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Abstract: The problem of finding the number and optimal positions of relay nodes for restoring
the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic
Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper
proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network
Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information
Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which
extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary
schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree
(ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network
coding approach that combines Delaunay triangulation and non-uniform partitioning techniques
for generating a number of candidate relay nodes, and then linear programming is applied for
choosing the optimal relay nodes and computing their connection links with terminals. Subsequently,
an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them
to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals,
as well as any density distribution of terminals. The performance and complexity of RPSNC are
analyzed and its performance is validated through simulation experiments.

Keywords: connectivity restoration; wireless sensor networks; network partitioning; space network
coding; Delaunay triangulation; relay node placement

1. Introduction

Recent years have witnessed a massive growth in the use of Wireless Sensor Networks
(WSNs) in numerous applications, especially those operating in hostile environments such as space
exploration, disaster management, search and rescue, and battlefield surveillance [1]. In some of
these applications that operate in such a hostile setup, a set of sensor nodes are deployed to an
area of interest to collaboratively monitor certain events of interest. By deploying the sensor nodes
to operate in harsh environments, it would be possible to avoid risk to human life and reduce the
application cost [2]. Sensors are small and battery operated devices, having limited processing and
communication capabilities [3].

Upon deployment, the sensor nodes are expected to stay reachable to each other and form a
network. Network connectivity enables sensor nodes to share data and to coordinate their actions
while performing a task, and to forward the collected data to a command center [4]. Therefore,
the inter-sensor nodes connectivity should be maintained all the time to enable such interactions.
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However, the nodes of WSNs that serve in harsh environments are susceptible to failure.
For example, in a battlefield, parts of the deployment area may be bombed, destroying the sensor
nodes in the vicinity. The failed nodes may cause the WSN to be split into multiple disjoint partitions
due to the loss of connectivity among the partitions. Losing the network connectivity in WSNs has a
very negative effect on the applications since it prevents data exchange and hinders the coordination
among some sensor nodes. Given the importance of data sharing in achieving WSN application
goals, restoring the connectivity among these WSN partitions would be very necessary so that the
WSN becomes operational again. The Euclidean Steiner Minimal Tree (ESMT) [5] based approach
for deploying relay nodes is one of the most efficient approaches [6] for restoring the connectivity
in such a case. Relay nodes are usually assumed to be more powerful and expensive than sensor
nodes. Given hardware and deployment cost associated with relay nodes, it is usually desirable to
minimize the number of required relay nodes. Thus, the goal of the recovery process in this paper is to
re-establish the connectivity by forming an inter-partitions topology, while minimizing the number of
required relay nodes. Such relay nodes placement optimization problem is proven to be an NP-hard
problem by Lin and Xue [7].

Several heuristic approaches have been proposed in the literature to solve this problem. Some of
these heuristics focused on minimizing the count of the required relay nodes by forming a Minimum
Spanning Tree (MST), in which every relay node has a node degree of two [7–9]. Meanwhile,
other works focused on the degree of connectivity of the formed topology with less priority on
the number of relay nodes required [4,10,11]. In this paper, we propose a novel relay nodes placement
strategy based on space network coding that minimizes the number of required relay nodes to restore
the connectivity of a partitioned WSN. In the context of this paper, each partition is represented by one
sensor node that we call terminal.

