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Abstract: The zero-sum matrix game is one of the most classic game models, and it is widely used in
many scientific and engineering fields. In the real world, due to the complexity of the decision-making
environment, sometimes the payoffs received by players may be inexact or uncertain, which requires
that the model of matrix games has the ability to represent and deal with imprecise payoffs. To meet
such a requirement, this paper develops a zero-sum matrix game model with Dempster–Shafer
belief structure payoffs, which effectively represents the ambiguity involved in payoffs of a game.
Then, a decomposition method is proposed to calculate the value of such a game, which is also
expressed with belief structures. Moreover, for the possible computation-intensive issue in the
proposed decomposition method, as an alternative solution, a Monte Carlo simulation approach is
presented, as well. Finally, the proposed zero-sum matrix games with payoffs of Dempster–Shafer
belief structures is illustratively applied to the sensor selection and intrusion detection of sensor
networks, which shows its effectiveness and application process.

Keywords: sensor selection; intrusion detection; matrix game; imprecise payoff; Dempster–Shafer
evidence theory; belief function

1. Introduction

Uncertainty extensively exists in numerous scientific and engineering fields. Among a variety
of fundamental problems related to uncertainty, how to express the uncertain information is one
of the first issues. Usually, uncertainty contains randomness, fuzziness, ambiguity, and so on.
From the perspective of semantics or linguistics, Klir and Yuan [1] have identified three basic types:
fuzziness, discord and non-specificity, where fuzziness stands for the unclearness or indistinctness
about objects’ characters, discord in the conflict or randomness to an object and non-specificity in the
diversity of possible results. The discord and non-specificity are unified as ambiguity [2]. Probability
theory, fuzzy set [3], rough set [4], Dempster–Shafer evidence theory [5,6] and the maximum-entropy
approach [7,8], to name but a few [9], are some of representative theories or approaches to deal
with uncertain information. Especially, due to providing feasible ways to represent and synthesize
uncertain information, Dempster–Shafer evidence theory has attracted increasing interest in many
fields, such as surveillance [10], intrusion detection [11], etc. As attempts to improve conventional
Dempster–Shafer evidence theory, generalized evidence theory [12] and D numbers [13–18] have also
received researchers’ attention recently. Among them, the model of D numbers, which generalizes
belief structures, is a relatively novel means to represent uncertain information by overcoming the
exclusiveness hypothesis and completeness constraint in Dempster-Shafer theory.
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Apart from uncertainty, which depicts the essential characteristic of information, things are
universally interrelated and interact with each other. The interactive relationship among things
or objects, either competitive or cooperative, arises in countless types of fields. Game theory
gives a mathematical framework to study the interactions among related individuals in interactive
decision situations where the aims, goals and preferences of the participating agents are potentially in
conflict [19–21] and has achieved great success in multiple of disciplines and fields [22–26]. As a game
model representing the most conflicting and competitive relationship, the two-person zero-sum game
models the case where players’ interests are completely opposed [27]. As a special case of that game,
the two-person zero-sum matrix game, short for the matrix game representing a pervasive interactive
relationship, has been addressed since von Neumann and Morgenstern [28] published their seminal
book Theory of Games and Economic Behavior.

Usually, in a matrix game, payoffs are in the form of crisp values representing utilities
received by players. However, as mentioned above, uncertainty widely exists, which may result
in the difficulty to obtain deterministic payoffs. Instead, uncertain or imprecise payoffs in matrix
games are more universal and practical in reality, since it is unavoidable in most cases to involve
subjective or objective uncertainty caused by many reasons in constructing the payoff matrix of
a matrix game. Therefore, investigation of matrix games with imprecise or uncertain payoffs is very
important and of great significance [29]. In previous studies, zero-sum matrix games with payoffs of
interval-valued [30–34], or fuzzy data [35–38], or rough sets [39], or intuitionistic fuzzy sets [40–42],
or interval-valued intuitionistic fuzzy sets [43] have been given much attention. In addition, other
forms of payoff matrices, such as ones with fuzzy random variables [44] or lattice values [45], have
also received some attention.

Compared with the rich studies on interval- or fuzzy-based matrix games, imprecise matrix games
with payoffs involving the uncertainty of ambiguity (i.e., discord and non-specificity) have been given
less attention. Existing representative studies are included in [46–48], where Dempster–Shafer evidence
theory is employed to express ambiguity. In most cases, payoffs are on the basis of linguistic variables or
assessments. For example, in [46,47], the initial payoffs are all in the form of categorical variable-based
belief structures, where the involved categorical variables represent the ordered levels of reflecting the
consequences of players’ actions. When dealing with the game consisting such payoffs, the payoffs are
transformed into expected utility intervals based on each categorical variable’s utility function; in the
process, the original ambiguity has been changed to the interval uncertainty. What is more, in [48], the
payoffs have been directly transformed to crisp numbers that do not contain uncertainty. In contrast,
this paper immediately studies the games with ambiguity based on conventional numerical payoffs,
but does not need to utilize additionally utility functions transforming categorical assessment levels to
real numbers. In order to implement the goal, the Dempster–Shafer belief structure defined on the
real line is used to represent this kind of uncertain payoff. As a result, a zero-sum matrix game with
payoffs of Dempster–Shafer belief structures is constructed. Within the paper, a decomposition method
is proposed to solve the game. The obtained value of this game is still in the form of belief structures,
which maintains the consistency between the payoff matrix and the value of the game. Besides, an
alternative solution to solve the game is presented in the paper to overcome the possible issue of high
computational complexity caused by the decomposition method. Finally, this novel game model is
illustratively applied to the sensor selection and intrusion detection of sensor networks to show its
potential applications and effectiveness.

The rest of the paper is organized as follows. Section 2 gives a brief introduction about
Dempster–Shafer evidence theory and belief structures defined on the real line. Section 3 gives
the formal representation of a two-person zero-sum matrix game and its extension of Dempster–Shafer
belief structures. Then, the method to solve the game is proposed in Section 4, and a Monte Carlo-based
alternative solution is presented in Section 5. Section 6 gives the applications of the proposed model and
method in the sensor selection and intrusion detection of sensor networks. At last, Section 7 concludes
this paper.
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2. Preliminaries

2.1. Basics of Dempster-Shafer Evidence Theory

Dempster–Shafer evidence theory [5,6], also called Dempster–Shafer (D-S) theory or evidence
theory, is a popular theory to deal with uncertain information [49–56]. Having a similar effect of
aggregating operators [57–60] and as the counterpart of the probability-based approaches [61–63],
such as composite hypothesis testing, Bayesian approaches and the maximum entropy approach,
D-S theory is another widely-used framework for multi-sensor information fusion [64–70]. Compared
with traditional probability theory, this theory has the advantage of directly expressing the “uncertainty”
by assigning the probability to the set composed of multiple objects; it therefore has attracted increasing
interest in uncertainty reasoning and modeling.

In D-S theory, the uncertainty is modeled by belief structures. A belief structure is formally
expressed by a mapping m : 2Ω → [0, 1], such that:

m(∅) = 0 and ∑
A∈2Ω

m(A) = 1, (1)

where Ω is called the frame of discernment, which is a finite nonempty set, 2Ω denotes the power set of
Ω and set A with m(A) > 0 is called a focal element. A belief structure is also called a mass function or
a basic probability assignment (BPA). The belief measure and plausibility measure, denoted as Bel and
Pl, respectively, are two important measures associated with the belief structure; they are defined by:

Bel(A) = ∑
B⊆A

m(B), (2)

and:
Pl(A) = 1− Bel(Ā) = ∑

B∩A 6=∅
m(B), (3)

where Ā = Ω− A. For every A ∈ Ω, Bel(A) ≤ Prob(A) ≤ Pl(A) is satisfied. The measures Bel and
Pl quantify the lower limit and upper limit of the support to focal element A, respectively.

