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Abstract: Cement-based piezoelectric materials are widely used due to the fact that compared with
common smart materials, they overcome the defects of structure-incompatibility and frequency
inconsistency with a concrete structure. However, the present understanding of the mechanical
behavior of cement-based piezoelectric smart materials under impact load is still limited. The dynamic
characteristics under impact load are of importance, for example, for studying the anti-collision
properties of engineering structures and aircraft takeoff-landing safety. Therefore, in this paper,
an analytical model was proposed to investigate the dynamic properties of a 2-2 cement-based
piezoelectric dual-layer stacked sensor under impact load based on the piezoelectric effect. Theoretical
solutions are obtained by utilizing the variable separation and Duhamel integral method. To simulate
the impact load and verify the theory, three types of loads, including atransient step load, isosceles
triangle load and haversine wave load, are considered and the comparisons between the theoretical
results, Li’s results and numerical results are presented by using the control variate method and
good agreement is found. Furthermore, the influences of several parameters were discussed and
other conclusions about this sensor are also given. This should prove very helpful for the design and
optimization of the 2-2 cement-based piezoelectric dual-layer stacked sensor in engineering.

Keywords: cement-based piezoelectric sensor; impact load; dynamic properties; theoretical solutions;
numerical analysis; variable separation method; Duhamel integral

1. Introduction

Cement-based piezoelectric sensors, a new kind of functional structure developed in recent
decades, are fabricated from a cement matrix and piezoelectric ceramic phase in different volume
fractions and using various mixing rules [1,2]. Cement-based piezoelectric composites have very
sensitive transduction properties as well as good compatibility with the most popular construction
materials (such as cement and concrete) used in civil engineering. They have received much research
attention in recent years and have great potential application as a novel kind of electromechanical
sensor material in structural health monitoring, which makes it crucial to study the overall properties
of cement-based piezoelectric composites for sensor design, practical engineering application and
optimization [3–5].

Most of the studies have focused on the preparation of cement-based piezoelectric sensors and
determining their relevant parameters by experimental methods. By using a cut-filling process,
Huang et al. prepared 2-2 cement-based piezoelectric composites [6,7]. In their paper, the effects of
ceramic volume fraction and water-cement ratio on the properties of the composites were studied.
The results indicated that the piezoelectric strain constant increases rapidly with increasing volume
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fraction of ceramic, while the water-cement ratio has little influence on the piezoelectric properties of
the composite. Li et al. prepared 2-2 cement-based piezoelectric composites and two kinds of properties
of the actuator and sensor—converse piezoelectric effect and piezoelectric effect—were introduced [8,9].
Using embedded 1-3 cement-based piezoelectric sensors, Qin et al. have prepared plain concrete
and engineered cement composite beams [10]. Active and passive detection of beams’ damage
evolution could be performed with these sensors. Cheng et al. have prepared a 1-3 cement-based
piezoelectric ceramic composite [11]. In their essay, the influences of temperature, aspect ratios of
piezoelectric ceramic rods and piezoelectric ceramic volume fraction on the dielectric and piezoelectric
properties of the composites were studied. By using the dice-and-fill technique, Xu et al. prepared
2-2 cement-based piezoelectric composites [12]. In their paper, the effects of cement matrix and
composite thickness on the acoustic and electrical properties of the composites were researched. They
have also fabricated 2-2 cement/polymer based piezoelectric composites with inorganic fillers and
investigated the effects of filler content and composite thickness on the properties of the composites [13].
Gong et al. have fabricated cement-based piezoelectric composites containing carbon nanotubes
and found that the addition of nanotubes significantly enhances the piezoelectric properties of the
composites [14]. Yang et al. have researched the sensitivity of the electromechanical admittance
and the structural mechanical impedance to damages in a concrete structure [15]. Xing et al. have
researched the influences of the impedance spectra of cement-based piezoelectric composites and
studied the pore structure and its effects on the properties of composites [16,17]. Chaipanich et al. have
investigated the dielectric properties of 2-2 connectivity lead magnesium niobate-lead titanate cement
composites [18,19]. They have also researched the influences of 1-year ageing on the piezoelectric
coefficient of the composite after poling. Chaipanich et al. have further prepared 0–3 piezoelectric
lead zirconate titanate ceramic-cement composites, then the ferroelectric hysteresis behavior and
piezoelectric force microscope characterization of the composites were studied [20]. Li et al. have
developed a new type of cement-based piezoelectric sensor to monitor traffic flows in the field of
transportation [21].