Departing from Network Information Flow (NIF) [12] proposed in 2000, in which extra relay nodes
can not be introduced, Space Information Flow (SIF) [13], also called Space Network Coding, is a concept
proposed in 2011 that studies network coding in Euclidean space, in which an extra set of relay nodes
can be inserted to connect a given set of terminal nodes. This paper uses the terms SIF and space
network coding in an interchangeable way. The goal of SIF is to minimize the cost of constructing a
network, where the cost is defined as the total length of information transmission required to achieve
a one-bit end-to-end multicast throughput [14]. A Pentagram [15] example illustrated in Figure 1
demonstrates that the performance of SIF can be strictly better than that of ESMT, with the Cost
Advantage (CA) [13] being strictly bigger than 1. CA is defined as the ratio of minimum cost necessary
for achieving a target throughput by routing over that of network coding. Figure 1a depicts a multicast
version of SIF problem with six terminal nodes in a 2D Euclidean space, where five nodes (T1 to T5)
are evenly distributed along a circle and form a regular pentagon centered at node O. The radius of the
circumscribed circle is 1. Node O is chosen as the multicast source, with the other five being receivers.
We compare network coding and routing, using cost as our comparison metric. Routing in space with
additional relay nodes allowed to be introduced, in order to connect the terminal nodes, is equivalent
to the ESMT problem. With ESMT, the optimal solution is computed by ESMT exact algorithm [16],
which has a cost of 4.6400/bit, as illustrated in Figure 1b. Three Steiner nodes (S1 to S3) are inserted to
connect the terminal nodes, each adjacent to three links that form three angles of 120◦. Figure 1c shows
the optimal solution based on space network coding, where five relay nodes (R1 to R5) are inserted
to connect the terminal nodes, each adjacent to three links that form three angles of 120◦. The total
distance is 9.1354 and each sink receives two bits. The normalized per bit cost is 9.1354/2 = 4.5677/bit,
and it is strictly smaller than the optimal cost based on ESMT. CA = 4.6400/4.5677 ≈ 1.0158 > 1.
Despite its small value, we emphasize that the gap between the two optimal costs reveals that space
network coding is fundamentally a different problem from routing in space, with a different problem
structure, and probably a different computational complexity.
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Figure 1. A Pentagram example. (a) Six terminal nodes in 2D Euclidean space; (b) optimal solution by
ESMT; (c) optimal solution by space network coding.

The main contributions of this work are as follows. Unlike most existing works that are based
on MST or ESMT, we propose a new polynomial time min-cost multicast Relay Placement algorithm
based on Space Network Coding (RPSNC) that optimally solves the problem of restoring the network
connectivity for the special case of three terminals and strives to minimize the number of relay nodes
required for restoring the connectivity for larger networks using Delaunay triangulation, non-uniform
partitioning and linear programming techniques. Delaunay triangulation is able to adapt RPSNC to
any density distribution of relay nodes and terminals, non-uniform partitioning aims to adapt RPSNC
to any density distribution of terminals, while linear programming aims to optimize the required
number of relay nodes by computing the min-cost of the inter-partitions topology. Linear programming
also determines the connection links between the relay nodes and terminals. It is worth noting that
the proposed RPSNC computes not only the minimal number of relay nodes, but also the geometric
location of each required relay node in Euclidean space. To the best of our knowledge, this is the
first work to propose a min-cost multicast space network coding based algorithm for connectivity
restoration in WSNs.

RPSNC first selects one representative sensor node in each partition and sets it as a terminal.
It then combines non-uniform partitioning and Delaunay triangulation techniques for generating
the candidate relay nodes; afterwards, RPSNC applies linear programming for choosing the optimal
relay nodes and computing their connection links with terminals. Basically, the distance between the
optimal relay nodes and terminals may exceed the communication range of the optimal relay nodes.
Hence, RPSNC opts to populate additional relay nodes along the connection links to achieve a strong
connectivity and a better relay nodes coverage. The simulation results demonstrate the effectiveness
of RPSNC.

The rest of this paper is organized as follows. Related work is covered in Section 2. The problem
definition and considered system model are described in Section 3. The details of RPSNC are provided
in Section 4. The simulation results are presented in Section 5. The paper is finally concluded
in Section 6.