2.2. D-S Belief Structures Defined on the Real Line

In most cases, a D-S belief structure is defined over a discrete nonempty set. Some pioneering
researchers have investigated the case where the focal elements of belief structures are closed intervals,
which leads to an extension of D-S theory to the real line [−∞,+∞]. Please refer to [71–73] for more
details. A D-S belief structure defined on the real line has the form:

∑
i

m(Fi) = 1 , Fi = [ai, bi] ⊆ [−∞,+∞] (4)

where Fi is the focal element of belief structure m.
Given a D-S belief structure defined on the real line, Yager [71] has presented an approach to

construct its cumulative distribution function (CDF). The CDF has graphically shown the lower and
upper distributions of the associated belief structure. Let Lx be a subset of R whose elements are less
than or equal to x, namely Lx = {z|z ≤ x}, the CDF of a belief structure m, denoted as CDFm(x),
is CDFm(x) = [Belm(Lx), Plm(Lx)], satisfying:

Belm(Lx) = ∑
i, Fi⊆Lx

m(Fi) = ∑
i, bi≤x

m(Fi), (5)

Plm(Lx) = ∑
i, Fi∩Lx 6=∅

m(Fi) = ∑
i, ai≤x

m(Fi). (6)
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For simplicity, the low distribution calculated by Belm(Lx) is called B-CDF; the upper distribution
calculated by Plm(Lx) is called P-CDF. An example of a belief structure’s CDF is given in Figure 1,
in which the associated belief structure is m([0, 3]) = 0.2, m([3, 6]) = 0.3, m([5, 8]) = 0.2, m([7, 9]) = 0.2,
m([8, 10]) = 0.1.
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Figure 1. Example of a D-S belief structure’s CDF with respect to its associated variable x.

3. Two-Person Zero-Sum Matrix Game and Its Extension of D-S Belief Structures

In a two-person zero-sum matrix game, there are two players; each has a finite number of strategies
to select in each play of the game. Assume that S1 = {δ1, δ2, · · · , δp} and S2 = {σ1, σ2, · · · , σq} are the
sets of pure strategies for Players 1 and 2. The vectors x = (x1, x2, · · · , xp) and y = (y1, y2, · · · , yq)

are known as the mixed strategies of Players 1 and 2, respectively, where
p
∑

i=1
xi = 1, xi ≥ 0,

and
q
∑

j=1
yj = 1, yj ≥ 0.

The classical zero-sum matrix game is based on a deterministic payoff matrix. Let the payoff
matrix of Player 1 be denoted as A =

(
aij
)

p×q, which is a real matrix, then a two-person zero-sum

matrix game is expressed by ({x}, {y}, A) or A simply. In matrix game A, if Player 1 selects strategy x
and Player 2 chooses strategy y, the expected gain (also called utility) of Player 1 can be computed as:

u1(x, y) = xAyT =
p

∑
i=1

q

∑
j=1

xiaijyj. (7)

Correspondingly, in this condition, the expected loss of Player 2 is u2(x, y) = −xAyT . The game
reaches a Nash equilibrium if the strategy combination (x∗, y∗) selected by players satisfies:{

u1(x∗, y∗) ≥ u1(x, y∗), ∀x
u2(x∗, y∗) ≥ u2(x∗, y), ∀y

(8)

In order to find the optimal strategies x∗ and y∗, von Neumann presented the minimax theorem
to solve the game. According to that theorem, a player should find the mixed strategy that maximizes
the minimum expected gain, or equivalently, a player should select the mixed strategy that minimizes
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the maximum expected loss. In the mathematical formulation, the criterion is expressed by a pair of
primal-dual linear programming problems as below:

max v

s.t.



p
∑

i=1
aijx∗i ≥ v, j = 1, · · · , q

p
∑

i=1
x∗i = 1

x∗i ≥ 0, i = 1, · · · p

(9)

and:
min w

s.t.



q
∑

j=1
aijy∗j ≤ w, i = 1, · · · , p

q
∑

j=1
y∗j = 1

y∗j ≥ 0, j = 1, · · · q

(10)

In that case, x∗ and y∗ are the optimal strategies, and V(= v = w) is called the value of the matrix
game A.

As shown above, the traditional zero-sum matrix game is on the basis of deterministic payoffs.
However, in the real world, the game may be composed by uncertain payoffs because of the varieties of
uncertain factors. In previous studies, matrix games with payoffs of interval numbers, fuzzy numbers,
intuitionistic fuzzy sets, and so on, have received much concern. The matrix game with belief structure
payoffs, which represent the ambiguity involved in players’ utilities, has been paid less attention. In
the paper, the deterministic zero-sum matrix game is extended to the uncertain environment expressed
by D-S belief structures over the real line.

Modeled after the zero-sum matrix game within the environment of deterministic payoffs,
a zero-sum matrix game with D-S belief structure payoffs is represented as a triplet ({x}, {y}, M)

or M simply, where x and y are the strategies of two players, and M is the payoff matrix consisting of
belief structures defined over the real line. Formally, M is expressed as:

M =


m11 m12 · · · m1q
m21 m22 · · · m2q

...
...

. . .
...

mp1 mp2 · · · mpq

 . (11)

4. Proposed Method to Solve Zero-Sum Matrix Games with D-S Belief Structure Payoffs

Once the model of the zero-sum matrix game with D-S belief structure payoffs has been proposed,
how to solve the game becomes the following problem. Herein, a basic fact or hypothesis must
be clarified. In the research of uncertain matrix games, the term “solve the game” does not mean
obtain a unique combination of optimal strategies, i.e., a Nash equilibrium. In fact, in the uncertain
environment, the deterministic Nash equilibrium basically cannot be derived due to the impact of
uncertain payoffs. This will yield different Nash equilibria associated with different cases of payoffs,
and any single equilibrium is trivial. Instead, solving the game is mainly to calculate the value of the
game, which is uncertain in an uncertain matrix game.

As for the zero-sum matrix game with D-S belief structure payoffs, a decomposition method
is proposed to calculate the value of the game via decomposing it into multiple zero-sum matrix
games with interval data. The details of the method are shown as follows. It mainly contains the steps
“decompose”-“calculate”-“compose”.
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• “Decompose”: A zero-sum matrix game with D-S belief structure payoffs ({x}, {y}, M),
where M =

[
mij
]

p×q with i ∈ {1, · · · , p} and j ∈ {1, · · · , q}, is decomposed into

∏
i,j

NumFocals(mij) zero-sum matrix games with interval data ({x}, {y}, I = [Ikl ]p×q), k ∈

{1, · · · , p} and l ∈ {1, · · · , q}, where NumFocals(mij) is the number of focal elements in belief
structure mij, and Ikl is a focal element extracting from mij. Each I = [Ikl ]p×q has a belief degree
indicated by BelD(I) to express its probability of occurrence, which is determined by all Ikl in I.
For example, Table 1 shows a zero-sum matrix game with D-S belief structure payoffs, which can
be decomposed into the following four zero-sum matrix games with interval data:

I1 =

[
[1, 2] [−1, 3]
[−1, 0] [−1, 1]

]
with belief degree BelD(I1) = 0.6× 1× 1× 0.2 = 0.12.

I2 =

[
[1, 2] [−1, 3]
[−1, 0] [0, 2]

]
with belief degree BelD(I2) = 0.6× 1× 1× 0.8 = 0.48.

