
sensors

Article

Distributed and Modular CAN-Based Architecture for
Hardware Control and Sensor Data Integration

Diego P. Losada 1,*, Joaquín L. Fernández 2, Enrique Paz 2 and Rafael Sanz 2

1 Robotics and Control Unit, AIMEN Technology Centre, Porriño 36410, Spain
2 Department of System Engineering and Automation, University of Vigo, Vigo 36310, Spain;

joaquin@uvigo.es (J.L.F.); epaz@uvigo.es (E.P.); rsanz@uvigo.es (R.S.)
* Correspondence: diego.perez@aimen.es; Tel.: +34-673-143-506

Academic Editors: Neal N. Xiong, Athanasios V. Vasilakos and Sajid Hussain
Received: 5 March 2017; Accepted: 27 April 2017; Published: 3 May 2017

Abstract: In this article, we present a CAN-based (Controller Area Network) distributed system to
integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work,
we provide a robust, simple, flexible and open system to make hardware elements or subsystems
communicate, that can be applied to different robots or mobile platforms. Hardware modules can be
connected to or disconnected from the CAN bus while the system is working. It has been tested in our
mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor
and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot.
Currently, our hardware integration architecture supports different sensors, actuators and control
subsystems, such as motor controllers and inertial measurement units. The integration architecture
was tested and compared with other solutions through a performance analysis of relevant parameters
such as transmission efficiency and bandwidth usage. The results conclude that the proposed
solution implements a lightweight communication protocol for mobile robot applications that avoids
transmission delays and overhead.

Keywords: mobile robots; distributed control; CAN bus; software agents; software components

1. Introduction

Mobile robots need very reliable navigation capabilities to operate for long periods of time
autonomously. The navigation system is one of the main parts of a control architecture, but its
performance will always depend on the information quality gathered from the sensors and provided
to the actuators. Therefore, to design a reliable application based on mobile robots it is necessary to
have a robust sensor integration and hardware control system.

The information provided by some sensors can be critical and must be managed according to the
control process that makes use of it. Obstacle avoidance, localization or map construction are critical
tasks while head pan-tilt movement or voice synthesizer are usually non-critical. The current wide
range of mobile robot architectures leads to different approaches in the organization of these tasks,
and also in the information management in the lower layers where the hardware is connected. Most
architectures split the different tasks in several layers. In the same control system, more than one
module can make use of the same information; it can also be used in different levels. For example, one
module can use raw data from a sensor and another one can use it filtered through another module that
synchronizes it with other sensor information. This complexity in the information handling could lead
to a high computational load if the hardware layer is not well integrated into the control architecture.

Over the last decades, as a result of the efforts made in the field of mobile robots, different
solutions and implementations of robot control architectures have been proposed. Nowadays, the
main research topics in this field are focusing on robotics development environments, designed to

Sensors 2017, 17, 1013; doi:10.3390/s17051013 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 1013 2 of 17

create applications based on mobile robots. Some of these environments contain a control architecture
and tools to develop new modules, to improve control algorithms or to debug the current system [1],
while others do not implement a specific control architecture. Instead, they have the necessary tools
to build it, including communication systems, configuration and management modules, graphic
interfaces and programming libraries. These architectures and environments generally tend to ignore
the hardware development. They are centered only on the software, implementing the interface with
the hardware devices using a communication library over standard interfaces such as Ethernet, serial
or USB (Universal Serial Bus).

The aim of this work is to create a modular architecture for distributed hardware control and
sensor data integration in the field of mobile robots. We integrate it as a new tool into RIDE (Robotics
Integrated Development Environment) [2] but it can be easily adapted to other environments such as
ROS (Robot Operating System) [3].

Some previous works in the field of robotics deal with the same problem proposed in this article.
In [4], a modular, distributed and scalable architecture for spacecraft avionics is presented. The solution
proposed by the authors relies on the use of autonomous distributed units, in charge of specific tasks
and interconnected with a fiber optics communication bus. Every distributed unit follows a similar
design concept using common board dimensions, enclosures and also some power converter design.
In [5], another distributed hardware architecture is presented for spacecraft/robotics vehicles. The
authors present a new technology based on REUs (Remote Engineering Units) developed to work
autonomously and communicate through an I2C bus.

These previous approaches are centered on the creation of reusable units to improve reliability
and robustness, decreasing the development cost at the same time. This allows to avoid testing and
debugging complex hardware designs by dividing the work between distributed hardware modules.
The solution proposed in this work consists of a set of distributed hardware modules to integrate
sensor data, manage the actuators and also perform distributed control.

The main difference between the previously mentioned works and our proposed solution is the
embedded software of every distributed hardware module. Every hardware module is based on a
microcontroller unit and the software is developed under an agent–component design paradigm.

For several years, researchers in the field of computer engineering and robotics have been
exploring configurations based on software agents and components. The results are control
architectures such as DCF (Distributed Control Framework) [6], where a deep analysis of distributed
control software agent development is done, [7] or [8] with a component-oriented design for distributed
real-time control systems. Component software development has also been applied to industrial
environments [9], proving the robustness of systems obtained with this design paradigm. Even though
a lot of solutions have been developed, few of them are related to embedded programming, and most
of them are distributed but implemented in general purpose computers. RoboCAN (Robot CAN bus)
allows both the agent and component software engineering to be applied in the design of distributed
hardware modules with a microcontroller unit.