2. Related Work

Relay nodes placement in WSNs has been used not only for restoring the connectivity, but also for
improving the WSNs performance, such as WSN longevity [17]. Given the scope of contributions of
this paper, this section focuses on works which target the connectivity restoration in partitioned WSNs.
Some of the published works in this category employ centralized algorithms [18,19], where one of
the sensor nodes is in charge of generating the recovery plan and coordinating the relocation process.
These approaches rely on the availability of an alternate communication path to inform other nodes
on what to do. On the other hand, distributed algorithms [20,21] have been the preferred choice for
restoring the connectivity of large networks and for repairing partitioned networks. In such a case,
the sensor nodes are assumed to have some pre-failure state (e.g., k-hop) information and utilize
that information to detect and recover from network partitioning. However, these algorithms may
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not be well suited for restoring the connectivity when the network is significantly damaged due to
the fact that sensor nodes have resource and capability constraints and may not be able for a long
distance move if the affected area is large. Most of the published studies on connectivity restoration
in partitioned WSNs strive to restore the connectivity by carefully placing a minimum number of
relay nodes in such a way that data routes are formed between each pair of terminals. As mentioned
earlier, this problem is proven to be NP-Hard by Lin and Xue [7]. They proposed a polynomial time
approximation algorithm which populates relay nodes on the edges of MST of the terminals. First,
the algorithm constructs a complete graph G = (V, E) of terminals, where V is the set of terminals and
E is the set of all edges (u, v), where u, v ∈ V. Subsequently, using Kruskal’s MST algorithm, the tree
edges are computed. Relay nodes are then deployed along each edge in the tree at a distance of at
most R apart, where R is the communication range of a relay node.

Wang et al. [22] proposed a Collaborative Connectivity Restoration Algorithm (CCRA) based
on cooperative communication and node maneuverability to restore the network connectivity after
multiple nodes failure. CCRA opts to simplify the recovery process by gridding. Moreover, the distance
that an individual node needs to travel during the recovery process is reduced by choosing the nearest
suitable candidates. Cheng et al. [8] proposed a three-step heuristic algorithm to form ESMT with
minimum Steiner points. In the first step, it connects the sensor nodes where the distance between the
sensor nodes is less than or equal to R. In the second step, it forms three-stars in that, for each subset
of three sensor nodes {u, v, w}, there exists a point s such that s is at most R units away from u, v and
w. In the last step, the algorithm populates relay nodes along the MST edges connecting two different
connected components.

The literature works [3,6,9] have studied the same problem that we tackle in this paper. In [3],
Senel and Younis presented a three-step algorithm called Federating network Segments via Triangular
Steiner tree Approximation (FeSTA), which is based on the triangle Steiner method. In the first step,
FeSTA finds the best triangles and forms islands of segments by establishing intra-triangle connectivity.
Then, in the second step, disjoint islands of segment are federated. In the final step, the Steiner nodes
of the best triangles are applied for optimization. In [6], Chen and Shi proposed a step by step heuristic
algorithm called Quadrilateral Steiner Tree Algorithm (QTA), which is based on the quadrilateral
Steiner method. First, the disjointed partitions are detected and their locations are determined. Then,
the appropriate quadrilaterals are selected to connect the partitions and the Steiner nodes of these
quadrilaterals are found. The partitions that are not connected by the Steiner nodes of the selected
quadrilaterals are connected with the MST method. Unlike FeSTA and QTA, which are based on
triangle and quadrilateral Steiner methods, respectively, RPSNC is based on space network coding and
takes full advantage of considering Delaunay triangles and quadrilaterals Steiner nodes. In contrast to
FeSTA and QTA that connect the partitions (terminals) of WSN step by step, RPSNC connects all the
partitions at once, which may enable us to reduce the number of required relay nodes. Furthermore,
RPSNC significantly performs better than FeSTA and QTA, as it will be proven and confirmed later
by RPSNC analysis and the simulation experiments. In [9], Chen et al. proposed an algorithm
called a Minimum Spanning Tree based on a single-Tiered Relay Node Placement (MST_1TRNP),
which deploys relay nodes along MST edges of the terminals, where terminals can be considered
as sensor nodes. Unlike MST_1TRNP, RPSNC finds the Delaunay triangles and concatenates two
neighboring Delaunay triangles to obtain quadrilaterals. Then, RPSNC places the relay nodes at the
Steiner points inside the Delaunay triangles and quadrilaterals.