I3 =

[
[3, 5] [−1, 3]
[−1, 0] [−1, 1]

]
with belief degree BelD(I3) = 0.4× 1× 1× 0.2 = 0.08.

I4 =

[
[3, 5] [−1, 3]
[−1, 0] [0, 2]

]
with belief degree BelD(I4) = 0.4× 1× 1× 0.8 = 0.32.

Table 1. A 2× 2 zero-sum matrix game with D-S belief structure payoffs.

Strategy σ1 σ2

δ1
m([1, 2]) = 0.6
m([3, 5]) = 0.4 m([−1, 3]) = 1

δ2 m([−1, 0]) = 1 m([−1, 1]) = 0.2
m([0, 2]) = 0.8

• “Calculate”: In this step, the values of obtained interval-valued matrix games are calculated.
At present, there are many existing approaches to solve a zero-sum matrix game with interval
data. A well-developed approach proposed by Liu and Kao [34] is employed to solve these
interval-valued matrix games in the paper. Given a zero-sum matrix game with interval data
({x}, {y}, I = [Ikl ]p×q), where Ikl = [IL

kl , IR
kl ], k ∈ {1, · · · , p} and l ∈ {1, · · · , q}, according to Liu

and Kao’s approach, the lower bound of the value of the game, denoted as V, is calculated by:

max v

s.t.



p
∑

k=1
IL
kl xk ≥ v, l = 1, · · · , q

p
∑

k=1
xk = 1

xk ≥ 0, k = 1, · · · p

(12)

and:
min w

s.t.



q
∑

l=1
IL
klyl ≤ w , k = 1, · · · , p

q
∑

l=1
yl = 1

yl ≥ 0, l = 1, · · · q

(13)
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V = v = w. The upper bound of the value of the game, denoted as V, is calculated by:

max v

s.t.



p
∑

k=1
IR
kl xk ≥ v, l = 1, · · · , q

p
∑

k=1
xk = 1

xk ≥ 0, k = 1, · · · p

(14)

and:
min w

s.t.



q
∑

l=1
IR
klyl ≤ w , k = 1, · · · , p

q
∑

l=1
yl = 1

yl ≥ 0, l = 1, · · · q

(15)

V = v = w. For example, the values of the four interval-valued matrix games associated with
Table 1 are calculated. For I1, the value is [−1, 2] with belief degree 0.12. The value of I2 is
[−1/3, 2] with belief degree 0.48. The value of I3 is [−1, 3] with belief degree 0.08. The value of I4

is [−0.2, 3] with belief degree 0.32.
• “Compose”: In this step, the values calculated by the above step are composed to form an overall

value for the zero-sum matrix game with belief structure payoffs. Let us still use the game
shown in Table 1 as the example. According to the step “calculate”, the values of interval-valued
matrix games associated with the game shown in Table 1 are [−1, 2] with belief degree 0.12,
[−1/3, 2] with belief degree 0.48, [−1, 3] with belief degree 0.08 and [−0.2, 3] with belief degree
0.32, respectively. Therefore, the value of the matrix game shown in Table 1 is m([−1, 2]) = 0.12,
m([−1/3, 2]) = 0.48, m([−1, 3]) = 0.08, m([−0.2, 3]) = 0.32. This value is also in the form of D-S
belief structures; its CDF is shown in Figure 2.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

B-CDF
P-CDF

Figure 2. The CDF of the value of the game given in Table 1 with respect to the associated variable x.

Via the steps shown above, the value of a zero-sum matrix game with belief structure payoffs is
calculated. This value indicates the distribution of equilibrium payoffs of the game.
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5. Alternative Solution: A Monte Carlo Simulation Approach Based on the Latin
Hypercube Sampling

Essentially, the proposed decomposition method presented in Section 4 enumerates all possible
interval-valued matrix games of the associated zero-sum matrix game with belief structure payoffs.
It will generate ∏

i,j
NumFocals(mij) zero-sum interval-valued matrix games. This would not be an issue

in many cases. However, if the size of a game’s payoff matrix and the number of focal elements in belief
structures are simultaneously large, the amount of generated interval-valued matrix games will be very
large. For example, Table 2 shows a 5× 3 zero-sum matrix game with D-S belief structure payoffs. In the
game, each payoff is a belief structure having four focal elements. If using the decomposition method
presented in Section 4, it has to generate and deal with 415 = 1,073,741,824 zero-sum interval-valued
matrix games. If we run the corresponding MATLAB code on the MATLAB R2016a software, which
has been installed on a personal computer with Intel Pentium CPU G3250 (3.20 GHz, two cores) and 8
GB RAM, the time for solving a zero-sum interval-valued matrix game is 0.0141 s, which is the average
of running 10,000 times. As a result, solving 415 zero-sum interval-valued matrix games will take
0.0141× 415 ≈ 15,140,000 s, which is more than 175 days. Therefore, it is quite computation-intensive.

Table 2. A 5× 3 zero-sum matrix game with D-S belief structure payoffs.