Communications with the distributed modules are implemented using a CAN fieldbus [10] with
a lightweight application layer. Different factors have been considered for this choice. CAN bus
protocols are widely employed in vehicles and other applications that include a considerable number
of interconnected devices [11]. Another reason to select this bus is the remarkably high number of
integrated circuits in the market with the CAN interface. They are also accessible at relatively low
prices, in part because of their use in the automotive industry. The CAN bus has been successfully
used in several engineering domains, including critical control systems as is presented in [12].

The rest of the paper is organized as follows: the next section introduces the CAN-based
communications. The robot control architecture is presented in Section 3, continuing with the
RoboCAN tool description in Section 4. Section 5 includes the slave modules and Section 6 the
RoboCAN server. In Section 7, the hardware technology is described. The article finishes with an
analysis in Section 8 and conclusions in Section 9.



Sensors 2017, 17, 1013 3 of 17

2. CAN-Based Communications

CAN is a serial communication bus originally developed by the German company Bosch for the
automotive industry, envisaged to replace the existing complex wiring harness with a two-wire bus [13].
It has a high immunity to electrical interferences, making it more suitable to use with big machines
than other solutions such as the ones reviewed in [14] that include I2C. It has also self-diagnose and
data error recovery capabilities. These features explain the CAN bus popularity in a wide variety of
industrial domains including automotive, marine, medical, manufacturing and aerospace.

The CAN standard protocol defines the first two layers in the OSI model, corresponding with
the physical and the data interchange layers [15]. As the CAN standard protocol does not define
the application layer, many protocols based on CAN have been developed. Among the different
CAN communication protocols are DeviceNet, Smart Distributed System (SDS), CAN Kingdom, CAN
Application Layer (CAL) and CANOpen. There are other protocols such as CANaerospace [16],
designed for avionics systems, which is used as a backbone network for flight state sensors and
navigation systems. The CAN communications have been also used before in different real-time
implementations, such as rtfCAN [17] and SCoCAN [18], where a hybrid event and time triggered
protocol with separated time frames in transmission are used. Several mobile robots use CAN
communications: in [19], a time triggered protocol (FTT-CAN) is presented and in [20] a low level
and real-time gateway between the reactive and deliberative levels of the control architecture is used.
On the other hand, the protocol (SC-CAN) is an extension of the high level Ethernet protocol. Another
approach was presented in [21], where the authors have a similar distributed sensor and actuators
integration approach, but with modular units for distributed processing. In some cases, such as [22],
hybrid communication structures that take into account hybrid navigation architectures are used.
However, they propose quite complex communication frameworks for real-time distributed systems.

In the distributed control schema of RoboCAN, it is not necessary to have heavy, complex or
restricted protocols. It is possible to implement a lightweight solution for mobile robot applications
avoiding transmission delays and overhead. To this end, RoboCAN includes an application layer
protocol with device addressing, flow control and transportation of large data blocks in several frames.

3. Robot Control Architecture

Our research addresses mobile robot applications that include control, supervision and
collaboration of several mobile robots. More specifically, it is based on a set of robots working
under real-time restrictions in dynamic environments, which are usually non-fully specified. The
robots must be able to carry out remotely requested plans and react to unexpected events. The design
and implementation of every application relies on RIDE [2].

RIDE is a set of tools and a multirobot and multiuser control architecture to design, develop, run
and debug applications based on mobile robots. The control architecture can be divided in two blocks:
the individual control architecture that manages each robot, which runs into the on-board computer,
and the multirobot control architecture executed in a remote server. This work focuses on the first
block, the individual control architecture that will be briefly described in this section.

The architecture is based on a modular and distributed software system with centralized
communications. Even though the different modules are organized in four sets, they can be mapped in
the three-layer architecture popularized by Bonasso et al. [23]. The hardware servers and control set
implement the functional layer, while RoboGraph Dispatch implements the executive and planning
layer. Finally, the architecture includes a set of processes to interact with the users and to connect to
the Central Server using a wireless communication system [24].

The navigation platform is based on CARMEN (The Carnegie Mellon Navigation Toolkit) [1] and
some modules, such as localize, navigate and base hardware server interfaces, remain basically the same
with new added capabilities such as an infrared localization system [25]. Unlike CARMEN, motion
control is divided into high-level (strategic) planning and a lower level (tactical) collision avoidance



Sensors 2017, 17, 1013 4 of 17

using the Beam method [26]. Other modules have been added to enhance the architecture and cover
some needs and weaknesses.

The different architecture layers and the sets of modules are briefly described in the
next subsections.

3.1. Hardware Server Layer

The modules included in this layer lead the hardware interaction, providing an abstract set of
sensor and actuator interfaces that isolate the control methods from the hardware details. Some of
these devices are used in navigation, i.e., laser and sonar, while others are specific for the application,
such as the robot head or the sound and speech systems.

3.2. Control Layer

The modules in this layer integrate sensor and motion information to provide improved sensor
odometry, basic navigation capabilities (localization, path planning and reactive control) and basic
application specific functions. The behavior of the robot depends on the internal evolution of every
control module as well as on the synchronization between them.