Meanwhile, studies on the dynamic characteristics of cement-based piezoelectric sensors are
still relatively limited. Until now, only a few theoretical studies have dealt with the analysis of
cement-based piezoelectric composites. Han et al. obtained theoretical solutions for four kinds of
cement-based piezoelectric composites under external load. The influences of the polarization direction
and material parameters on the theoretical solutions were studied and the relationship between the
blocking force and the applied voltage of the actuators was obtained [22]. By using the displacement
method, Zhang et al. have studied the dynamic characteristics of 2-2 cement-based piezoelectric sensors
under the influence of external sinusoidal electrical potential and external sinusoidal pressure [23].
Zhang et al. have also studied the dynamic properties of piezoelectric structures under impact load
and the theoretical solutions of the mechanical and electrical fields of the piezoelectric structure were
obtained with the standing and traveling wave methods [24]. Because a dynamic load can cause serious
damage to the composite structure, it is meaningful to study the theoretical dynamic characteristics of
cement-based piezoelectric composites, especially under impact load.

In a setting of the anti-collision properties of engineering structures and aircraft takeoff-landing
safety, this paper focuses on the properties of a 2-2 cement-based piezoelectric dual-layer stacked sensor
under impact load. The basic equations are given in Section 2 based on the theory of piezo-elasticity.
Next in Section 3, by combining these equations and boundary conditions, theoretical solutions
of 2-2 cement-based piezoelectric dual-layer stacked sensor are obtained by utilizing the variable
separation method and Duhamel integral. In Section 4, comparisons between the theoretical results,
Li’s results [25] and numerical results are presented and discussed using the control variate method
and good agreement is found. During the numerical calculation, the transient step load, the transient
isosceles triangle load and transient haversine wave load are used to simulate impact loads, respectively.
The influences of the thickness of piezoelectric layer and the parameters of the piezoelectric material are
discussed, thus verifying the validity of the theoretical solutions. Finally, a summary and conclusions
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are presented. This study should be very helpful for the design and optimization of 2-2 cement-based
piezoelectric dual-layer stacked sensors in engineering.

2. Basic Equations

Figure 1a is a schematic of a 2-2 cement-based piezoelectric dual-layer stacked sensor with one
fixed end and the other free. The bottom and top layers of the sensor, denoted as C#1 (thickness l1)
and P#2 (thickness h2), are the cement and piezoelectric layer, respectively. The free end of the sensor
is subjected to an impact load δ(t). The symbols D, E, ε and σ denote the electric displacement, electric
field, strain and stress, respectively, with reference to the Cartesian coordinate system. Linear elastic
material is assumed for the material of the cement and piezoelectric layer. Figure 1b is a force analysis
diagram of the element in the longitudinal vibration of sensor.
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Figure 1. Theoretical analysis diagram: (a) Schematic of 2-2 cement-based piezoelectric dual-layer
stacked sensor; (b) Force analysis of the element in the longitudinal vibration of sensor.

According to Figure 1b and Newton’s second law, we can get the equilibrium condition of the
sensor longitudinal arbitrary unit body:

ρAdz
∂2w
∂t2 =

∂FN
∂z

dz + δ(t)δ(z− l2)Adz (1)

Here A, ρ and w are, respectively, the cross section, density and displacement of the specific
cement and piezoelectric layer. δ(t)δ(z − l2) suggests that the sensor is subjected to the impact load at
the free end. The expressions for δ(t) and δ(z− l2) can be written as:

δ(t) =

{
∞, t = 0
0, t 6= 0

δ(z− l2) =

{
∞, z = l2
0, z 6= l2

(2)

Equation (1) can also be written as:

∂2w
∂t2 =

1
ρ

∂σN
∂z

+
δ(t)δ(z− l2)

ρ
(3)
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It should be noted that the first expression on the right of Equation (3) represents the acceleration of
the sensor generated by internal force, and the second expression represents the acceleration generated
by external force. Therefore, we introduce the theoretical density ρT , ρT is expressed as follows:

ρT = ρcVc + ρpVp (4)

Here ρc, Vc and ρp, Vp are, respectively, the density and volume fraction of the cement and
piezoelectric material constituting the sensor. Then Equation (3) can be written as:

∂2w
∂t2 =

1
ρ

∂σN
∂z

+
δ(t)δ(z− l2)

ρT
(5)

For the cement layer C#1 (0 ≤ z ≤ l1), according to Equation (5) and without considering the
body force and body charge, the basic equations can be written as:

∂2wc
∂t2 = 1

ρc
∂σzc
∂z + δ(t)δ(z−l2)

ρT

σzc = C33cεzc

εzc =
∂wc
∂z

(6)

Here C33c, ρc and wc are, respectively, the elastic stiffness coefficient, density and displacement of
the cement material. Equations (2) and (6) are combined to give the following equation:

∂2wc

∂t2 − Ca
2 ∂2wc

∂z2 = 0 (7)

Here Ca =
√

C33c/ρc represents the propagation velocity of the vibration wave in the cement
layer. For the piezoelectric layer P#2 (l1 ≤ z ≤ l2), according to Equation (5) and without considering
the body force and body charge, the basic equations can also be written as follows:

∂2wp
∂t2 = 1

ρp

∂σzp
∂z + δ(t)δ(z−l2)

ρT

σzp = C33pεzp − e33Ez

εzp =
∂wp
∂z

(8)


Dz = e33εzp + εS

33Ez

Ez = − ∂φ
∂z

∂Dz
∂z = 0

(9)

Here C33p, e33, εS
33 and wp are, respectively, the elastic stiffness coefficient, piezoelectric coefficient,

permittivity coefficient and displacement of the piezoelectric material.
Equations (2), (8) and (9) are combined to give the following equations:

∂2wp
∂t2 =

C33p
ρp

∂2wp
∂z2 + e33

ρp

∂2φ

∂z2 + δ(t)δ(z−l2)
ρT

εS
33

∂2φ

∂z2 = e33
∂2wp
∂z2

(10)

which could be rewritten as:
∂2wp

∂t2 − Cb
2 ∂2wp

∂z2 =
δ(t)
ρT

δ(z− l2) (11)

Here Cb =
√

E0/ρp represents the propagation velocity of the vibration wave in the piezoelectric
layer, here, E0= C33p+e33

2/εS
33 .

Considering the initial conditions and boundary conditions of the sensor, the equation of motion
and the definite conditions are summarized as follows:
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Combining Equation (12f) with Equation (15) gives the following relation: 

where E0 is the modulus of elasticity of the piezoelectric material.
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In this section, the exact solution of a 2-2 cement-based piezoelectric dual-layer stacked sensor
can be obtained by utilizing the variable separation method (also known as standing wave method)
and the Duhamel integral. Firstly, the displacement of the cement and piezoelectric material can be
decomposed as follows: {
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wp(z, t) = Zp(z)Tp(t)
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Combining Equation (12f) with Equation (15) gives the following relation: 

{
Tc ′′ (t) + λ1Ca

2Tc(t) = 0; t ≥ 0
Tp ′′ (t) + λ2Cb

2Tp(t) = 0; t ≥ 0
(15)

Combining Equation (12f) with Equation (15) gives the following relation:√
λ1Ca =

√
λ2Cb (16)

Solving Equations (14a) and (14b) obtains the following solutions:{
Zcn(z) = a1n cos

√
λ1nz + b1n sin

√
λ1nz; 0 ≤ z ≤ l1

Zpn(z) = a2n cos
√

λ2nz + b2n sin
√

λ2nz; l1 ≤ z ≤ l2
(17)
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in which a1n, b1n, a2n, b2n are undetermined coefficients. Substitution of Equation (17) into
Equations (14c) and (14d) leads to the following equations:

a1n = 0
a2n sin

√
λ2nl2 − b2n cos

√
λ2nl2 = 0

a1n cos
√

λ1nl1 + b1n sin
√

λ1nl1 − a2n cos
√

λ2nl1 − b2n sin
√

λ2nl1 = 0

C33c
√

λ1n(a1n sin
√

λ1nl1 − b1n cos
√

λ1nl1)− E0
√

λ2n(a2n sin
√

λ2nl1 − b2n cos
√

λ2nl1) = 0

(18)

Solving Equation (18) obtains the following solutions:

a1n = 0
b1n = 1

a2n = sin
√

λ1nl1 cos
√

λ2nl1 − C33c
√

λ1n
E0
√

λ2n
· cos

√
λ1nl1 sin

√
λ2nl1

b2n = sin
√

λ1nl1 sin
√

λ2nl1 +
C33c
√

λ1n
E0
√

λ2n
· cos

√
λ1nl1 cos

√
λ2nl1

(19)

