for every 60 s by Equation (11).

The global skew of traditional TTME increases at the speed nearly 438 µs for every 60 s.
The average speed of local skew increase for traditional TTME is nearly 108 µs for every 60 s, and the
max speed is near 160 µs for every 60 s.

The global skew of the multiple TTMEs algorithm increases at a slower rate, as the speed is nearly
47 µs for every 60 s. The speed of increase of the local skew for the multiple TTMEs algorithm is lower
also, as the average value is near 14 µs for every 60 s, and the max value is nearly 27 µs for every 60 s.

Sensors 2017, 17, 1027 16 of 18

7. Conclusions

This paper presents an easy method for MLE time synchronization for bridge monitoring wireless
sensor networks. Various sensors are employed for sensing the real-time information of a bridge
and these sensors are deployed on the bridge in the wireless bridge monitoring system, so a same
time notion is important for multiple sensor data fusion. Time synchronization algorithms aim to
build a consistent time notion. The proposed time synchronization algorithm promises an effective
observations set for MLE. We have discussed the error sources of TTME clock offset estimation and
details of different clock offset models. Based on the important assumption that there is fixed offset for
TTMEs, a multiple TTMEs mechanism is proposed to guarantee this assumption. With multiple TTMEs,
an observation set which has fixed offset can be created to meet the clock offset MLE. The simulation
results show that compared to traditional TTME algorithms like TPSN, the multiple TTMEs algorithm
can achieve a higher time synchronization precision. The algorithm uses a hierarchical topology
spanning tree to build time synchronization quickly in the networks. As Tomonori, and Spencer [1]
discussed, it is acceptable for SHM that the time synchronization error be smaller than a millisecond,
so the proposed approach in this paper is suitable for bridge SHM.

Further evaluation of our protocol is needed. While there is large random latency in the node
response process, the communication cost of multiple TTME retries should be considered. The timeout
parameter ρ should be optimized to make the time synchronization algorithm converge fast.

Acknowledgments: This work was supported by National Natural Science Foundation of China (Grant No.
61601383, 41227802, 41604088). This work was also supported by National Defense Pre-Research Foundation of
China (Grant No. B3120133002).

Author Contributions: Fanrong Shi designed the algorithm and simulation model, wrote the paper. Xianguo Tuo
helped analysis the clock model and the clock offset increasing rule of hardware clock. Huailiang Li helped
performing the simulation model. Simon X. Yang helped the designing of algorithm and the writing of this paper.
Rui Shi helped the data analysis and figure plotting.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nagayama, T.; Spencer, B.F., Jr. Structural Health Monitoring Using Smart Sensors; Newmark Structural
Engineering Laboratory, University of Illinois at Urbana-Champaign: Urbana-Champaign, IL, USA, 2007.

2. Xiong, C.; Lu, H.; Zhu, J. Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer
Measurements. Sensors 2017, 17, 436. [CrossRef] [PubMed]

3. Chen, Z.-S.; Zhang, C.; Wang, X.; Ma, C.-M. Wind Tunnel Measurements for Flutter of a Long-After body
Bridge Deck. Sensors 2017, 17, 335. [CrossRef] [PubMed]

4. Chae, M.J.; Yoo, H.S.; Kim, J.Y.; Cho, M.Y. Development of a wireless sensor network system for suspension
bridge health monitoring. Autom. Constr. 2012, 21, 237–252. [CrossRef]

5. Jang, S.; Jo, H.; Cho, S.; Mechitov, K.; Rice, J.A.; Sim, S.H.; Jung, H.J.; Yun, C.B.; Spencer, B.F., Jr.; Agha, G.
Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and
evaluation. Smart Struct. Syst. 2010, 6, 439–459. [CrossRef]

6. Rice, J.A.; Mechitov, K.; Sim, S.H.; Nagayama, T.; Jang, S.; Kim, R.; Spencer, B.F., Jr.; Agha, G.; Fujino, Y.
Flexible smart sensor framework for autonomous structural health monitoring. Smart Struct. Syst. 2010, 6,
423–438. [CrossRef]

7. Hu, X.; Wang, B.; Hu, X. A Novel Energy-Balanced Time Synchronization Protocol in Wireless Sensor
Networks for Bridge Structure Health Monitoring. In Proceedings of the 2010 2nd International Workshop
on Database Technology and Applications (DBTA), Wuhan, China, 27–28 November 2010; pp. 1–5.