3.3. Executive Layer

All the modules in this layer belong to the RoboGraph tool. It includes two modules: RoboGraph
GUI (Graphic User Interface), used only for applications development, and RoboGraph Dispatch.
RoboGraph is a tool to create complex tasks using Petri nets. The GUI is the programming IDE, used
to create and debug the Petri nets that coordinate the evolution of different control modules. These
tasks are stored as Petri nets in XML files, that are loaded and executed by the Dispatch in running time
on demand. The execution requests mainly come from the control modules or user graphical interfaces
executed in the upper layers of the multirobot architecture.

3.4. Interface Layer

There are several modules in this layer for application developers to debug and trace the control
and hardware server modules. However, there is only one interface module on board that allows the
application end user to interact with the robot. RobotWeb is the module that exchanges information
between the robot and the Central Server station where the multirobot control system runs.

Most of the applications developed with RIDE are designed to have multirobot and multiuser
capabilities. This makes it necessary to take control over the available resources, the environment
where the robots operate and also the synchronization and optimization in the execution of complex
tasks for every robot. The Central Server is in charge of covering all these needs, executing a set of
control modules to manage the traffic, the task execution and the interaction with the environment,
including doors, elevators, sensors, alarms and so forth.

The RoboCAN development affects only the two lowest layers depicted in Figure 1, the hardware
layer and the hardware servers layer. The main idea is to design a tool to integrate sensors and
actuators used in robots in a simple way, to improve the reliability of the system and to increase
the robustness.

4. RoboCAN Tool

In this section, the RoboCAN integration and control tool is presented. In Section 4.1, the changes
introduced in the robot control architecture are described, and the way the hardware subarchitecture is
integrated inside RIDE is analyzed. In Section 4.2, the CAN bus protocol, used to make the hardware
devices communicate with the master module, is depicted.



Sensors 2017, 17, 1013 5 of 17

4.1. Architecture

In the previous section, the robot control architecture depicted in Figure 1 was described.
The RoboCAN tool is located in the two lowest level layers, the hardware servers and the hardware,
so the use of this tool extends the RIDE capabilities, including the hardware as a part of the
control architecture.

Figure 1. RIDE (Robotics Integrated Development Environment) robot control architecture represented
by modules and layers.

Figure 2 shows the new control system arrangement, where a unique module placed on the
hardware servers layer is represented, the RoboCAN server. The hardware subarchitecture is designed
as a single master communication system, even though the CAN is a multimaster bus. It is possible
to use more than one RoboCAN server over different and isolated CAN buses, as it is represented
in Figure 2. Every RoboCAN server manages all the distributed hardware devices attached to the
communication bus. The servers have to implement the same interfaces over the IPC (Inter Process
Communication) [27] process used by the old hardware servers (Figure 1), in order to avoid any change
in the upper layers modules. The use of RoboCAN is fully compatible with the previous system.
This is very important since not all the hardware devices can be integrated with a low bandwidth
communication system. This is the case for cameras, laser scanners, and other kinds of sensors.

The field buses with the distributed slave modules are included in the hardware layer. Each one of
these modules is based on a microcontroller unit (MCU) running a program that might include control
capabilities. They are intended to implement the specific sensor and actuator interfaces, depending
on the hardware connected to the module. With this new set of distributed devices, RIDE integrates
the hardware in the application design process, resulting in a more compact and robust robot control
architecture. The robustness improvement is related with the reduction of the number of ports and
links between the two lowest layers. In the previous architecture, a link for every hardware device was
necessary, incrementing the sources of potential malfunctions. This problem is now avoided using a
two-wired communication bus with a single link with the on-board robot computer.



Sensors 2017, 17, 1013 6 of 17

control module communications.

Figure 2. Robot architecture. CAN-based sensor–actuator and IPC (Inter Process Communication)

4.2. Communication Protocol

As mentioned before, the main goals underlying the design of RoboCAN tool is to have a
centralized, lightweight, scalable and open system to integrate sensors and actuators into the control
architecture. It is open to any kind of sensor, actuator and distributed control unit, providing the
programmer with a set of basic functions to include new drivers for new devices. For such reasons,
RoboCAN contains a very simple protocol that matches the next design requirements:

• Hot plug device connection. The protocol allows to connect and to disconnect distributed modules
while the system is running. These operations are detected by the RoboCAN server in order to act
accordingly, since some modules could be critical while others could not.

• Remote configuration. Distributed modules can be configured remotely by the RoboCAN server,
changing the control method, the behavior or the information management, depending on the
kind of system connected.

• Extensible. It is easy to add new modules and drivers to the RoboCAN server in order to introduce
new sensors, actuators or control modules in the architecture.

• Robust. The CAN nodes must keep communicating even when some sensor, actuator or distributed
unit fails, letting the RoboCAN server program decide whether those failing elements are critical
or whether it is feasible to keep the robot operating.

The master process handles the connection, disconnection, configuration and working mode of
the different slave nodes, loading the corresponding drivers. This is done in a similar way as USB
devices can be plugged into and unplugged from a computer. Modules can be connected at any
time and in any order. When plugged, every module starts sending a watchdog frame periodically.
The server realizes then that there are new connected modules and sends query frames in order to
know what has been attached to load the corresponding driver, configure the correct parameters and
set the working mode that defines the information and commands exchanged.

Every slave module uses an unique identifier (ID) to publish frames, which can be any even
number. It receives frames with ID + 1, the next odd number, and also receives the broadcast frames
with ID 0x01. The server handles all the even ID frames and publishes odd ID frames.