The focus of [4,10,11] is also on a variant of the problem of re-establishing the connectivity of a
partitioned WSN, where additional metrics of relay node degree must be optimized. In [4], Lee and
Younis opt to federate the disjoint partitions in a such way that the inter-partition topology has
a high node degree. They modeled the deployment area as a grid of equal-sized cells, and each
network partition is assumed to be located in the middle of the cell. A Cell-based Optimized Relay
node Placement (CORP) algorithm is proposed. CORP is a two-phase polynomial time algorithm.
The first phase aims to iteratively identify the border terminals and the best cell to deploy a relay
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node. The second phase aims to connect all terminals by populating relay nodes inwards until all
relay nodes become reachable to one another, after which redundant relay nodes are pruned. In [10],
Zheng et al. proposed a Partial 3-Connectivity Restoration Algorithm (P3CRA) that constructs the
dual-ring topology structure to improve the quality of the formed topology. P3CRA ensures that,
after the connectivity restoration, all the partitions have at least three-connectivity, and the deployed
relay nodes have at least two-connectivity. In [11], Senel et al. proposed a SpiderWeb approach that
opts to re-establish the connectivity using the least number of relay nodes, while achieving a high node
degree in the formed topology. As opposed to these approaches, minimizing the number of required
relay nodes is the main goal for RPSNC. A comparative summary of some approaches for relay nodes
placement is provided in Table 1.

Table 1. Comparison of some contemporary heuristic algorithms for connectivity restoration in WSNs
through relay nodes placement.

Name Objective (Other Than Connectivity) Approach Degree of Model Time
Connectivity Complexity

QTA [6]

Minimizing relay node count Centralized 1
Each partition is represented by a single node

O(N4logN)

SMST * [7] O(NlogN)

SMT-MSP † [9] O(N3)

FeSTA [3] O(N4)

SpiderWeb [11] Providing high-quality topologies Centralized/Distributed 1 and 2 O
(

NlogN
⌈

d
R

⌉)
CIST ‡ [23] Minimizing relay node count Centralized 1 Each partition is represented by multiple nodes Not available

CORP [4] Providing high-quality topologies Centralized/Distributed Each partition is represented by a cell O(r.N)

* Steinerized Minimum Spanning Tree; † Steiner Minimum Tree with Minimum number of Steiner Points;
‡ Connected Inter-Segment Topology.

Ahmadi et al. [24] focused on the problem of simultaneously reducing energy consumption
and increasing WSN lifetime. They proposed an effective algorithm that provides greater efficiency
energy consumption as it preserves the network with its low energy consumption. In a subsequent
work, Naranjo et al. [25] proposed a modified Stable Election Protocol (SEP), named Prolong-SEP
(P-SEP) to prolong the stable period of Fog-supported WSNs by maintaining the balanced energy
consumption. Unlike these works that are based on routing, we propose a min-cost multicast relay
placement approach based on space network coding for restoring the connectivity in partitioned WSNs.

In line with space network coding, Xiahou et al. [26] applied space network coding as a tool to
design a framework for analyzing the network coding conjecture in undirected graphs.

Regarding the applications of network coding in WSNs, Wang et al. [27] applied partial network
coding for data collection in WSNs operating in harsh environments. Rout and Ghosh [28] proposed
a network coding based communication algorithm to improve the WSN lifetime. Eritmen and
Keskinoz [29] proposed a signature selection and relay power allocation method based on network
coding that significantly improves the throughput of WSNs that operate over non-orthogonal
channels. Ayday et al. [30] proposed a network coding based protocol called Location-Aware
Network-Coding Security (LANCS) that provides security services such as data confidentiality,
authenticity, and availability in WSNs.

However, to the best of our knowledge, space network coding has not been applied for
connectivity restoration in WSNs. Our work is different from the above works in a significant aspect:
we introduce a new min-cost multicast space network coding approach that aims to solve the problem
of restoring the network connectivity in partitioned WSNs.

3. Problem Statement and Fundamental Definitions

In the context of this paper, a WSN is a set of sensors scattered in an area of interest to detect and
track some events. We consider a WSN that has been split into multiple disjoint partitions due to a
major scale damage in a part of the network, e.g., inflicted by explosives in a battlefield. We strive to
restore the partitioned network by linking the disconnected partitions. A sensor is battery-operated
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and has limited communication and processing capabilities. We assume that sensors are stationary,
which is typical for WSNs. All communication is over a single shared wireless channel. A wireless link
can be established between a pair of sensor nodes if they are within the communication range R of
each other.