8. Xu, H.; Song, M.; Wang, X.; Yang, J.; Quan, E. Research and Design of the Clock Synchronization for
the Bridge Health Monitoring System Based on Wireless Sensor Network. In Proceedings of the 2013
International Conference on Information Science and Cloud Computing Companion (ISCC-C), Guangzhou,
China, 7–8 December 2013; pp. 181–187.

http://dx.doi.org/10.3390/s17030436
http://www.ncbi.nlm.nih.gov/pubmed/28241472
http://dx.doi.org/10.3390/s17020335
http://www.ncbi.nlm.nih.gov/pubmed/28208773
http://dx.doi.org/10.1016/j.autcon.2011.06.008
http://dx.doi.org/10.12989/sss.2010.6.5_6.439
http://dx.doi.org/10.12989/sss.2010.6.5_6.423

Sensors 2017, 17, 1027 17 of 18

9. Maróti, M.; Kusy, B.; Simon, G.; Lédeczi, Á. The Flooding Time Synchronization Protocol. In Proceedings of
the Second International Conference of Embedded Networked Sensor Systems (SenSys ’04), Baltimore, MD,
USA, 3–5 November 2004; pp. 39–49.

10. Colombo, A.; Fontanelli, D.; Macii, D.; Palopoli, L. Flexible indoor localization and tracking based on
a wearable platform and sensor data fusion. IEEE Trans. Instrum. Meas. 2014, 63, 864–876. [CrossRef]

11. Gasparri, A.; Pascucci, F. An interlaced extended information filter for self-localization in sensor networks.
IEEE Trans. Mob. Comput. 2010, 9, 1491–1504. [CrossRef]

12. Li, B.; He, Y.; Guo, F.; Zuo, L. A novel localization algorithm based on isomap and partial least squares for
wireless sensor networks. IEEE Trans. Instrum. Meas. 2013, 62, 304–314. [CrossRef]

13. Koo, J.; Panta, R.K.; Bagchi, S.; Montestruque, L.A. A tale of two synchronizing clocks. In Proceedings of
the 7th ACM Conference on Embedded Networked Sensor Systems, University of California, Berkeley, CA,
USA, 4–6 November 2009; pp. 239–252.

14. Gasparri, A.; Krishnamachari, B.; Sukhatme, G.S. A framework for multi-robot node coverage in sensor
networks. Ann. Math. Artif. Intell. 2008, 52, 281–305. [CrossRef]

15. Lee, H.C.; Fang, Y.M.; Lee, B.J.; King, C.T. The tube: A rapidly deployable wireless sensor platform for
supervising pollution of emergency work. IEEE Trans. Instrum. Meas. 2012, 61, 2776–2786. [CrossRef]

16. Gutierrez, J.; Villa-Medina, J.F.; Nieto-Garibay, A.; Porta-Gandara, M.A. Automated irrigation system using
a wireless sensor network and GPRS module. IEEE Trans. Instrum. Meas. 2013, 63, 166–176. [CrossRef]

17. Berger, A.; Poetsch, A.; Springer, A. Synchronized industrial wireless sensor network with IEEE 802.11 ad
hoc data transmission. In Proceedings of the 2013 IEEE International Workshop on Measurements and
Networking Proceedings (M&N), Naples, Italy, 7–8 October 2013; pp. 7–12.