In order to make a1n, b1n, a2n, b2n have untrivial solutions, let the coefficient determinant of
Equation (18) equals to zero:∣∣∣∣∣∣∣∣∣∣

1 0 0 0
0 0 sin
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λ2nl2 − cos
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λ2nl2

cos
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√
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√

λ1n sin
√
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√

λ1n cos
√
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√

λ2n sin
√

λ2nl1 E0
√

λ2n cos
√

λ2nl1

∣∣∣∣∣∣∣∣∣∣
= 0 (20)

That means that the following formula must be satisfied:

C33c
√

λ1n cos
√

λ1nl1 cos
√

λ2nh2 − E0
√

λ2n sin
√

λ1nl1 sin
√

λ2nh2 = 0 (21)

where h2= l2−l1. On the basis of Equation (16), we can obtained the relation
√

λ1nCa =
√

λ2nCb =√
λn. Then we define:

t1 =
l1
Ca

, t2 =
h2

Cb
, t1 + t2 = T0, t1 =

t1

T0
, t2 =

t2

T0
,
√

λnT0 =

√
λn (22)

Utilizing Equation (22) and relation
√
λ1nCa =

√
λ2nCb =

√
λn, we can obtain that

√
λ1nl1 =√

λnt1,
√
λ2nh2 =

√
λnt2,

√
λ1n =

√
λ2n · Cb

Ca
and
√
λ1n =

√
λn

T0Ca
,
√
λ2n =

√
λn

T0Cb
. Thus Equation (21) can

be simplified as the dimensionless characteristic equation:

C33cCb cos
√

λnt1 cos
√

λnt2 − E0Ca sin
√

λnt1 sin
√

λnt2 = 0 (23)

After obtaining the value of
√

λn by the equation above,
√

λ1n and
√

λ2n can be obtained by
√

λ1n =

√
λn

T0Ca
and
√

λ2n =

√
λn

T0Cb
, respectively, so the corresponding eigenfunctions can be obtained.

According to the variable separation method:
wc(z, t) =

∞
∑

n=1
Tn(t) · sin

√
λ1nz

wp(z, t) =
∞
∑

n=1
Tn(t) · (a2n cos

√
λ2nz + b2n sin

√
λ2nz)

(24)

where n = 1, 2, 3, · · · . Substituting Equation (24) into Equations (12a) and (12b) leads to the
following equations:
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(26)

2

1

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

( ) ( cos sin );
( ) ( ) ( cos sin )d

( ) ( cos sin );

n n n n
l T

m m m ml
T

m m n m
T

t a l b l n m
t z l a z b z z

t a l b l n m


 


  


 




  


    

   


 (27)

So when n	=	m, the following equation can be obtained (n	≠	m meaningless): 

''
2 2 2 2 2 2

( )( ) ( ) ( cos sin )n n n n n n n
n T

tT t T t a l b l
M


  


     (28)

where: 

     
1 2

1

2 2
1 2 2 2 20

(sin ) d ( cos sin ) d
l l

n n n n n nl
M z z a z b z z  (29)

Since the initial conditions of the sensor is zero, the Equation (28) can be solved by the 
Duhamer integral formula: 

Using sin
√

λ1mz to multiplied both sides of Equation (25a), and taken definite integral
∫ l1

0 dz;
using a2m cos

√
λ2mz + b2m sin

√
λ2mz to multiplied both sides of Equation (25b), and taken definite

integral
∫ l2

l1
dz, then added these two equations. Combining the weighted orthogonality of the

eigenfunctions and we can obtained the following equations:

∫ l1
0 (sin

√
λ1nz · sin

√
λ1mz)dz = 0; n 6= m∫ l2

l1
(a2n cos

√
λ2nz + b2n sin

√
λ2nz) · (a2m cos

√
λ2mz + b2m sin

√
λ2mz)dz = 0; n 6= m∫ l1

0 (sin
√

λ1nz)2dz = l1
2 −

sin 2
√

λ1n l1
4
√

λ1n
; n = m∫ l2

l1
(a2n cos

√
λ2nz + b2n sin

√
λ2nz)2dz = a2nb2n

cos 2
√

λ2n l1−cos 2
√

λ2n l2
2
√

λ2n
+

a2n
2( h2

2 + sin 2
√

λ2n l2−sin 2
√

λ2n l1
4
√

λ2n
) + b2n

2( h2
2 −

sin 2
√

λ2n l2−sin 2
√

λ2n l1
4
√

λ2n
); n = m

(26)