A relay node is a more powerful node with significantly more energy reserve, longer transmission
range and richer processing capabilities than sensors. Although relay nodes can be equipped with
sensing circuitry, they mainly perform data aggregation and forwarding. Unlike sensors, relay nodes
can be mobile and have some navigation capabilities. Relay nodes are favored in the recovery process
since it is easier to accurately place them relative to sensors and their communication range is larger,
which facilitate and expedite the connectivity restoration among the disjoint partitions. Intuitively,
relay nodes are more expensive and consequently the main objective of this paper is to minimize the
required number of relay nodes. In this paper, it is assumed that all deployed relay nodes have the
same communication range “R”.

The problem that we study in this paper can be formally defined as follows: “Given N ≥ 3 disjoint
partitions of a WSN, find the minimum number and optimal positions of required relay nodes for
restoring inter-partitions connectivity”. This problem is challenging in that we need to compute not
only the number of optimal relay nodes and the geometric location of each optimal relay node, but also
the best way of connecting them with terminals to achieve the optimal solutions. As mentioned earlier,
we assume that each partition is represented by a sensor node, which we call terminal. Each terminal
connects a partition Pi to the resulting topology and plays a role of gateway after restoration. In the
context of this paper, a partition is a connected set of sensor nodes, denoted as Pi.

Definition 1. Let N denotes the planar points. The Voronoi diagram of N partitions the plane into regions,
called Voronoi regions, such that each point pj ∈ N lies in exactly one region. The Voronoi polygon of a point pj,
denoted as VP(pj), consists of all points in the plane for which pj is the closest point among all other points.
The collection of Voronoi polygons VP(pj) for each pj ∈ N is called Voronoi diagram VD(N). The Delaunay
triangulation DT(N) is the planar straight line dual graph of Voronoi diagram VD(N) [31].

Definition 2. The number of relay nodes required for connecting two terminals u and v is called the e−weight
of the edge uv and denoted as

We(u, v) =
⌈ |uv|

R

⌉
− 1,

where |uv| is the Euclidean distance between u and v, and R is the communication range of relay nodes.

Definition 3. Let Ti(u, v, w) be a triangle and p be an arbitrary point inside Ti. The number of relay nodes
required to connect the vertices of Ti at p is called the ap− weight of Ti at p and it is denoted as Wap(Ti, p).
Basically, a relay node will be placed at p and then connected to the vertices u, v and w by placing the relay nodes
on the edges pu, pv and pw, respectively. Thus,

Wap(Ti, p) = We(u, p) + We(v, p) + We(w, p) + 1

=

(⌈ |up|
R

⌉
− 1
)
+

(⌈ |vp|
R

⌉
− 1
)
+

(⌈ |wp|
R

⌉
− 1
)
+ 1

=
⌈ |up|

R

⌉
+
⌈ |vp|

R

⌉
+
⌈ |wp|

R

⌉
− 2.

(1)
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Definition 4. The point si that minimizes the ap−weight of the triangle Ti(u, v, w) is called the Steiner point
and the weight at the Steiner point si is called the sp − weight of Ti and denoted as Wsp(Ti, si), or simply
Wsp(Ti). The Steiner point si can be formally defined as follows:

si = min
p

{⌈ |up|
R

⌉
+
⌈ |vp|

R

⌉
+
⌈ |wp|

R

⌉
− 2
}

. (2)

If we multiply Equation (2) by “R” after removing the ceiling brackets, it follows that the
minimization becomes linear in terms of distance. There are only two possible ways to achieve
the optimal solution for connecting the three terminals u, v, and w of the triangle Ti(u, v, w): (1) via
Steinerizing the two smallest edges of Ti as depicted in Figure 2a, which is equivalent to constructing
the Steinerized MST for the three terminals; (2) via finding the Steiner point si of Ti and Steinerizing
the edges usi, vsi and wsi, as depicted in Figure 2b, where 6 usiv = 6 usiw = 6 vsiw = 120◦.

wv

u

wv

u

si

(b)(a)

Figure 2. Illustration of two possible solutions for the problem of connecting tree terminals u, v, and w
of a triangle Ti = (u, v, w); (a) via Steinerizing the two smallest edges of Ti; and (b) via a Steiner point
si. The solid nodes are terminals and hollow nodes are relay nodes.