σ1 σ2 σ3

δ1
m([1, 2]) = 0.5, m([0, 2]) = 0.1,
m([3, 5]) = 0.3, m([4, 5]) = 0.1

m([−1, 1]) = 0.5, m([−1, 2]) = 0.3,
m([−1, 3]) = 0.1, m([2, 3]) = 0.1

m([−3, 2]) = 0.4, m([−1, 1]) = 0.3,
m([−2, 2]) = 0.1, m([1, 2]) = 0.2

δ2
m([−1, 0]) = 0.2, m([−1, 1]) = 0.3,
m([0, 3]) = 0.3, m([1, 2]) = 0.2

m([−1, 1]) = 0.2, m([0, 1]) = 0.2,
m([0, 1.5]) = 0.3, m([1, 2]) = 0.3

m([−2,−1.5]) = 0.1, m([−1, 1]) = 0.3,
m([0, 2]) = 0.3, m([1, 3]) = 0.3

δ3
m([−1, 0]) = 0.2, m([−1, 1]) = 0.3,
m([1, 2]) = 0.1, m([0, 2]) = 0.4

m([−2, 0]) = 0.2, m([−1, 0]) = 0.2,
m([−0.5, 1]) = 0.3, m([0, 1]) = 0.3

m([−1, 0]) = 0.3, m([−0.5, 0]) = 0.2,
m([1, 2]) = 0.3, m([0, 2]) = 0.2

δ4
m([−1, 2]) = 0.1, m([0, 2]) = 0.7,
m([0, 1]) = 0.1, m([1, 2]) = 0.1

m([−2, 0]) = 0.4, m([−1, 1]) = 0.1,
m([−0.5, 1]) = 0.2, m([0, 1]) = 0.3

m([−1.5, 1]) = 0.3, m([−0.5, 0]) = 0.1,
m([−1, 2]) = 0.1, m([1, 3]) = 0.5

δ5
m([−2,−1]) = 0.4, m([−1, 1]) = 0.2,
m([0, 1]) = 0.3, m([1, 2]) = 0.1

m([−3, 1]) = 0.6, m([−1, 2]) = 0.1,
m([1, 2]) = 0.2, m([0, 2]) = 0.1

m([−2,−1]) = 0.4, m([−1, 1]) = 0.2,
m([−1, 2]) = 0.2, m([1, 3]) = 0.2

Facing this situation, as an alternative solution, a Monte Carlo simulation based on the Latin
hypercube sampling (LHS) can be used, whose process is shown in Algorithm 1. LHS [74] is a popular
sampling method to generate a near-random sample of parameter values from a multidimensional
distribution [75,76]. By using the LHS, an interval-valued matrix game is generated according to
the original matrix game with belief structure payoffs in every sampling, then the value of the
interval-valued matrix game, which is an interval, can be calculated. Given a predetermined sampling
size T, the obtained T intervals can be used to construct the distribution of the value of the game.
This distribution can also be seen as a belief structure, which could be graphically shown in a CDF
figure in terms of Equations (5) and (6). For example, Figure 3 shows the CDF of the value of the game
given in Table 1 obtained by using the LHS-based Monte Carlo simulation approach. It is basically the
same as Figure 2. The comparison verifies the result obtained by using the proposed decomposition
method in Section 4 and simultaneously shows the effectiveness of these two methods. Besides,
now the game shown in Table 2 can be handled by using the LHS-based Monte Carlo simulation
approach; the results are shown in Figure 4. By using the alternative solution, for the game shown
in Table 2, we do not need to solve 1,073,741,824 zero-sum interval-valued matrix games, but just
deal with T interval-valued matrix games, which could greatly reduce the amount of computation.
As shown in Figure 4, the obtained B-CDF and P-CDF become more and more precise with the rise
of sampling size T. In the concrete applications, the value of T can be determined according to the
requirement of precision and computing capability. Note that since the Monte Carlo simulation is an
approximate approach that cannot achieve 100% precision, it is suggested to be used when the amount
of computation is very large and the computing capability is limited.
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By comparing the proposed decomposition method presented in Section 4 and the LHS-based
Monte Carlo simulation approach presented in this section, we can find that: (i) in the facet of the
optimality or precision property, the decomposition method is an accurate method that would obtain
the exact value of the game with belief structure payoffs, in contrast to the Monte Carlo simulation
approach being a sampling-based approach, which only derives the approximate result; (ii) in the
aspect of complexity, the decomposition method has a bearable computational complexity if the game
and its payoffs are relatively simple; when the game becomes complicated, the amount of computation
of using the decomposition method will rapidly increase, at that time the Monte Carlo simulation
approach is suggested to reduce the computation; (iii) in the aspect of parallelization, both proposed
methods can be performed in parallel, which provides a potential way to accelerate the computing
process when the amount of computation is extremely large.

Algorithm 1: The Latin hypercube sampling (LHS)-based Monte Carlo simulation approach to
solve a zero-sum matrix game with D-S belief structure payoffs.

INPUT: Zero-sum matrix game with D-S belief structure payoffs ({x}, {y}, M),
where M =

[
mij
]

p×q with i ∈ {1, · · · , p} and j ∈ {1, · · · , q}; Sampling size T
OUTPUT: B-CDF, P-CDF
Generate a T-by-(p× q) matrix L containing a LHS of T values on each of (p× q) variables;
FOR k = 1 : stepsize 1 : T

FOREACH mij in M
Get a focal element F(ij) ∈ FocalElements(mij) in terms of L(k, i, j);

END
Generate an interval-valued matrix game Ik =

[
F(ij)

]
p×q

according to all F(ij);

Solve Ik =
[

F(ij)
]

p×q
based on Equations (12)–(15), the obtained value is denoted as

[Vk, Vk];
END
Once having all [Vk, Vk], k = 1, · · · , T, then

(i) calculate the B-CDF according to Equation (5);
(ii) calculate the P-CDF according to Equation (6);

where m([Vk, Vk]) = 1/T.
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Figure 3. Obtained CDF of the value of the game shown in Table 1 with respect to the associated
variable x by using the LHS-based Monte Carlo simulation while sampling size T = 10,000.
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Figure 4. CDF of the value of the game shown in Table 2 with respect to the associated variable x by
using the LHS-based Monte Carlo simulation with different sampling sizes T.

6. Applications

6.1. An Illustrative Application in Sensor Selection

In this subsection, an application of sensor selection adapted from [27] is used to show the process
of applying the proposed zero-sum matrix game with belief structure payoffs and its solution method.

In [27], the author presented an example of applying zero-sum matrix games with crisp payoffs to
sensor selection. Suppose there are two types of sensors A and B, and one of the two sensors is acquired
for use in detecting submarines. Note that sensors with different buoyancy submerge to different
depths; hence, each type of sensors works at a certain depth, and a sensor network consisting of
sensors belonging to the same type is approximatively deployed on a two-dimensional plane. Both of
the sensors have “shallow” (S) and “deep” (D) settings or modes, but Sensor B’s long-range detection
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capability is weakened in order to enhance its robustness; the capacity that the detection range is not
zero even if the submarine’s depth (which is also either S or D) is guessed incorrectly. The detection
ranges of the two sensors are shown in Figure 5. The question is which kind of sensor is more effective.

In order to answer the question, in [27], the author has analyzed two cases, as shown in Figure 6.
One is that the sensors are used to construct a linear barrier. In that case, each matrix in Figure 5 is
regarded as the payoff matrix in a game, and the value of the game is an equivalent detection range.
Let VA and VB be the values of Sensor A and Sensor B games. According to the minimax criterion
shown in Equations (9) and (10), it is calculated that VA = 1.333 and VB = 1.5. Therefore, Sensor B is
better in this case. The other case is to perform the task that detects hidden submarines within a large
area of size C. In the case, if n sensors are used, the fraction of submarines detected can be calculated

by
n
∑

i=1
πR2

i

/
C where Ri is the detection range of the i-th sensor. On average, the ratio is positively

related to E(R2), which is the value of the game with squared detection ranges. For Sensors A and
B, the games become new forms as shown in Figure 7, which are the same as those in Figure 5, but
each entry has been squared since now the task is to detect submarines within an area. In the case,
the values of new sensor games becomes V

′
A = 3.2 and V

′
B = 2.5. Therefore, Sensor A is better for the

task of submarine detection within a large area.

Figure 5. The detection ranges of Sensors A and B in the form of crisp numbers.

Sea level

The working 

depth of 

sensors

Detecting 

area

R

g 

(b) Detect submarines within an area

Sea level
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depth of 

sensors

R

(a) Construct a barrier line

R

Figure 6. Two cases in sensor selection for submarine detection.
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Figure 7. Squared detection ranges for Sensors A and B in the form of crisp numbers.

The analysis given above is on the basis of deterministic payoff matrices of sensor games. However,
in reality, due to the complexity of the marine environment, the sensor’s reliability and the opponent’s
interference, the detection ranges of sensors are not precise, but have a degree of uncertainty. In the
paper, the uncertainty is modeled by D-S belief structures. Suppose the detection ranges of the two
sensors are in the form of D-S belief structures, as shown in Figure 8. For example, in Figure 8, the item
m([3.7, 3.9]) = 0.2, m([3.8, 4.1]) = 0.8 indicates that the detection range is that of ambiguity composed
of discord and non-specificity, where the distribution of beliefs 0.2 and 0.8 expresses the discord,
and both the intervals [3.7, 3.9] and [3.8, 4.1] express the non-specificity. By facing the situation, the
method of matrix games with payoffs of D-S belief structures will be used to compare the performance
of the sensors in different task cases. Similarly, if the sensors are used to construct a linear barrier,
each matrix in Figure 8 is treated as the payoff matrix in a game, and the value of the game becomes
an equivalent detection range. By using the proposed solution method in Section 4, the value of the
sensor games with D-S belief structure payoffs can be calculated, they are still D-S belief structures
indicated by mVA and mVB :

mVA([1.1648, 1.2776]) = 0.02,
mVA([1.2109, 1.3650]) = 0.18,
mVA([1.1745, 1.2983]) = 0.08,
mVA([1.2214, 1.3887]) = 0.72;

and
mVB([1.2500, 1.5000]) = 0.01,
mVB([1.2737, 1.5444]) = 0.18,
mVB([1.3000, 1.6000]) = 0.81.