∫ l2
l1

δ(t)
ρT

δ(z− l2) · (a2m cos
√

λ2mz + b2m sin
√

λ2mz)dz =

{
δ(t)
ρT
· (a2n cos

√
λ2nl2 + b2n sin

√
λ2nl2); n = m

δ(t)
ρT
· (a2m cos

√
λ2ml2 + b2n sin

√
λ2ml2); n 6= m

(27)

So when n = m, the following equation can be obtained (n 6= m meaningless):

Tn
′′ (t) + λnTn(t) =

δ(t)
MnρT

· (a2n cos
√

λ2nl2 + b2n sin
√

λ2nl2) (28)

where:

Mn =
∫ l1

0
(sin

√
λ1nz)

2
dz +

∫ l2

l1
(a2n cos

√
λ2nz + b2n sin

√
λ2nz)

2
dz (29)

Since the initial conditions of the sensor is zero, the Equation (28) can be solved by the Duhamer
integral formula:

Tn(t) =
(a2n cos

√
λ2n l2+b2n sin

√
λ2n l2)

MnρT

√
λn

·
∫ t

0 δ(τ) sin
√

λn(t− τ)dτ

= (a2n cos
√

λ2n l2+b2n sin
√

λ2n l2)

MnρT

√
λn

· sin
√

λnt
(30)

Therefore, the exact solutions of the displacement of 2-2 cement-based piezoelectric dual-layer
stacked sensor under impact load can be obtained as:

wc(z, t) =
∞
∑

n=1

Dn√
λn
· sin

√
λnt sin

√
λ1nz; t ≥ 0, 0 ≤ z ≤ l1

wp(z, t) =
∞
∑

n=1

Dn√
λn
· sin

√
λnt(a2n cos

√
λ2nz + b2n sin

√
λ2nz); t ≥ 0, l1 ≤ z ≤ l2

(31)

where Dn =
(a 2n cos

√
λ2n l2+b2n sin

√
λ2n l2)

MnρT
; n = 1, 2, 3, · · · .

Combining Equations (6), (8), (9) and (12h), the exact precise solutions of the mechanical and
electrical quantities of 2-2 cement-based piezoelectric dual-layer stacked sensor under impact load can
be obtained as follows:
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Stress functions:
σc(z, t) =

∞
∑

n=1

C33cDn
√

λ1n√
λn

· sin
√

λnt cos
√

λ1nz; t ≥ 0, 0 ≤ z ≤ l1

σp(z, t) =
∞
∑

n=1

E0Dn
√

λ2n√
λn

· sin
√

λnt(b2n cos
√

λ2nz− a2n sin
√

λ2nz); t ≥ 0, l1 ≤ z ≤ l2
(32)

Strain functions:
εc(z, t) =

∞
∑

n=1

Dn
√

λ1n√
λn
· sin

√
λnt cos

√
λ1nz; t ≥ 0, 0 ≤ z ≤ l1

εp(z, t) =
∞
∑

n=1

Dn
√

λ2n√
λn
· sin

√
λnt(b2n cos

√
λ2nz− a2n sin

√
λ2nz); t ≥ 0, l1 ≤ z ≤ l2

(33)

Velocity functions:
vc(z, t) =

∞
∑

n=1
Dn · cos

√
λnt sin

√
λ1nz; t ≥ 0, 0 ≤ z ≤ l1

vp(z, t) =
∞
∑

n=1
Dn · cos

√
λnt(a2n cos

√
λ2nz + b2n sin

√
λ2nz); t ≥ 0, l1 ≤ z ≤ l2

(34)

Acceleration functions:
ac(z, t) =

∞
∑

n=1
−Dn

√
λn · sin

√
λnt sin

√
λ1nz; t ≥ 0, 0 ≤ z ≤ l1

ap(z, t) =
∞
∑

n=1
−Dn

√
λn · sin

√
λnt(a2n cos

√
λ2nz + b2n sin

√
λ2nz); t ≥ 0, l1 ≤ z ≤ l2

(35)

Electric potential of piezoelectric layer:

φ(z, t) =
∞
∑

n=1

e33ρpDn
√

λn

(C33pεS
33+e33

2)λ2n
· sin

√
λnt · [a2n(cos

√
λ2nz− cos

√
λ2nl1) + b2n(sin

√
λ2nz− sin

√
λ2nl1)]; t ≥ 0, l1 ≤ z ≤ l2 (36)

Electric field intensity of piezoelectric layer:

E(z, t) =
∞
∑

n=1
− e33ρpDn

√
λn

(C33pεS
33+e33

2)
√

λ2n
· sin

√
λnt · (b2n cos

√
λ2nz− a2n sin

√
λ2nz); t ≥ 0, l1 ≤ z ≤ l2 (37)

Thus, the precise mechanical and electrical fields of 2-2 cement-based piezoelectric dual-layer
stacked sensor under impact load have been fully determined by the variable separation method and
Duhamel integral.