Sensors 2017, 17, 1013 7 of 17

5. RoboCAN Slave Modules

A RoboCAN slave module is a set of hardware devices and software elements. The hardware is
based on a microcontroller unit with peripheral communication interfaces while the software elements
can be components or agents. The main difference between this new implementation method and
other works previously presented, such as [5], lies in the use of general purpose distributed software
instead of general purpose hardware. Every RoboCAN module is intended to integrate a short number
of hardware elements to be totally reusable, so it could be easily installed in different machines or used
in different systems. For example, a motor control module can be part of a robot base together with
other equal module, or it can be also used in a pan-tilt unit (Figure 3). The functions assigned to the
module are exactly the same in both systems. This way, we increase the flexibility, adaptability and
scalability creating hardware devices, avoiding possible obsolescences by allowing modifications or
even the replacement of some modules.

Figure 3. The same module (motor controller) used in two different hardware systems. (left) Mobile
platform; (right) Pan-tilt unit.

From the point of view of the control architecture, the distributed modules contain two types of
embedded software elements. The first type includes the interfaces to gather the sensor data from
the hardware or to activate, and also manage, the different states of the actuators. These elements
are implemented as software components, so only one software component for every kind of sensor
or actuator is necessary in the slave module. For example, a slave module that controls eight sonar
sensors and ten bumpers only needs to include two different components: the sonar and the bumper.
The second type of software element is agents. Agents are pieces of control programs that use
the information gathered by the sensors and can change the state of the actuators. These agents
represent the RoboCAN subarchitecture distributed control capability. Some examples of control
functions already implemented are the motor controllers (PID and Predictive PID), the Kalman filter
implemented in the IMU (Inertial Measurement Unit) and also the different firing sequences used to
manage a set of sonar sensors controlled with more than one slave module.

The combination of software components and microcontrollers allows designing simple and
robust distributed modules through the use of different MCU, which can execute the software
components developed for a specific hardware architecture. RoboCAN includes components created
for 8- and 16-bit architectures, but most of them were developed to be executed in the 16-bit 30F PICs
(Peripheral Interface Controller) family.



Sensors 2017, 17, 1013 8 of 17

Component software development is usually related with an operating system that provides an
abstraction layer over the peripherals. Programming embedded microcontrollers without an operating
system forces the use of abstraction tables to keep the software independent from the hardware used,
allowing to choose the best MCU model for every new module design.

The left side of Figure 4 shows the different software blocks involved in a slave module. These
blocks are the components, the agents, the module hardware abstraction layer and the communications
interface. Both components and agents were previously described. The communications interface is
basically a library to manage the CAN buffers using queues to receive and send data frames. The
hardware abstraction layer is the specific software created for every module. It is related to the
microcontroller model to define the proper processor configuration, such as communication interfaces,
instruction time and peripherals. This software manages the components throughout interruptions.
The RoboCAN distributed software elements are intended to be driven with both internal and external
interruption sources. The external interruptions sources are the CAN communications and some inputs
used for a particular sensor or actuator. The internal ones are, in most cases, timers controlling the
real-time execution of every element software cycle. It is also possible to use interruptions from some
peripheral interface, allowing more flexibility to handle the software elements. The right side of Figure 4
represents the module interface structure. This structure contains a set of global variables to configure
the hardware, the communications queue and also contains two lists with components and agents
included into the module. The module functions are the error handling, some specific hardware control
function if necessary (usually empty), the interrupt handling and the communications management.

Figure 4. Software blocks and structure of a slave distributed module.

6. RoboCAN Server

The RoboCAN server is a process executed in the on-board robot computer. It integrates
the distributed hardware modules into the control architecture. This process also includes the
communication field bus master node, which handles the connection procedure of the different
slave nodes, configuring each of them if necessary (changing the default working parameters).

The server works between two information levels inside the control architecture. Therefore, it uses
two communication systems to connect the distributed hardware modules with the upper control
layers. The first one is the CAN-based communication system, included as part of the RoboCAN tool to
develop hardware control and sensor data integration modules. The second one is IPC, described later
in this section. From the point of view of the data management, the server integrates the information
gathered by different sensor nodes attached to the CAN bus, and provides it to the software modules
in the upper levels of control. This information is shared using the IPC publish/subscribe paradigm.
In the other direction, the server takes the information from upper layers and converts it in lower level
information suitable for the distributed hardware modules.

The server structure is depicted in Figure 5, showing how the data is managed between the
two information levels. The interface with the CAN bus is represented in the left part of Figure 5.
This interface is used to communicate the master node with agents and components running in the
distributed slave nodes. The interface with IPC is represented in the right part of Figure 5. This interface



Sensors 2017, 17, 1013 9 of 17

integrates the low level information into the upper layers and translates the high level command
messages, coming from the upper layers, into a set of CAN bus frames. The server handles the
distributed software using drivers for every kind of agent or component. It handles the IPC integration
with data structures, represented in Figure 5 as entities, which are gateways between the drivers and
the high level communication interface.

Figure 5. RoboCAN server structure.

RoboCAN tool can be easily integrated in other control architectures, such as ROS, by changing
the high level communication interface and adapting the entities to the new information exchanged.
To integrate a RoboCAN robot into ROS, the only RoboCAN module from Figure 2 that needs to be
changed is the Master RoboCAN but all the slave modules will remain unchanged. The communication
system used in ROS is based on a publish/subscribe paradigm such as IPC. Therefore, the changes
to integrate the Master RoboCAN module are limited to a few entities that use the IPC interface
(see Figure 5).