Theorem 1. The optimal solution for connecting three terminals u, v and w of a triangle Ti(u, v, w) can be
achieved either via Steinerizing the two smallest edges of Ti(u, v, w) or Steinerizing the edges from its vertices to
the Steiner point si.

Proof. The proof of this theorem involves two cases:
Case 1: All relay nodes in the optimal solution lie on the edges joining the pairs of terminals.

This case is straightforward and applicable only if there is no such point pi inside the triangle Ti(u, v, w)

that provides a better solution.
Case 2: There is a relay node inside the triangle Ti(u, v, w) that connects all pairs of terminals in

the optimal solution. From Definition 4, it is known that such a relay node is located at the Steiner point
si of Ti(u, v, w). As a result of finding the Steiner point si of the triangle Ti(u, v, w), three sub-triangles
namely T′i (u, si, v), T′′i (u, si, w) and T′′′i (v, si, w) are formed. In order to obtain a solution for connecting
the terminals u, v and w of the triangle Ti(u, v, w) via si, we first need to find the Steinerized MST for
each of these sub-triangles. In order to prove the optimality, we need to show that the Steinerized
MST is the optimal solution for the sub-triangles. We pursue our proof by way of contradiction.
Assume that connecting the terminals of a sub-triangle, let say for instance T′i (u, si, v), via an internal
point pi yields a better solution than Steinerizing the two smallest edges of T′i (u, si, v), as illustrated in
Figure 3. Based on this assumption, we can write the following expressions:

Wap(T′i , pi) < We(u, si) + We(v, si),
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⌈ |si pi|
R

⌉
+
⌈ |upi|

R

⌉
+
⌈ |vpi|

R

⌉
− 2 <

⌈ |usi|
R

⌉
+
⌈ |vsi|

R

⌉
− 2. (3)

pi si

u

v w
Figure 3. Illustrating how to connect the terminals u, si and v of a sub-triangle T′i = (u, si, v) via an
internal point pi. The solid nodes are terminals and hollow nodes are relay nodes.

Applying the triangular inequality on T(w, si, pi), we get

|wsi|+ |si pi| ≥ |wpi|.

Then,

|wsi|
R

+
|si pi|

R
≥ |wpi|

R
,

and, hence, ⌈ |wsi|
R

⌉
+
⌈ |si pi|

R

⌉
≥
⌈ |wpi|

R

⌉
. (4)

After connecting the terminals u, si and v of the sub-triangle T′i (u, si, v) via an internal point
pi, the total number of relay nodes required for connecting the terminals u, v and w of the triangle
Ti(u, v, w) is the sum of e − weights of the edges wsi, si pi, upi, vpi plus 2 (due to the two points si
and pi). Therefore,(⌈ |wsi|

R

⌉
− 1
)
+

(⌈ |si pi|
R

⌉
− 1
)
+

(⌈ |upi|
R

⌉
− 1
)
+

(⌈ |vpi|
R

⌉
− 1
)
+ 2

=
⌈ |wsi|

R

⌉
+
⌈ |si pi|

R

⌉
+
⌈ |upi|

R

⌉
+
⌈ |vpi|

R

⌉
− 2.

Using Equation (4), we get⌈ |wsi|
R

⌉
+
⌈ |si pi|

R

⌉
+
⌈ |upi|

R

⌉
+
⌈ |vpi|

R

⌉
− 2 ≥

⌈ |wpi|
R

⌉
+
⌈ |upi|

R

⌉
+
⌈ |vpi|

R

⌉
− 2. (5)

Based on Definition 3,
⌈
|wpi |

R

⌉
+
⌈
|upi |

R

⌉
+
⌈
|vpi |

R

⌉
− 2 is the ap− weight of the triangle Ti(u, v, w) at

point pi, and it is denoted as Wap(Ti, pi). Consequently, Equation (5) becomes

⌈ |wsi|
R

⌉
+
⌈ |si pi|

R

⌉
+
⌈ |upi|

R

⌉
+
⌈ |vpi|

R

⌉
− 2 ≥Wap(Ti, pi). (6)
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Using Equation (3), we can write