The associated CDFs of mVA and mVB are illustrated in Figure 9.
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Figure 8. The detection ranges of Sensors A and B in the form of D-S belief structures.
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Figure 9. CDFs of the values of sensor games given in Figure 8 with respect to the associated variable x.

In order to compare the performance of Sensors A and B, mVA and mVB herein are regarded
as distributions of interval numbers, then the expected detection ranges of Sensors A and B are
E(mVA) = [1.2146, 1.3750] and E(mVB) = [1.2948, 1.5890]. To compare E(mVA) and E(mVB), a simple
heuristic method proposed by Wang et al. [77] is utilized in this paper, which provides the degree of
possibility that an interval is greater/lesser than another one. In [77], for intervals A = [aL, aU ] and
B = [bL, bU ], the possibilities of A ≥ B and B ≥ A are defined as below:

P(A ≥ B) =
max

{
0, aU − bL}−max

{
0, aL − bU}

aU − aL + bU − bL , (16)

P(B ≥ A) =
max

{
0, bU − aL}−max

{
0, bL − aU}

aU − aL + bU − bL . (17)

According to Equations (16) and (17), we have P
(
E(mVA) ≥ E(mVB)

)
= 0.1765 and

P
(
E(mVB) ≥ E(mVA)

)
= 0.8235. Therefore, Sensor B is more likely to perform better in the task

of constructing linear barriers.
In the other case, the sensors are used to detect hidden submarines within a large area. For Sensors

A and B, since the task is changed to detecting submarines within an area to construct a linear barrier
(in other words, from the barrier coverage to the area coverage), the games now are on the basis of
squared detection ranges, as shown in Figure 10. Similarly, by using the proposed method in this
paper, we have the values of the games in Figure 10, denoted as mV′A

and mV′B
:

mV′A
([2.3863, 2.9175]) = 0.02,

mV′A
([2.6199, 3.4188]) = 0.18,

mV′A
([2.4081, 2.9718]) = 0.08,

mV′A
([2.6462, 3.4935]) = 0.72;
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and
mV′B

([1.7650, 2.4100]) = 0.01,

mV′B
([1.8462, 2.5814]) = 0.18,

mV′B
([1.9400, 2.8100]) = 0.81.

Likewise, the associated CDFs of mV′A
and mV′B

are shown in Figure 11. Then, we calculate the

expected values of the games, which are E(mV′A
) = [2.6172, 3.4268] and E(mV′B

) = [1.9214, 2.7648].

At last, according to Equations (16) and (17), it is derived that P
(

E(mV′A
) ≥ E(mV′B

)
)
= 0.9107 and

P
(

E(mV′B
) ≥ E(mV′A

)
)
= 0.0893. Hence, it is well-founded to conclude that Sensor A is better than

Sensor B for the task of detecting submarines within a large area.
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Figure 10. Squared detection ranges for Sensors A and B in the form of D-S belief structures.
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Figure 11. CDFs of the values of sensor games given in Figure 10 with respect to the associated
variable x.

Through the application, we can find that in the real world, sometimes, it indeed requires that
the game model has the ability to handle uncertain payoffs. On the basis of D-S theory’s capability to
represent the ambiguity involved in game payoffs, the proposed zero-sum matrix game with belief
structure payoffs provides an effective way to meet this requirement.
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6.2. Another Application on the Intrusion Detection in Sensor Networks

In this subsection, another example about the intrusion detection in sensor networks is given to
illustrate the application and effectiveness of the proposed model.

The intrusion detection (ID) is of great concern in various kinds of sensor networks [78].
Currently, the ID techniques are mainly classified into misuse detection and anomaly detection.
Generally, the misuse detection is usually used to detect known types of attacks whose attack
characteristics (known as “signatures”) are known and could achieve high detection accuracy and a
low false alarm rate for such attacks, but is unable to detect novel attacks. In contrast, the anomaly
detection has good performance in detecting novel attacks, but it is inclined to a high false alarm rate.
The signature-based intrusion detection system (IDS) and anomaly-based IDS are two typical IDSs
for misuse detection and anomaly detection, respectively. Therefore, integrating multiple detection
techniques is a promising way to improve overall detection performance. In [79], the authors have
presented a game-theoretic framework to study the interactions between attackers and defenders in
the ID by integrating various ID techniques. They assumed that a defender can use multiple IDSs and
an attacker can stage multiple types of attacks. In the paper, the two-person zero-sum game presented
in [79] is utilized to show the practicable application of the proposed zero-sum matrix game with belief
structure payoffs.

In [79], it is assumed that a sensor network could deploy multiple weak IDSs in which “weak”
means that each IDS has different limitations in its coverage of attack types and has different
performances in detecting different types of attacks. Particularly, suppose an attacker is able to
stage two attacks on a sensor network, Attack 1 and Attack 2, so it has three strategies: Attack 1,
Attack 2 and not attack. In response, a defender can use two IDSs, for example signature-based IDS
and anomaly-based IDS, against the attacker: IDS1, which performs better for Attack 1, and IDS2,
having better performance for Attack 2. Hence the defender also has three strategies: IDS1, IDS2 and
not monitor. As a result, the defender and attacker constitute a 3× 3 two-person zero-sum game;
the payoff matrix of the defender is shown in Table 3. The payoffs are explained as follows. Let αij
and 1− αij be the detection rate and false negative rate of the i-th IDS with respect to the j-th attack
type and βi the false positive rate of the i-th IDS, where αij, βi ∈ [0, 1], and h represents the merit of the
overall network. The payoff function of the defender, denoted as Uij, is defined by:

Uij =


(2αij − 1)h, i, j = 1, 2
−h, i = 3, j = 1, 2
−βih, i = 1, 2, j = 3
0, i = 3, j = 3

where (2αij − 1)h is the expected gain of detecting the j-th attack type by the i-th IDS, which is
calculated by the detection gain of the defender αijh plus the loss of a failed detection −(1− αij)h.
Additionally,−βih represents the loss (cost) of false alarm attacks when only normal data are presented.
Since the game is zero-sum, the payoff of the attacker is −Uij. In the constructed attacker/defender
game, the equilibrium strategy shows the contribution of each IDS to the overall sensor network
security, which can be used as a reference to further improve the IDS configuration. Additionally, the
value of the game, denoted as V, represents a minimum security level (MSL) the defender can achieve;
it is a key indicator of the sensor network security.

Table 3. The payoff matrix of the defender in a zero-sum attacker/defender game.

Attack 1 Attack 2 Not Attack

IDS1 (2α11 − 1)h (2α12 − 1)h −β1h
IDS2 (2α21 − 1)h (2α22 − 1)h −β2h

Not monitor −h −h 0
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A numerical example is given in [79] by setting specific values for the parameters mentioned
above. Let α11 = 85%, α12 = 45%, β1 = 0.1%, α21 = 20%, α22 = 70%, β2 = 2% and h = 100, then a
numerical payoff matrix of the attacker/defender game is generated:

Ude f ender =

 70 −10 −0.1
−60 40 −2
−100 −100 0

 .

For the above Ude f ender, the value of the game is V = −0.4624, which means that the MSL of the
corresponding sensor network is −0.4624.