6.1. CAN Communications

The CAN interface is used to communicate with the distributed hardware nodes handling the
connection, configuration and working mode of each distributed software element running into
the slave modules. The RoboCAN server starts without any slave module registered and when
a frame is received, it creates a new module instance, requesting information about what kind of
software elements it contains. The server has two lists with the different drivers needed to manage
the distributed components and agents. For each kind of distributed software element executed in
the hardware layer, the server dynamically loads the appropriate driver, if it has not been loaded yet.
Figure 6 shows the communication and driver loading procedures in the RoboCAN server.

Some of the distributed software elements have more than one working mode, and the driver is
in charge of deciding which of them should be used in every moment. As an example, a PID agent can
control a motor in position or in velocity, or a sonar sensor can work with different firing sequences to
avoid cross-talk between sensors.

The distributed nodes can be disabled, avoiding the publication of data frames, even if they keep
being attached to the bus and powered on. They can be disabled as a request from the master or due to
an internal timeout. Timeouts are also important to detect on-the-fly disconnections and errors in any



Sensors 2017, 17, 1013 10 of 17

module, mainly hardware, but in some cases software errors can also be detected. If a distributed node
is disabled, all the associated drivers are notified.

Figure 6. Communication flow chart.

6.2. IPC Communications

RIDE architecture uses IPC to communicate the navigation modules [27]. Developed at Carnegie
Mellon’s Robotics Institute, IPC provides a publication–subscription model for applications to exchange
messages among modules via a central server process. Each application registers with the central
server, and specifies what types of messages it publishes and what types it listens for. Any message
sent to the central server is immediately forwarded to the subscribed processes.

The RoboCAN server makes use of the existing messages created in the architecture to exchange
data between the control layer and the hardware servers. In Figure 5, the different interfaces (groups
of messages) are represented as entities. The entities also define the relations between the high level
IPC messages and the elements in the distributed hardware.

When starting, the server requests the system configuration to determine which entities must
be used. For every needed entity, the system loads the appropriate dynamic loading library. These
libraries are implementations of abstract entities and contain the hardware configuration, including
the geometry dependencies. As an example, two different entity libraries are loaded to manage three
different distributed modules that make up a differential robot (two for motor control and the other one
for sonar and bumper sensors). One library implements the base entity and the other one implements
the sonar entity. They also contain geometric parameters such as gear ratios for motors, PID gains,
encoder resolutions, the firing sequences for the sonar and the bumpers positions.

7. Modules and Prototypes

The whole system described in the above sections has been used and tested in different robots
and applications, Figure 7. In this section, we present the main software components and agents
included in the RoboCAN integration architecture, as well as a detailed hardware analysis describing
the different modules created.



Sensors 2017, 17, 1013 11 of 17

Figure 7. Robots with the RoboCAN solution installed (from left to right: Rato, BellBot and WatchBot).

The concept was first applied to an old B21r robot from RWI, presented in [28]. The B21r robot has
a set of hardware devices developed in PDIP (Plastic Dual In-Line Package) through-hole technology.
Each of these modules was designed based on a specific PIC microcontroller to manage sensors,
actuators, and also for the slave nodes to communicate with the RoboCAN server. For example, the
first module created, depicted in Figure 8 (top-left), controls eight sonar sensors and eight bumpers
with an 8-bit PIC18F458 MCU. Another example is a PID controller for a DC (Direct Current) motor
with a quadrature encoder and bumper sensors based on a 16-bit dsPIC30F4011. In the end, the
RoboCAN system was composed of three modules to handle the 24 sonar sensors and 24 bumpers on
the top enclosure; two modules for the motor controllers and the mobile platform bumpers; one module
to control the robot head and another module to handle the enclosure buttons and interface signals.

Figure 8. RoboCAN hardware modules developed under the three different generations. (top-left)
Sonar and bumper controller in PDIP; (top-right) PID controller in SMT; (bottom-left) PID controller
with PCI-E; (bottom-right) Sonar and bumper controller with PCI-E.

With the embedded software developed, proved and correctly tested in the modules already
installed in the b21r robot, the manufacturing technology was changed to SMT (Surface Mount
Technology) to create more compact hardware devices for a new robot design. This is a service robot to
assist in hotels [29] known as BellBot. It has a synchronous base, a sonar sensors ring, bumpers, arms
with servomotors, capacitive sensors for human interaction and a head also with capacitive sensors,
RC (Radio Control) servos and lights. It resulted in a set of modules of three different types to manage



Sensors 2017, 17, 1013 12 of 17

all the sensors and actuators. Two modules for motor control and bumpers, another couple of twin
modules for sonar control and the last one to manage RC servos, digital inputs, digital outputs and
analog outputs. All the hardware is controlled with only five simple and low-cost modules, executing
different components and also some agents, such as a Predictive PID for motor control [30] and a firing
sequences for the sonar ring.

The module in Figure 8 (top-right) is a Predictive PID for motor control, which also includes
components to manage the motor, the encoder and the bumper sensors. It is developed in SMT
technology with a core unit model dsPIC30F4012. The other modules used in BellBot are based on the
8-bit PIC18F285 for the sonar ring and bumper sensors and a 16-bit dsPIC30F40 TQFP-44 (Thin Quad
Flat Pack) for RC servo and signals.