4. Comparison and Discussion

In this section, a numerical simulation of the 2-2 cement-based piezoelectric dual-layer stacked
sensor under impact load is presented and compared with the theoretical solutions obtained in the
previous sections and Li’s results [25]. The total thickness of the sensor l2 is taken as 0.015 m. It is
defined that the cement layer and piezoelectric layer are made of ordinary Portland cement and
piezoelectric ceramics, respectively. The main material parameters of piezoelectric ceramics are based
on Li’s experiments [26]. The related structural and material parameters take the values summarized
in Table 1.
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Table 1. The related structural and material parameters of the sensor.

Material Thickness Density Elastic Stiffness
Coefficient

Poisson’s
Ratio

Piezoelectric
Coefficient

Permittivity
Coefficient

Ordinary Portland
Cement 0.005 m 2500 kg/m3 2.5× 1010 Pa 0.2 / /

Piezoelectric
Ceramics 0.010 m 5700 kg/m3 6.0× 1010 Pa / 0.75 C/m2 52.5 ε0

1

1 ε0 = 8.85× 10−12 F/m is the vacuum dielectric constant.

The numerical simulation analysis is modeled by the finite element analysis software, and the
size of the model is 0.001 m× 0.001 m× 0.015 m. The direction of polarization is z-axis. By using the
free meshing method, the unit partition of the analysis model is divided into 10, 10 and 300 segments
along x, y and z axis, respectively. The upper and lower surfaces of the piezoelectric layer in the z-axis
direction are subjected to the piezoelectric coupling. The electric potential of the lower surface of the
piezoelectric layer is set to zero. The model is loaded and solved after the symmetrical boundary
conditions are set on the four sides of the model. The impact load Q(t) used in this numerical
simulation analysis includes three types, namely, the transient step load (denoted as load A), transient
isosceles triangle load (denoted as load B) and transient haversine wave load (denoted as load C).
The three types of loads are shown in Figure 2 and they all satisfy

∫ +∞
−∞ Q(t)dt = 1.
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Figure 2. Schematics of the impact loads in the numerical simulation analysis: (a) The transient step
load; (b) The transient isosceles triangle load; (c) The transient haversine wave load.

The theoretical influences of the impact load δ(t) on the displacements wp(l 2, t
)

and wc(l 1, t) at
the free end of the sensor and the interface between the piezoelectric and cement layer when n = 1,
n = 2, n = 10 and n = 1000 are shown in Figure 3. It is noted that the displacement functions of
the sensor agrees well for n = 1, 2, 10 and 1000. For convenience and without loss of generality,
the theoretical solution with n = 2 is selected for the following analysis except for special instructions.
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Figure 3. Influences of the impact load δ(t) on displacements of the sensor when n = 1, n = 2, n = 10
and n = 1000: (a) Influence on displacement wp(l 2, t

)
at the free end of the sensor; (b) Influence on

displacement wc(l 1, t) at the interface between the piezoelectric and cement layer.

The comparison between the theoretical and numerical solutions of the time-dependent
displacement function wp(l 2, t

)
at the free end of the sensor is shown in Figure 4. It can be found from

Figure 4a–c that the numerical simulation and the theoretical solutions are closer when the peak value
of the impact loads A, B and C is 800 kPa. Furthermore, when the peak value of impact load is larger,
the simulation results become closer to the theoretical solutions.
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Figure 4d indicates that the numerical simulation under the load A is slightly better than those
obtained under the loads B and C. Therefore, the numerical simulations indicate that the transient step
load A (shown in Figure 2a) behaves more closely to the function δ(t) in this theoretical solution.