Clearly, in the above numerical example, it is assumed that IDS1 has a bad performance with
respect to Attack 2 (namely α12 = 45%) and IDS2 performs very poorly to Attack 1 (namely α21 = 20%).
In order to elevate the overall security level of the sensor network, a straightforward way is to improve
the performances of IDS1 to Attack 2 and IDS2 to Attack 1, respectively. Now, we analyze the effect
of such improvement. In order to decrease the number of parameters, we assume α12 = γ1α11 and
α21 = γ2α22, where γ1, γ2 ∈ [0, 1]. Therefore, the payoff matrix of the defender now becomes:

U
′
de f ender =

 (2α11 − 1)h (2γ1α11 − 1)h −β1h
(2γ2α22 − 1)h (2α22 − 1)h −β2h

−h −h 0

 (18)

where α11 = 85%, α22 = 70%, β1 = 0.1%, β2 = 2% and h = 100. According to U
′
de f ender, the MSL

of the sensor network can be obtained with respect to different γ1 and γ2, as shown in Figure 12.
From Figure 12, it is found that: (i) if both the values of γ1 and γ2 are small, increasing them can
obviously elevate the MSL of the sensor network; (ii) however, if γ1 or γ2 has already obtained a big
value, increasing the value of the other parameter cannot observably improve the security of the
sensor network. The results are very useful in the process of improving IDS1 and IDS2 to avoid
unnecessary work and save cost. What is more, from Figure 12, it seems that the MSL almost reaches
the highest level only if γ1 ≥ 0.6, regardless of the value of γ2. This is obtained from the analysis of
the attacker/defender game with deterministic payoffs.

However, in the above analysis, the uncertainty is not taken into consideration in the process of
improving IDS1 and IDS2. For example, if γ1 = 0.55 resulting in α12 = 46.75%, it actually assumes that
the improved IDS1 has an exact 46.75% detection rate with respect to Attack 2. In reality, a security
architect may hardly ensure that an improved IDS has an exact detection rate. Instead, the performance
index of the improved IDS is usually of uncertainty, for instance lying in an interval α12 ∈ [45%, 47%].
Dose such uncertainty have a severe impact on the security of the sensor network? This problem can
be addressed by using the proposed model in the paper. A numerical example is given first as follows.

If γ1 = 0.55 and γ2 = 0.7, it is easily obtained that the MSL of the sensor network is V = −0.3512
in terms of Equation (18). Now, suppose that γ1 and γ2 are uncertain, which are represented by
belief structures:

mγ1([0.53, 0.56]) = 0.5, mγ1([0.54, 0.57]) = 0.5;
mγ2([0.68, 0.71]) = 0.5, mγ2([0.69, 0.72]) = 0.5.
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Figure 12. The minimum security level (MSL) of the sensor network with respect to parameters γ1 and
γ2 in terms of U

′

de f ender.

Herein, the mean values of γ1 and γ2, expressed by mγ1 and mγ2 , are approximately equal to
0.55 and 0.7, respectively. According to Equation (18), a new zero-sum matrix games with belief
structure payoffs can be generated, in which the payoff matrix of the defender is shown in Table 4.
Then, in terms of the proposed solution method, the value of the game in Table 4 can be obtained:

mV([−0.4595,−0.2912]) = 0.25,
mV([−0.4072,−0.2267]) = 0.25,
mV([−0.4595,−0.2912]) = 0.25,
mV([−0.4072,−0.2267]) = 0.25.

Additionally, the expected value of mV is E(mV) = [−0.4333,−0.2589]. Therefore, the MSL of
the sensor network becomes an interval [−0.4333,−0.2589] from a crisp number -0.3512, because of
the consideration of uncertainty. Here, we define a fluctuation coefficient Q to express the impact of
considering such uncertainty:

Q =

∣∣∣∣ range(E(mV))

V

∣∣∣∣× 100%.

Table 4. The payoff matrix of the defender in a zero-sum attacker/defender game with belief
structure payoffs. IDS, intrusion detection system.

Attack 1 Attack 2 Not Attack

IDS1 m([70, 70]) = 1 m([−9.9,−4.8]) = 0.5
m([−8.2,−3.1]) = 0.5 m([−0.1,−0.1]) = 1

IDS2 m([−4.8,−0.6]) = 0.5
m([−3.4, 0.8]) = 0.5 m([40, 40]) = 1 m([−2,−2]) = 1

Not monitor m([−100,−100]) = 1 m([−100,−100]) = 1 m([0, 0]) = 1
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In the numerical example, the value of Q is calculated as 49.65%, which indicates that the MSL has
relatively large fluctuations in the case of considering the uncertainty involved in γ1 and γ2, compared
with its deterministic case. Therefore, according to the result obtained by using our proposed model,
in this numerical example, the uncertainty has to be cautiously considered in the process of improving
IDS1 and IDS2. The security architect is suggested to try the best to make γ1 and γ2 more precise in
order to achieve the expected MSL shown in Figure 12.

By this means, all Q values associated with different mean values of γ1 and γ2 can be derived,
as shown in Figure 13. In the process, for each deterministic value of γ1 or γ2, denoted as γ, it is
transformed to a Dempster–Shafer belief structure via the following means:

m([γ− l, γ + l/2]) = 0.5, m([γ− l/2, γ + l]) = 0.5

where l represents the radius of the uncertainty of γ. From Figure 13, the distribution map of the value
of Q can be classified into four areas, A, B, C and D. In Areas B and D, each value of Q is very small,
which means that the uncertainty in γ1 and γ2 basically has no influence on the MSL of the sensor
network compared with the case that γ1 and γ2 get deterministic values. In contrast, in Areas A and C
the uncertainty expressed by mγ1 and mγ2 distinctly causes the MSL to fluctuate to different extents.
In Area A, the uncertainty both in γ1 and γ2 can impact the final MSL, and with the increase of γ1 or γ2,
the fluctuation becomes more and more severe. Therefore, the security architect should prevent IDS1
and IDS2 from falling into this area as much as possible. In Area C, it is found that only γ1’s uncertainty
influences the final MSL; therefore, the security architect should give the most attention to the process
of improving IDS1 to reduce the uncertainty of α12. By synthetically considering Figures 12 and 13,
if letting γ1 ≥ 0.65 and γ2 ≥ 0.45 (i.e., improving IDS1 and IDS2 to implement α12 ≥ 55.25% and
α21 ≥ 31.5%), on the one hand, the sensor network can achieve the highest security level that IDS1
and IDS2 can provide; on the other hand, the security level can basically remain unchanged with
the possible uncertainty of IDS1’s detection rate for Attack 2 and IDS2’s detection rate for Attack 1.
The result gives the security architect a more practical and effective suggestion of how to optimize the
IDS configuration of the sensor network. Through the example of the intrusion detection of sensor
networks, it shows another potential application of the proposed model, which is helpful for improving
the security of sensor networks.

Figure 13. The value of fluctuation coefficient Q with respect to different mean values of γ1 and γ2.
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7. Conclusions

In this paper, zero-sum matrix games with uncertain payoffs have been addressed. In order to
express the ambiguity involved in the payoffs of a game, D-S theory has been used to represent the
uncertain payoffs. As a result, a zero-sum matrix game with payoffs of D-S belief structures has
been presented. In order to obtain the value of such a game, in the paper, a decomposition method is
proposed by transforming the game into multiple zero-sum matrix games with interval data. Moreover,
for the possible computationally-intensive issue in the process of applying the decomposition method,
as an alternative solution, a Monte Carlo simulation approach based on LHS is provided, as well.
Finally, applications of the proposed game model and its solution method in sensor selection and
intrusion detection of sensor networks are given, which show the usefulness and effectiveness of the
novel game model. In future research, the authors will invest more effort into seeking other potential
applications so as to further improve the proposed game model.

Acknowledgments: The authors are grateful to the anonymous reviewers for their useful comments and
suggestions on improving this paper. The work is partially supported by National Natural Science
Foundation of China (Grant No. 61671384), Natural Science Basic Research Plan in Shaanxi Province of China
(Program No. 2016JM6018), Fundamental Research Funds for the Central Universities (Grant No. 3102017OQD020),
Aviation Science Foundation (Program No. 20165553036), the Fund of SAST (Program No. SAST2016083) and the
Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University
(Program No. Z2016122).