To install and reuse the modules developed on different robots, a dimensional and electrical
specification for board design was included. The electrical specification relies on the use of a single
PCI-E (Peripheral Component Interconnect Express) connector for low power in different voltage
levels (3.3 V, 5 V, 12 V, 24 V and 48 V), communication buses (two CAN, I2C, USB) and other signals
(reset, external clock). The dimensional specification defines the size of every module or set of modules
to be connected to a common main board. Figure 8 (bottom-left) shows the same module represented
in Figure 8 (top-right) designed under the third generation dimensional and electrical specifications.
Other modules, Figure 8 (bottom-right), implemented with this technology are the sonar controllers to
be used in the WatchBot robot [31], a small differential robot for surveillance applications.

8. Protocol Analysis

In this section, a performance analysis of the proposed hardware integration architecture is
presented. The analysis is focused on the field bus communications bandwidth usage and on the
transmission efficiency, both providing quality measures of the RoboCAN communication protocol.

The performance analysis is centered on the BellBot robot, a service mobile robot with human
interaction capabilities. However, the proposed integration technology has already been applied to
three different robots. As previously described, the integration and control hardware in this robot
is a set of five distributed CAN nodes. Figure 9 shows the bandwidth usage for every distributed
module. Module_02 and Module_04 are the base motion interfaces that contain velocity controllers
based on Predictive PIDs and also the bumper sensors interface. Module_10 and Module_20 are the
sonar ring controllers, each of them handling eight sonar sensors and eight bumpers. Module_40
contains a set of servos to control the robot head movement and the arms. It also contains input and
output signals to handle the hands and face capacitive sensors, the eyes illumination and the locker
doors. The bandwidth usage of every module depends on the number of elements managed (sensors
and actuators) and also on the exchanged information. Module_40 controls a high number of different
elements using more bandwidth than the other modules. On the other hand, the sonar modules handle
less elements and also exchange data frames at lower frequencies.

In order to measure the bandwidth usage, all the traffic in the field bus was logged into a
file containing the transmission time, the frame ID and transmitted data. For every distributed
module, the bandwidth usage is represented in 1 s time windows, including the transmitted and the
received frames.

The RoboCAN protocol performance were also compared with the CANOpen protocol to analyze
its operational performance. A Schunk Powerball robot arm with six distributed CAN modules
was used as a reference to compare the results. These CAN modules implement the CANOpen
communications under the draft version DS402, with an 100 Hz data transmission frequency and a
20 Hz command reception frequency from a ROS node.



Sensors 2017, 17, 1013 13 of 17

Figure 9. BellBot CAN bus bandwidth usage for each of its five distributed hardware modules.

The operational specifications of BellBot, related to the motor controllers, are a 10 Hz publishing
frequency and an 8 Hz receiving frequency. The results have been scaled to adapt the transmission
and reception frequencies. Figure 10 shows that the RoboCAN protocol makes use of less bandwidth
compared to the CANOpen DS402 specification. When the motors are moving, the RoboCAN
bandwidth is about 6% less than the CANOpen and with the motors stopped it is about 25% less.
The velocity command frames in CANOpen have a data length of 64 bits, while in RoboCAN the
length is 56 bits, representing the 6% difference in bandwidth usage. The RoboCAN server does not
send velocity frames while the motor is stopped. That explains the different bandwidth usage between
the moving and the stopped states.

Figure 10. Bandwidth usage comparison between CANOpen and RoboCAN.

The CAN standard data frames under the A specification have an 11-bit ID and a total length
between 47 and 111 bits, depending on the data transmitted. The maximum data transmission
efficiency is limited to ξ = 57.66%, obtained as the ratio between the transmitted payload and the
standard frame length.

Figure 11 shows the CANOpen DS402 and the RoboCAN transmission efficiency. In addition,
as the DS402 is the motor control specific protocol, the RoboCAN motor controller data frames
efficiency is also represented, isolated from the rest of the field bus traffic. The CANOpen protocol
seems to be more efficient than the RoboCAN protocol because the data field of most frames is larger
than in RoboCAN. However, as we have seen before, this better efficiency also leads to a larger
bandwidth usage. The RoboCAN protocol is less efficient in reception than in transmission from the
remote motor controllers. This is because of the data length difference between the command frames
and the information frames, being more efficient when the controllers are stopped and not receiving
new command frames.



Sensors 2017, 17, 1013 14 of 17

Figure 11. CANOpen DS402 and RoboCAN transmission efficiency.

9. Conclusions

The first conclusion that can be drawn from this research work is that RoboCAN is an efficient tool
to generate distributed hardware modules, based on low-cost core units to integrate sensors, actuators
and control devices in mobile robots architectures.

From the initial approach of distributed control units, the tool has evolved to the execution
of software components and agents that are independent of the process core. The inclusion of
hardware abstraction tables and interruption management procedures allows the reuse of software
code in different families of microcontrollers. This provides a highly scalable system, allowing the
creation of complex devices or applications, without modifying the approach used in the current
implemented solution.