Wsp(Ti) =
⌈ |usi|

R

⌉
+
⌈ |vsi|

R

⌉
+
⌈ |wsi|

R

⌉
− 2 >

⌈ |wsi|
R

⌉
+
⌈ |si pi|

R

⌉
+
⌈ |upi|

R

⌉
+
⌈ |vpi|

R

⌉
− 2. (7)

From Equations (6) and (7), we have Wsp(Ti) > Wap(Ti, pi). However, this is a contradiction since the
definition of a Steiner point si implies that Wsp(Ti) is minimal and cannot be greater than Wap(Ti, pi).
Therefore, pi of T′i (u, si, v) must be equal to si, which is equivalent to constructing the Steinerized
MST for the sub-triangle T′i (u, si, v). The same proof can be applied to T′′i (u, si, w) and T′′′i (w, si, v).
To complete our proof, it is worth noting that if we simultaneously consider Steinerizing two of
the three sub-triangles via the Steiner point si, the resulting topology will not be cycle-free. Thus,
we can conclude that considering two (or three) sub-triangles simultaneously will increase the required
number of relay nodes and hence provide no benefit to the solution.

Theorem 1 suggests that RPSNC optimally solves the problem of re-establishing the network
connectivity for the case of three terminals. It is challenging to design an optimal algorithm for
re-establishing the network connectivity for larger networks because, as we mentioned earlier,
the problem is NP-hard.

Definition 5. Let Qi(u, v, w, x) be a quadrilateral. There are two possible solutions for connecting the
four terminals u, v, w and x of Qi: (1) via Steinerizing the three smallest edges of Qi as depicted in
Figure 4a, which is equivalent to constructing the Steinerized MST for the four terminals; (2) via finding
the Steiner points si and s′i of Qi and Steinerizing the edges usi, vsi, sis′i, xs′i and ws′i, as depicted in Figure 4b,
where 6 usiv = 6 vsis′i = 6 xs′iw = 6 ws′isi = 120◦.

Si'Si

x

w

v

u

x

v

w

u

(b)(a)

Figure 4. Illustration of two possible solutions for the problem of connecting four terminals u, v, w and
x of a quadrilateral Qi = (u, v, w, x); (a) via Steinerizing the three smallest edges of Qi; and (b) via two
Steiner points si and s′i . The solid nodes are terminals and hollow nodes are relay nodes.

Definition 6. The number of relay nodes required for connecting the terminals of a quadrilateral
Qi = (u, v, w, x) by forming MST of these terminals, as depicted in Figure 4a, is called the MST-Weight
of Qi, denoted as WMST(Qi), and computed as

WMST(Qi) =
⌈ |uv|

R

⌉
+
⌈ |xu|

R

⌉
+
⌈ |wx|

R

⌉
− 3,

where R is the communication range of a relay node.
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Definition 7. The number of relay nodes required for connecting the terminals of a quadrilateral
Qi = (u, v, w, x) via the Steiner points si and s′i, as illustrated in Figure 4b is called the C-weight of Qi,
denoted as Wc(Qi) and computed as

Wc(Qi) =
⌈ |siu|

R

⌉
+
⌈ |siv|

R

⌉
+
⌈ |s′ix|

R

⌉
+
⌈ |s′iw|

R

⌉
+
⌈ |sis′i|

R

⌉
− 3.

4. A Heuristic RPSNC Algorithm for Establishing Inter-Partitions Connectivity

4.1. The Main Idea of RPSNC

The main idea of the proposed RPSNC is to optimize the number and positions of required relay
nodes for restoring inter-partitions connectivity for N ≥ 3 given disjoint partitions of a WSN topology,
assuming intra-partition connectivity. RPSNC uses linear programming as a means of optimization
for minimizing the required number of relay nodes. RPSNC combines non-uniform partitioning
and Delaunay triangulation techniques for generating the candidate relay nodes, after which,
linear programming is applied for choosing the optimal relay nodes and determining their connection
links with the terminals. Subsequently, an equilibrium method is used to refine the locations of the
chosen relay nodes, by moving them to balanced positions. RPSNC connects all partitions at once,
which may enable us to further reduce the required number of relay nodes.