For the sensor under the impact load δ(t) and the load A, B, C with peak value 800 kPa,
the displacement wc(l 1, t), electric potential φ(l 2, t) and stress σc(l 1, t) are plotted in Figure 5. It can
also be seen that the results with the load A are closer to the theoretical solutions as compared to the
loads B and C.
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The influences of the thickness of piezoelectric layer on the dynamic characteristics of the sensor
are analyzed as follows: the amplitude and period of the displacement of the free end are different for
different assumed thicknesses of the piezoelectric layer, namely h2 = 0.000 m (pure cement structure),
0.005 m, 0.010 m and 0.015 m (pure piezoelectric structure), as shown in Figure 6a. To keep the overall
thickness of the sensor unchanged, the thickness of the cement layer l1 is taken as 0.015 m, 0.010 m,
0.005 m and 0 m, respectively. It can be seen that the displacement amplitude and period of the free
end are both larger than that of the pure piezoelectric structures, and the thinner the piezoelectric
layer, the larger the displacement amplitude and period. Furthermore, Li et al. have obtained the
displacement function of the elastic rod under the impact load ([25], pp. 70–74). Zhang et al. have also
researched the dynamic characteristics of the pure piezoelectric structure under the impact loading [24].
Comparing the theory at present paper with their theories, as shown in Figure 6b,c, and it can be found
that the displacement of the free end of pure cement structure and pure piezoelectric structure are in
good agreement with Li’s and Zhang’s theories, respectively. It also shows the rationality of using the
theoretical density in Section 2, and the correctness of the theory presented in this paper.



Sensors 2017, 17, 1019 12 of 17

Sensors 2017, 17, 1019 12 of 17 

 

The influences of the thickness of piezoelectric layer on the dynamic characteristics of the 
sensor are analyzed as follows: the amplitude and period of the displacement of the free end are 
different for different assumed thicknesses of the piezoelectric layer, namely h2 = 0.000 m (pure 
cement structure), 0.005 m, 0.010 m and 0.015 m (pure piezoelectric structure), as shown in 
Figure 6a. To keep the overall thickness of the sensor unchanged, the thickness of the cement layer 
l1  is taken as 0.015 m, 0.010 m , 0.005 m  and 0 m , respectively. It can be seen that the 
displacement amplitude and period of the free end are both larger than that of the pure 
piezoelectric structures, and the thinner the piezoelectric layer, the larger the displacement 
amplitude and period. Furthermore, Li et al. have obtained the displacement function of the elastic 
rod under the impact load ([25], pp. 70–74). Zhang et al. have also researched the dynamic 
characteristics of the pure piezoelectric structure under the impact loading [24]. Comparing the 
theory at present paper with their theories, as shown in Figure 6b,c, and it can be found that the 
displacement of the free end of pure cement structure and pure piezoelectric structure are in good 
agreement with Li’s and Zhang’s theories, respectively. It also shows the rationality of using the 
theoretical density in Section 2, and the correctness of the theory presented in this paper. 

(a) (b)

(c)

Figure 6. Influences of the thickness of piezoelectric layer h2 on the displacement wp(l2,t) of the 
sensor: (a) Influence on the distribution of the displacement wp(l2,t) with n		=		100; (b) Theoretical 
comparison with Li’s theory and Zhang’s theory ( n	=	100 , 0		≤		t		≤		1	×	10ି4 s ); (c) Theoretical 
comparison with Li’s theory and Zhang’s theory (n		=		100, 0		≤		t		≤		1	×	10ି5 s). The overall thickness 
of the sensor l2		=		0.015 m. 

The distributions of the displacement w(z,t0), electric potential ϕ(z,t0) and stress σ(z,t0) along 
the z-axis are shown in Figure 7a–c, respectively. The displacement at the free end of the sensor 
firstly peaks at t0  and t0		=		0.74	×	10ି5	s. It can be found that with the increases of h2 , the 
displacement w(z,t0) and stress σ(z,t0) of the composite structure and pure piezoelectric structure 
decreases, and the electric potential of the piezoelectric layer increases as h2 increases. When the 
cement layer is thicker, the overall displacement change is larger; for a pure piezoelectric structure 

Figure 6. Influences of the thickness of piezoelectric layer h2 on the displacement wp(l 2, t
)

of the sensor:
(a) Influence on the distribution of the displacement wp(l 2, t

)
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with Li’s theory and Zhang’s theory (n = 100, 0 ≤ t ≤ 1× 10−4 s); (c) Theoretical comparison with
Li’s theory and Zhang’s theory (n = 100, 0 ≤ t ≤ 1× 10−5 s). The overall thickness of the sensor
l2 = 0.015 m.