The RoboCAN tool was included as part of RIDE to facilitate the sensor and actuator integration,
avoiding external dependencies and obtaining a better abstraction over the hardware layer. In this way,
the control architecture can easily and homogeneously integrate new sensors, actuators and distributed
control units without the need to rewrite software modules. Integrating the hardware layer into the
control architecture facilitates the evolution of the whole system, keeping a better homogeneity in the
information management and avoiding bulky and inefficient adaptation interfaces.

Regarding the creation of mobile robot applications, RoboCAN significantly reduces the
development costs and the time required to adapt commercial sensors and actuators to the RIDE
technology. This is, in part, because of the reuse of hardware modules and it is also due to the avoidance
of the development of new software modules to integrate hardware devices. It is also important to
note that the same communication framework can be used with other communication buses that are
applied in mobile robots such as I2C [32]. However, as mentioned before, we consider that CAN
provides a better performance for this kind of application.

The evaluation of this system shows that it presents a good performance regarding the
communication parameters compared to other similar systems. Moreover, it is well suited for this
kind of application, meeting the necessary requirements to integrate sensors, actuators and distributed
control units in robotic architectures.

Acknowledgments: This work has been partially supported by the Spanish “Ministerio de Economía y
Competitividad”, (MINECO/FEDER) under Project SmartElderlyCar (TRA2015-70501-C2-2-R). We would like to
thank all the people that have influenced this work. In particular all the people that contribute to the different
applications and robots where this system was used.

Author Contributions: Diego P. Losada and Joaquín L. Fernández developed the RoboCAN concept and defined
its integration in the control architecture. Diego P. Losada an Enrique Paz created the embedded software for the
different distributed hardware modules. Rafael Sanz was in charge of analyzing the state of the art on distributed
hardware integration and designed the validation tests. All the authors contributed equally to wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2017, 17, 1013 15 of 17

Abbreviations

The following abbreviations are used in this manuscript:

CAN Controller Area Network
RWI Real World Interface
USB Universal Serial Bus
RIDE Robotics Integrated Development Environment
ROS Robot Operating System
REU Remote Engineering Unit
I2C Inter-Integrated Circuit
DCF Distributed Control Framework
RoboCAN Robot CAN bus
SDS Smart Distributed System
CAL CAN Application Layer
CARMEN The Carnegie Mellon Navigation Toolkit
GUI Graphic User Interface
IPC Inter Process Communication
MCU Microcontroller
IMU Inertial Measurement Unit
PDIP Plastic Dual In-Line Package
PIC Peripheral Interface Controller
DC Direct Current
SMT Surface Mount Technology
RC Radio Control
TQFP Thin Quad Flat Pack
PCI-E Peripheral Component Interconnect Express

References

1. Montemerlo, M.; Roy, N.; Thrun, S. Perspectives on Standardization in Mobile Robot Programming: The
Carnegie Mellon Navigation (CARMEN) Toolkit. In Proceedings of the Conference on Intelligent Robots
and Systems (IROS), Las Vegas, NV, USA, 27–31 October 2003.

2. López, J.; Pérez, D.; Zalama, E. A framework for building mobile single and multi-robot applications.
Rob. Autom. Syst. 2011, 59, 151–162.

3. Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
12–17 May 2009.

4. Ruffa, J.; Castell, K.; Flatley, T.; Lin, M. MIDEX advanced modular and distributed spacecraft avionics
architecture. In Proceedings of the Aerospace Conference, Aspen, CO, USA, 21–28 March 1998; pp. 531–541.

5. Park, S.; Kopf, E.; Bolotin, G.; Stone, H.; Hykes, D.; MeHaffey, K.; Walters, J.; Bell, M. Distributed architecture
for controlling spacecraft/robotic vehicles using remote engineering unit (REU). In Proceedings of the
Digital Avionics Systems Conference, Philadelphia, PA, USA, 7–13 October 2000; pp. 8B5/1–8B5/8.

6. Kulis, Z.; Manikonda, V.; Azimi-Sadjadi, B.; Ranjan, P. The Distributed Control Framework: A software
infrastructure for agent-based distributed control and robotics. In Proceedings of the American Control
Conference, Seattle, WA, USA, 11–13 June 2008; pp. 1329–1336.

7. Fuentes-Fernández, R.; Guijarro, M.; Pajares, G. A Multi-Agent System Architecture for Sensor Networks.
Sensors 2009, 9, 10244–10269.

8. Ke, X.; Sierszecki, K.; Angelov, C. COMDES-II: A Component-Based Framework for Generative Development
of Distributed Real-Time Control Systems. In Proceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, Daegu, Korea, 21–24 August 2007;
pp. 199–208.



Sensors 2017, 17, 1013 16 of 17

9. Cengic, G.; Ljungkrantz, O.; Akesson, K. A Framework for Component Based Distributed Control Software
Development Using IEC 61499. In Proceedings of the ETFA ’06 IEEE Conference on Emerging Technologies
and Factory Automation, Prague, Czech Republic, 20–22 September 2006; pp. 782–789.

10. Lawrenz, W. CAN System Engineering: From Theory to Practical Applications; Springer: New York, NY,
USA, 1997.

11. Kocik, R.; Sorel, Y. A methodology to design and prototype optimized embedded robotic systems.
In Proceedings of the Computational Engineering in Systems Applications CESA’98, Hammamet, Tunisia,
1–4 April 1998.