Author Contributions: X.D. and W.J. conceived of, designed and performed the experiments. X.D., W.J. and J.Z.
analyzed the data. X.D. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice Hall: Upper Saddle River,
NJ, USA, 1995.

2. Jousselme, A.L.; Liu, C.; Grenier, D.; Bossé, É. Measuring ambiguity in the evidence theory. IEEE Trans. Syst.
Man Cybern. Part A Syst. Hum. 2006, 36, 890–903.

3. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.
4. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356.
5. Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 1967, 38,

325–339.
6. Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976.
7. Palmieri, F.A.; Ciuonzo, D. Objective priors from maximum entropy in data classification. Inf. Fusion

2013, 14, 186–198.
8. An, L.; Li, M.; Zhang, P.; Wu, Y.; Jia, L.; Song, W. Discriminative random fields based on maximum entropy

principle for semisupervised SAR image change detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2016, 9, 3395–3404.

9. Jiang, W.; Xie, C.; Luo, Y.; Tang, Y. Ranking Z-numbers with an improved ranking method for generalized
fuzzy numbers. J. Intell. Fuzzy Syst. 2017, 32, 1931–1943.

10. Palmieri, F.; Ciuonzo, D. Data fusion with entropic priors. In Procedings of the 20th Italian Workshop on
Neural Networks, WIRN, Frontiers in Artificial Intelligence and Applications, Salerno, Italy, 27–29 May 2010,
Volume 226; pp. 107–114.

11. Chen, T.M.; Venkataramanan, V. Dempster-Shafer theory for intrusion detection in ad hoc networks.
IEEE Internet Comput. 2005, 9, 35–41.

12. Jiang, W.; Zhan, J. A modified combination rule in generalized evidence theory. Appl. Intell. 2017, 46,
630–640.

13. Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Supplier selection using AHP methodology extended by D
numbers. Expert Syst. Appl. 2014, 41, 156–167.

14. Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Environmental impact assessment based on D numbers.
Expert Syst. Appl. 2014, 41, 635–643.



Sensors 2017, 17, 922 20 of 22

15. Sun, L.; Liu, Y.; Zhang, B.; Shang, Y.; Yuan, H.; Ma, Z. An integrated decision-making model for transformer
condition assessment using game theory and modified evidence combination extended by D numbers.
Energies 2016, 9, 697.

16. Zhou, X.; Deng, X.; Deng, Y.; Mahadevan, S. Dependence assessment in human reliability analysis based on
D numbers and AHP. Nucl. Eng. Des. 2017, 313, 243–252.

17. Liu, H.C.; You, J.X.; Fan, X.J.; Lin, Q.L. Failure mode and effects analysis using D numbers and grey relational
projection method. Expert Syst. Appl. 2014, 41, 4670–4679.

18. Zhou, X.; Shi, Y.; Deng, X.; Deng, Y. D-DEMATEL: A new method to identify critical success factors in
emergency management. Saf. Sci. 2017, 91, 93–104.

19. Wang, Z.; Bauch, C.T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; Perra, N.; Salathé, M.; Zhao, D.
Statistical physics of vaccination. Phys. Rep. 2016, 664, 1–113.

20. Wang, Z.; Kokubo, S.; Jusup, M.; Tanimoto, J. Universal scaling for the dilemma strength in evolutionary
games. Phys. Life Rev. 2015, 14, 1–30.

21. Deng, X.; Han, D.; Dezert, J.; Deng, Y.; Shyr, Y. Evidence combination from an evolutionary game theory
perspective. IEEE Trans. Cybern. 2016, 46, 2070–2082.

22. Caponetto, R.; Fortuna, L.; Fazzino, S.; Xibilia, M.G. Chaotic sequences to improve the performance of
evolutionary algorithms. IEEE Trans. Evol. Comput. 2003, 7, 289–304.

23. Lee, J.; Pak, D. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid
Wireless Sensor Networks. Sensors 2016, 16, 1380.

24. Abdalzaher, M.S.; Seddik, K.; Elsabrouty, M.; Muta, O.; Furukawa, H.; Abdel-Rahman, A.
Game Theory Meets Wireless Sensor Networks Security Requirements and Threats Mitigation: A Survey.
Sensors 2016, 16, 1003.

25. Wang, Z.; Jusup, M.; Wang, R.W.; Shi, L.; Iwasa, Y.; Moreno, Y.; Kurths, J. Onymity promotes cooperation in
social dilemma experiments. Sci. Adv. 2017, 3, e1601444.

26. Chen, Y.; Weng, S.; Guo, W.; Xiong, N. A Game Theory Algorithm for Intra-Cluster Data Aggregation in
a Vehicular Ad Hoc Network. Sensors 2016, 16, 245.

27. Washburn, A. Two-Person Zero-Sum Games; Springer Science & Business Media: New York, NY, USA, 2013;
Volume 201.

28. von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press:
Princeton, NJ, USA, 1944.

29. Li, D.F. Linear Programming Models and Methods of Matrix Games With Payoffs of Triangular Fuzzy Numbers;
Springer: New York, NY, USA, 2016.

30. Li, D.F.; Nan, J.X.; Zhang, M.J. Interval programming models for matrix games with interval payoffs.
Optim. Methods Softw. 2012, 27, 1–16.

31. Li, D.F. Linear programming approach to solve interval-valued matrix games. Omega 2011, 39, 655–666.
32. Collins, W.D.; Hu, C. Studying interval valued matrix games with fuzzy logic. Soft Comput. 2008, 12,

147–155.
33. Mitchell, C.; Hu, C.; Chen, B.; Nooner, M.; Young, P. A computational study of interval-valued matrix games.

In Proceedings of the International Conference on Computational Science and Computational Intelligence
(CSCI), Las Vegas, NV, USA, 10–13 March 2014, Volume 1; pp. 347–352.

34. Liu, S.T.; Kao, C. Matrix games with interval data. Comput. Ind. Eng. 2009, 56, 1697–1700.
35. Li, D.F. An effective methodology for solving matrix games with fuzzy payoffs. IEEE Trans. Cybern. 2013, 43,

610–621.
36. Dutta, B.; Gupta, S. On Nash equilibrium strategy of two-person zero-sum games with trapezoidal fuzzy

payoffs. Fuzzy Inf. Eng. 2014, 6, 299–314.
37. Kumar, S.; Chopra, R.; Saxena, R.R. A Fast Approach to Solve Matrix Games with Payoffs of Trapezoidal

Fuzzy Numbers. Asia Pac. J. Oper. Res. 2016, 33, 1650047.
38. Chandra, S.; Aggarwal, A. On solving matrix games with pay-offs of triangular fuzzy numbers: Certain

observations and generalizations. Eur. J. Oper. Res. 2015, 246, 575–581.
39. Roy, S.K.; Mula, P. Solving matrix game with rough payoffs using genetic algorithm. Oper. Res. 2016, 16,

117–130.
40. Nan, J.X.; Li, D.F.; Zhang, M.J. A lexicographic method for matrix games with payoffs of triangular

intuitionistic fuzzy numbers. Int. J. Comput. Intell. Syst. 2010, 3, 280–289.



Sensors 2017, 17, 922 21 of 22

41. Li, D.F.; Nan, J.X. A nonlinear programming approach to matrix games with payoffs of Atanassov’s
intuitionistic fuzzy sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2009, 17, 585–607.