The distributions of the displacement w(z, t 0), electric potential φ(z, t 0) and stress σ(z, t 0) along
the z-axis are shown in Figure 7a–c, respectively. The displacement at the free end of the sensor firstly
peaks at t0 and t0 = 0.74× 10−5 s. It can be found that with the increases of h2, the displacement
w(z, t 0) and stress σ(z, t 0) of the composite structure and pure piezoelectric structure decreases, and
the electric potential of the piezoelectric layer increases as h2 increases. When the cement layer is
thicker, the overall displacement change is larger; for a pure piezoelectric structure (l1 = 0 m), the
overall displacement of the structure is minimized. This shows that the actuating capability of the
cement-based piezoelectric dual-layer stacked sensor is better than that of a pure piezoelectric structure.

The influences of the elastic stiffness C33p on the displacement amplitude wp(l 2, t0
)
, electric

potential amplitude φ(l 2, t0) and stress amplitude σc(l 1, t0) of the sensor are shown in Figure 8a−c,
respectively. It can be found that wp(l 2, t0

)
, φ(l 2, t0) and σc(l 1, t0) decrease as the elastic stiffness

increases. In addition, with the increasing elastic stiffness, the changing rates of the displacement and
electric potential amplitudes of the free end tend to decrease. As for the thicker piezoelectric layer,
the rates of change of the displacement amplitude and electric potential amplitude are larger.
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The influences of the piezoelectric stress constant e33 on the displacement amplitude wp(l 2, t0
)
,

electric potential amplitude φ(l 2, t0) and stress amplitude σc(l 1, t0) of the sensor are shown in
Figure 9a–c, respectively. It can be found that with the increases of e33, wp(l 2, t0

)
decreases, with the

change smaller for thinner piezoelectric layer. This could be explained as below. From the expression
of Cb the numerical change of e33 has no effect on Cb and the influence on the displacement solution in
Equation (31) is also small. Besides, with the increasing e33, the electric potential amplitude φ(l 2, t0) of
the free end tends to flatten; meanwhile, the variation of stress amplitude σc(l 1, t0) is approximately
linear with the piezoelectric stress constant e33. Moreover, Figure 9b shows that e33 has a great influence
on the amplitude of φ(l 2, t0) of the sensor, which ensures that the sensor can produce large electric
potential. Like the cases in Figure 8, for a thicker piezoelectric layer, the influence of e33 on φ(l 2, t0),
wp(l 2, t0

)
and σc(l 1, t0) is larger.
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Figure 10a–c show the influences of the relative dielectric constant εS
33/ε0 on the displacement

amplitude wp(l 2, t1
)
, electric potential amplitude φ(l 2, t1) and stress amplitude σc(l 1, t0) of the sensor,

respectively. It can be found that with the increase of εS
33/ε0, wp(l 2, t1

)
increases, though the change

is quite small; meanwhile, φ(l 2, t1) decreases rapidly at the beginning and then tends to flatten, and
the influence on σc(l 1, t0) is negligible. Furthermore, the influence of εS

33/ε0 on φ(l 2, t1) is larger for a
thicker piezoelectric layer.
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Figures 6–10 show the effects of piezoelectric layer thickness and material parameters on the
electrical and mechanical behaviors of the sensor in Figure 1a. These results are quite helpful for the
design and optimization ofthe 2-2 cement-based piezoelectric dual-layer stacked sensors.

5. Conclusions

An analytical study of a 2-2 cement-based piezoelectric dual-layer stacked sensor under impact
load is presented based upon the theory of piezoelasticity. Theoretical solutions are obtained by
combining all the equations and boundary conditions and utilizing the variable separation method
and Duhamel integral. It is found that:

1. The compliance of numerical simulations under the transient step load is slightly better than that
under transient isosceles triangle load and transient haversine wave load. The theoretical results
show overall good agreement with the numerical results. The numerical simulation are closest to
the theoretical results for the larger peak value of the impact load;

2. The displacement amplitude and period of the free end are both larger than that of the pure
piezoelectric structures, and the thinner the piezoelectric layer, the larger the displacement
amplitude and period;
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3. The displacement, electric potential and stress of the considered sensor could be
changed/optimized by adjusting the thickness of the piezoelectric layer h2, the elastic stiffness
C33p, the piezoelectric stress constant e33 and the relative dielectric constant εS

33/ε0, but the
direction, rate and magnitude of the changes are different;

4. By selecting different piezoelectric layer thickness and materials, we could obtain the sensors
with desired electrical and mechanical characteristics, which is quite helpful for the design of the
cement-based piezoelectric dual-layer stacked sensors.
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