12. Thompson, H.; Pérez, H.B.; Lee, D.; Ramos-Hernández, D.; Fleming, P. A CANbus-based safety-critical
distributed aeroengine control systems architecture demonstrator. Microprocess. Microsyst. 1999, 23, 345–355.

13. Robert Bosch GmbH. CAN Specification, version 2.0; Robert Bosch GmbH: Stuttgart, Germany, 1991.
14. Zhou, J.; Mason, A. Communication Buses and Protocols for Sensor Networks. Sensors 2002, 2, 244–257.
15. Etschberger, K. Basics, Protocols, Chips and Applications. Controller Area Network; IXXAT Automation

GmbH: Halmstad, Sweden, 2001.
16. Russell, J.; Cohn, R. Canaerospace; Book on Demand: Berg, Germany, 2012.
17. Portillo, J.; Marcos, M.; Olarra, A.; Cabanes, I. rtfCANOpen: Implementación del bus CAN para sistemas

empotrados. Rev. Iberoam. Autom. Inf. Ind. 2006, 3, 61–70.
18. Coronel, J.; Blanes, F.; Pérez, P.; Alberola, M.; Benet, G.; Simó, J.E. SCoCAN: Un protocolo de comunicaciones

de tiempo real para sistemas empotrados distribuidos. Aplicación al control de robots. Rev. Iberoam. Autom.
Inf. Ind. 2006, 3, 71–78.

19. Afonso, P.; Azevedo, J.; Cardeira, C.; Cunha, B.; Lima, P.; Santos, V. Challenges and Solutions in an
Autonomous Driving Mobile Robot Competition. In Proceedings of the CONTROLO, Lisbon, Portugal,
11–13 September 2006.

20. Posadas, J.L.; Simó, J.E.; Blanes, F.; Benet, G.; Poza, J.; Albero, M. An architecture to control mobile robots by
means of code delegation and multi-agent systems. In Proceedigns of the 5th IFAC/EURON Symposium on
Intelligent Autonomous Vehicles, Lisbon, Portugal, 5–7 July 2004.

21. Gomez-Ibanez, D.; Stump, E.; Grocholsky, B.P.; Kumar, V.; Taylor, C.J. The robotics bus: A local communication
bus for robots. In Proceedings of the International Society for Optical Engineering, Philadelphia, PA, USA,
26–28 October 2004; pp. 155–163.

22. Posadas, J.L.; Pérez, P.; Simó, J.E.; Benet, G.; Blanes, F. Communications structure for sensory data in mobile
robots. Eng. Appl. Artif. Intell. 2002, 15, 341–350.

23. Bonasso, R.P.; Kortenkamp, D.; Miller, D.P.; Slack, M.G. Experiences with an Architecture for Intelligent,
Reactive Agents. In Proceedings of the International Workshop on Intelligent Agents II Agent Theories,
Architectures, and Languages, Montreal, QC, Canada, 19–20 August 1995; pp. 187–202.

24. Fernández, J.L.; Sanz, R.; Cacho, M.D.; Diéguez, A.R. Increasing wireless reliability for autonomous mobile
robots. Robotica 2013, 31, 405–416.

25. López, J.; Pérez, D.; Casanova, E.Z.; García-Bermejo, J.G. Low cost indoor mobile robot localization system.
In Proceedings of the 11th International Conference on Intelligent Systems Design and Applications,
Cordoba, Spain, 22–24 November 2011; pp. 1134–1139.

26. Fernández, J.L.; Sanz, R.; Benayas, J.A.; Diéguez, A.R. Improving collision avoidance for mobile robots in
partially known environments: The beam curvature method. Rob. Autom. Syst. 2004, 46, 205–219.

27. Simmons, R.; James, D. Inter-Process Communication; IPC Version 3.6; School of Computer Science/Robotics
Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2001.

28. Fernandez, J.; Souto, M.; Losada, D.; Sanz, R.; Paz, E. Communication framework for sensor-actuator
data in mobile robots. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics,
Vigo, Spain, 4–7 June 2007; pp. 1502–1507.

29. López, J.; Pérez, D.; Zalama, E.; García-Bermejo, J. BellBot—A Hotel Assistant System Using Mobile Robots.
Int. J. Adv. Rob. Syst. 2012, 10, doi:10.5772/54954.

30. Losada, D.P.; Fernández, J.L.; Fernández, M.S. Diseño e Implementación de un Controlador Predictivo para
Motores BLDC. In Proceedings of the XXXV Jornadas de Automática, Valencia, Spain, 3–5 September 2014;
pp. 172–178.



Sensors 2017, 17, 1013 17 of 17

31. López, J.; Pérez, D.; Paz, E.; Santana, A. WatchBot: A building maintenance and surveillance system based
on autonomous robots. Rob. Autom. Syst. 2013, 61, doi:10.1016/j.robot.2013.06.012.

32. Colot, A.; Caprari, G.; Siegwart, R. InsBot: Design of an autonomous mini mobile robot able to interact
with cockroaches. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation,
New Orleans, LA, USA, 26 April–1 May 2004; pp. 2418–2423.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	CAN-Based Communications
	Robot Control Architecture
	Hardware Server Layer
	Control Layer
	Executive Layer
	Interface Layer

	RoboCAN Tool
	Architecture
	Communication Protocol

	RoboCAN Slave Modules
	RoboCAN Server
	CAN Communications
	IPC Communications

	Modules and Prototypes
	Protocol Analysis
	Conclusions