18. Berger, A.; Pichler, M.; Klinglmayr, J.; Potsch, A.; Springer, A. Low-Complex Synchronization Algorithms for
Embedded Wireless Sensor Networks. IEEE Trans. Instrum. Meas. 2015, 64, 1032–1042. [CrossRef]

19. Wang, Z.; Zeng, P.; Zhou, M.; Li, D.; Wang, J. Cluster-Based Maximum Consensus Time Synchronization for
Industrial Wireless Sensor Networks. Sensors 2017, 17, 141. [CrossRef] [PubMed]

20. Wang, J.; Dong, W.; Cao, Z.; Liu, Y. On the Delay Performance in a Large-Scale Wireless Sensor Network:
Measurement, Analysis, and Implications. IEEE/ACM Trans. Netw. 2015, 23, 186–197. [CrossRef]

21. Elson, J.; Girod, L.; Estrin, D. Fine-Grained Network Time Synchronization using Reference Broadcasts.
In Proceedings of the 5th symposium on Operating systems design and implementation, Boston, MA, USA,
9–11 December 2002; pp. 147–163.

22. Cho, H.; Kim, J.; Baek, Y. Enhanced Precision Time Synchronization for Wireless Sensor Networks. Sensors
2011, 11, 7625–7643. [CrossRef] [PubMed]

23. Gong, F.; Sichitiu, M.L. CESP: A Low-power, High-accuracy Time Synchronization Protocol. IEEE Trans.
Veh. Technol. 2015, 65, 1. [CrossRef]

24. Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-Sync Protocol for Sensor Networks. In Proceedings of the
1st international conference on Embedded networked sensor systems (SenSys ’03), Los Angeles, CA, USA,
5–7 November 2003; pp. 138–149.

25. Christoph, L.; Sommer, P.; Wattenhofer, R. Optimal clock synchronization in networks. In Proceedings of
the International Conference on Embedded Networked Sensor Systems SENSYS 2009, Berkeley, CA, USA,
4–6 November 2008; pp. 225–238.

26. Yildirim, K.S.; Kantarci, A. Time Synchronization Based on Slow-Flooding in Wireless Sensor Networks.
IEEE Trans. Parallel. Distrib. Syst. 2014, 25, 244–253. [CrossRef]

27. Sommer, P.; Wattenhofer, R. Gradient Clock Synchronization in Wireless Sensor Networks. In Proceedings of
the International Conference on Information Processing in Sensor Networks 2009. IPSN 2009, Washington,
DC, USA, 13–16 April 2009; pp. 37–48.

28. Yildirim, K.S.; Kantarci, A. External Gradient Time Synchronization in Wireless Sensor Networks. IEEE Trans.
Parallel Distrib. Syst. 2014, 25, 633–641. [CrossRef]

29. Schenato, L.; Fiorentin, F. Average Timesynch: A Consensus-Based Protocol for Clock Synchronization in
Wireless Sensor Networks. Automatica 2011, 47, 1878–1886. [CrossRef]

30. He, J.; Cheng, P.; Shi, L.; Chen, J.; Sun, Y. Time Synchronization in WSNs: A Maximum-Value-Based
Consensus Approach. IEEE Trans. Autom. Control 2014, 59, 660–675. [CrossRef]

31. Maggs, M.K.; O'Keefe, S.G.; Thiel, D.V. Consensus Clock Synchronization for Wireless Sensor Networks.
IEEE Sens. J. 2012, 12, 2269–2277. [CrossRef]

http://dx.doi.org/10.1109/TIM.2013.2283546
http://dx.doi.org/10.1109/TMC.2010.122
http://dx.doi.org/10.1109/TIM.2012.2216476
http://dx.doi.org/10.1007/s10472-009-9126-9
http://dx.doi.org/10.1109/TIM.2012.2200392
http://dx.doi.org/10.1109/TIM.2013.2276487
http://dx.doi.org/10.1109/TIM.2014.2366272
http://dx.doi.org/10.3390/s17010141
http://www.ncbi.nlm.nih.gov/pubmed/28098750
http://dx.doi.org/10.1109/TNET.2013.2296331
http://dx.doi.org/10.3390/s110807625
http://www.ncbi.nlm.nih.gov/pubmed/22164035
http://dx.doi.org/10.1109/TVT.2015.2417810
http://dx.doi.org/10.1109/TPDS.2013.40
http://dx.doi.org/10.1109/TPDS.2013.58
http://dx.doi.org/10.1016/j.automatica.2011.06.012
http://dx.doi.org/10.1109/TAC.2013.2286893
http://dx.doi.org/10.1109/JSEN.2011.2182045