42. Seikh, M.R.; Nayak, P.K.; Pal, M. Matrix games with intuitionistic fuzzy pay-offs. J. Inf. Optim. Sci. 2015, 36,
159–181.

43. Li, D.F. Mathematical-programming approach to matrix games with payoffs represented by Atanassov’s
interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 2010, 18, 1112–1128.

44. Xu, L.; Zhao, R.; Ning, Y. Two-person zero-sum matrix game with fuzzy random payoffs. In Proceedings of
the International Conference on Intelligent Computing, Kunming, China, 16–19 August 2006; pp. 809–818.

45. Xu, Y.; Liu, J.; Zhong, X.; Chen, S. Lattice-valued matrix game with mixed strategies for intelligent decision
support. Knowl. Based Syst. 2012, 32, 56–64.

46. Xiong, W.; Luo, X.; Ma, W.; Zhang, M. Ambiguous games played by players with ambiguity aversion and
minimax regret. Knowl. Based Syst. 2014, 70, 167–176.

47. Xiong, W. Games under ambiguous payoffs and optimistic attitudes. J. Appl. Math. 2014, 2014, 531987.
48. Deng, X.; Zheng, X.; Su, X.; Chan, F.T.; Hu, Y.; Sadiq, R.; Deng, Y. An evidential game theory framework in

multi-criteria decision making process. Appl. Math. Comput. 2014, 244, 783–793.
49. Yager, R.R.; Alajlan, N. Evaluating Belief Structure Satisfaction to Uncertain Target Values. IEEE Trans.

Cybern. 2016, 46, 869–877.
50. Xu, X.B.; Zheng, J.; Yang, J.B.; Xu, D.L.; Chen, Y.W. Data classification using evidence reasoning rule.

Knowl. Based Syst. 2017, 116, 144–151.
51. Deng, Y. Deng entropy. Chaos Solitons Fractals 2016, 91, 549–553.
52. Jiang, W.; Xie, C.; Zhuang, M.; Tang, Y. Failure mode and effects analysis based on a novel fuzzy evidential

method. Appl. Soft Comput. 2017, doi:10.1016/j.asoc.2017.04.008.
53. Yang, M.; Lin, Y.; Han, X. Probabilistic Wind Generation Forecast Based on Sparse Bayesian Classification

and Dempster-Shafer Theory. IEEE Trans. Ind. Appl. 2016, 52, 1998–2005.
54. Deng, X.; Xiao, F.; Deng, Y. An improved distance-based total uncertainty measure in belief function theory.

Appl. Intell. 2017, doi:10.1007/s10489-016-0870-3.
55. Han, D.; Dezert, J.; Duan, Z. Evaluation of probability transformations of belief functions for decision

making. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 93–108.
56. Yang, Y.; Han, D.Q.; Dezert, J. An angle-based neighborhood graph classifier with evidential reasoning.

Pattern Recogn. Lett. 2016, 71, 78–85.
57. Jiang, W.; Wei, B.; Zhan, J.; Xie, C.; Zhou, D. A visibility graph power averaging aggregation operator:

A methodology based on network analysis. Comput. Ind. Eng. 2016, 101, 260–268.
58. Jiang, W.; Wei, B.; Tang, Y.; Zhou, D. Ordered visibility graph average aggregation operator: An application

in produced water management. Chaos 2017, 27, 023117.
59. Mo, H.; Deng, Y. A new aggregating operator in linguistic decision making based on D numbers. Int. J.

Uncertain. Fuzziness Knowl. Based Syst. 2016, 24, 831–846.
60. Song, M.; Jiang, W.; Xie, C.; Zhou, D. A new interval numbers power average operator in multiple attribute

decision making. Int. J. Intell. Syst. 2017, 32, 631–644.
61. Ciuonzo, D.; Romano, G.; Rossi, P.S. Channel-aware decision fusion in distributed MIMO wireless sensor

networks: Decode-and-fuse vs. decode-then-fuse. IEEE Trans. Wirel. Commun. 2012, 11, 2976–2985.
62. Wang, H.; Yao, K.; Pottie, G.; Estrin, D. Entropy-based sensor selection heuristic for target localization.

In Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, Berkeley,
CA, USA, 26–27 April 2004; pp. 36–45.

63. Ciuonzo, D.; Romano, G.; Rossi, P.S. Optimality of received energy in decision fusion over Rayleigh fading
diversity MAC with non-identical sensors. IEEE Trans. Signal Process. 2013, 61, 22–27.

64. Dong, J.; Zhuang, D.; Huang, Y.; Fu, J. Advances in multi-sensor data fusion: Algorithms and applications.
Sensors 2009, 9, 7771–7784.

65. Si, L.; Wang, Z.; Liu, X.; Tan, C.; Xu, J.; Zheng, K. Multi-sensor data fusion identification for shearer cutting
conditions based on parallel quasi-newton neural networks and the Dempster-Shafer theory. Sensors 2015, 15,
28772–28795.

66. André, C.; Le Hégarat-Mascle, S.; Reynaud, R. Evidential framework for data fusion in a multi-sensor
surveillance system. Eng. Appl. Artif. Intell. 2015, 43, 166–180.



Sensors 2017, 17, 922 22 of 22

67. Jiang, W.; Zhuang, M.; Xie, C.; Wu, J. Sensing attribute weights: A novel basic belief assignment method.
Sensors 2017, 17, 721.

68. Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art.
Inf. Fusion 2013, 14, 28–44.

69. Zois, E.N.; Anastassopoulos, V. Fusion of correlated decisions for writer verification. Pattern Recogn. 2001, 34,
47–61.

70. Tselios, K.; Zois, E.N.; Nassiopoulos, A.; Economou, G. Fusion of directional transitional features for off-line
signature verification. In Proceedings of the International Joint Conference on Biometrics (IJCB), Washington,
DC, USA, 11–13 October 2011; pp. 1–6.

71. Yager, R.R. Cumulative distribution functions from Dempster-Shafer belief structures. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2004, 34, 2080–2087.

72. Yager, R.R. Joint cumulative distribution functions for Dempster-Shafer belief structures using copulas.
Fuzzy Optim. Decis. Mak. 2013, 12, 393–414.

73. Smets, P. Belief functions on real numbers. Int. J. Approx. Reason. 2005, 40, 181–223.
74. McKay, M.D.; Beckman, R.J.; Conover, W.J. Comparison of three methods for selecting values of input

variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245.
75. Helton, J.C.; Davis, F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex

systems. Reliab. Eng. Syst. Saf. 2003, 81, 23–69.
76. Shields, M.D.; Zhang, J. The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf. 2016, 148,

96–108.
77. Wang, Y.M.; Yang, J.B.; Xu, D.L. A preference aggregation method through the estimation of utility intervals.

Comput. Oper. Res. 2005, 32, 2027–2049.
78. Ammari, H.M. The Art of Wireless Sensor Networks; Springer: New York, NY, USA, 2014.
79. Liu, Y.; Man, H.; Comaniciu, C. A game theoretic approach to efficient mixed strategies for intrusion

detection. In Proceedings of the IEEE International Conference on Communications, Istanbul, Turkey,
11–15 June 2006; Volume 5, pp. 2201–2206.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Basics of Dempster-Shafer Evidence Theory
	D-S Belief Structures Defined on the Real Line

	Two-Person Zero-Sum Matrix Game and Its Extension of D-S Belief Structures
	Proposed Method to Solve Zero-Sum Matrix Games with D-S Belief Structure Payoffs
	Alternative Solution: A Monte Carlo Simulation Approach Based on the Latin Hypercube Sampling
	Applications
	An Illustrative Application in Sensor Selection
	Another Application on the Intrusion Detection in Sensor Networks

	Conclusions