Sensors 2017, 17, 1027 18 of 18

32. Xiao, H.; Ogai, H.; Ding, Z. A Distributed Multi-hop Low Cost Time Synchronization Algorithm in Wireless
Sensor Network developed for Bridge Diagnosis System. IEEJ Trans. Electron. Inf. Syst. 2012, 132, 656–665.
[CrossRef]

33. Gong, Y.; Ogai, H.; Li, W. A partial TPSN time offset synchronization scheme in Wireless Sensor Network
applied for Bridge Health Diagnosis System. In Proceedings of the 2011 International Conference on
Computer Science and Network Technology, Harbin, China, 24–26 December 2011; pp. 254–258.

34. Djenouri, D.; Bagaa, M. Synchronization Protocols and Implementation Issues in Wireless Sensor Networks:
A Review. IEEE Syst. J. 2016, 10, 1–11. [CrossRef]

35. Lenzen, C.; Locher, T.; Sommer, P.; Wattenhofer, R. Clock synchronization: Open Problems in Theory and
Practice. In Proceedings of the Sofsem 2010: Theory and Practice of Computer Science, Spindleruv Mlyn,
Czech Republic, 23–29 Janurary 2010; pp. 61–70.

36. Chaudhari, Q.M.; Serpedin, E.; Qaraqe, K. Some Improved and Generalized Estimation Schemes for Clock
Synchronization of Listening Nodes in Wireless Sensor Networks. IEEE Trans. Commun. 2010, 58, 63–67.
[CrossRef]

37. Wang, H.; Zeng, H.; Wang, P. Linear Estimation of Clock Frequency Offset for Time Synchronization Based
on Overhearing in Wireless Sensor Networks. IEEE Commun. Lett. 2016, 20, 288–291. [CrossRef]

38. Jeske, D.R. On Maximum-Likelihood Estimation of Clock Offset. IEEE Trans. Commun. 2005, 53, 53–54.
[CrossRef]

39. Abdel-Ghaffar, H.S. Analysis of synchronization algorithm with time-out control over networks with
exponentially symmetric delays. IEEE Trans. Commun. 2002, 50, 1652–1661. [CrossRef]

40. Noh, K.L.; Chaudhari, Q.M.; Serpedin, E.; Suter, B.W. Novel Clock Phase Offset and Skew Estimation Using
Two-Way Timing Message Exchanges for Wireless Sensor Networks. IEEE Trans. Commun. 2007, 55, 766–777.
[CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1541/ieejeiss.132.656
http://dx.doi.org/10.1109/JSYST.2014.2360460
http://dx.doi.org/10.1109/TCOMM.2010.01.080226
http://dx.doi.org/10.1109/LCOMM.2015.2510645
http://dx.doi.org/10.1109/TCOMM.2004.840668
http://dx.doi.org/10.1109/TCOMM.2002.803979
http://dx.doi.org/10.1109/TCOMM.2007.894102
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Models
	Time Synchronization for SHM of Bridges
	Clock Model
	TTME Clock Offset Estimation Model

	Preliminaries for TTME Clock Offset Estimate
	Increasing Clock Offset
	Fixed Clock Offset for Logic Time

	The Multiple TTMEs for Time Synchronization
	The Clock Offset and Clock Speed Correction
	MLE Clock Offset Estimation
	Linear Regression Clock Speed Estimation

	Simulation Results and Discussion
	The Synchronization Error
	The Clock Skew

	Conclusions