4.2. Detailed Description of RPSNC

RPSNC consists of two phases: Phase I aims to use non-uniform partitioning and Delaunay
triangulation techniques for generating the candidate relay nodes. It also determines the topology of
the restored WSN by using linear programming. Phase II aims to determine the optimal positions of
the relay nodes in the topology obtained in Phase I by using an equilibrium method.

4.2.1. Phase I: Computing the Topology of the Restored WSN

The following two scenarios need to be handled for generating the candidate relay nodes:
non-uniform density distribution of terminals; and non-uniform density distribution between
relay nodes and terminals. To achieve this, we combine non-uniform partitioning and Delaunay
triangulation techniques.

Non-uniform partitioning can handle any density distribution of terminals, particularly
non-uniform distributions. As example, consider nine clustering terminals depicted in Figure 5a.
Figure 5b illustrates the non-uniform partitioning. First, compute a convex hull (in red) for these
nine terminals. Second, draw a vertical line and a horizontal line through every terminal to obtain
a bounding box and a number of sub-rectangles of different sizes. Third, partition recursively every
sub-rectangle into q× q cells, where q denotes the non-uniform partitioning parameter, which is a
positive integer. Finally, the centers of cells inside the convex hull are taken as the candidate relay
nodes. With non-uniform partitioning, the distribution of the candidate relay nodes is in accordance
with the terminals, which can speedup the convergence of RPSNC because the candidate relay nodes
outside the convex hull are not considered.

RPSNC adopts the following linear programming model:
Minimize cost = ∑−→uv∈A w(−→uv) f (−→uv)
Subject to : 

∑v∈V↑(u) fi(
−→vu) = ∑v∈V↓(u) fi(

−→uv) ∀i, ∀u

fi(
−→
TiS) = r ∀i

fi(
−→uv) ≤ f (−→uv) ∀i, ∀−→uv

f (−→uv) ≥ 0, fi(
−→uv) ≥ 0 ∀i, ∀−→uv.

(8)
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(b)(a)

Figure 5. Example of non-uniform partitioning. (a) Nine given clustering terminals in 2D Euclidean
space; (b) non-uniform partitioning: the solid nodes are terminals and hollow nodes are relay nodes.

The linear programming model (Equation (8)) is based on a directed network G = (V, A), where V
is the set of N terminal nodes and M additional relay nodes, while A = {−→uv,−→vu|uv ∈ V} is the set of
directed links. In the linear programming objective function, the decision variable f (−→uv) represents
the combined effective flow rate on a link −→uv ∈ A. The coefficient (i.e., weight) w(−→uv) is the Euclidean
distance |−→uv|(=|−→vu|=|uv|) of the link −→uv. In the linear programming constraints, fi(

−→uv) is regarded as
the rate of information flow from the source node S to the receiving node Ti on a link −→uv. For every
network information flow S →Ti, there is a conceptual flow fi(uv) [32]. We call it conceptual because
different conceptual flows share instead of competing for available bandwidth on the same link [32].
The final flow rate f (−→uv) of a link uv equals to the maximum among all fi(

−→uv) and should be not less
than the maximum conceptual rate, which will directly affect the total cost. V↑(u) and V↓(u) denote
upstream and downstream adjacent set of u in V, respectively. r is a multicast rate from the source S to
each sink Ti and it is set to 1. We assume that there is a conceptual link from each sink Ti back to the
source S with the rate r, for concise representation of flow conservation constraints [32]. For every pair
of nodes, we have both fi(

−→uv) and fi(
−→vu) to indicate the flows in two directions.

As denoted by Huang et al. [14], non-uniform partitioning suffers from the approaching-infinity
problem, i.e., when the number of candidate relay nodes approaches infinity, the number of decision
variables of linear programming model (Equation (8)) approaches infinity too, which makes the
algorithm adopting the linear programming model (Equation (8)) not terminate in polynomial time.

To solve the approaching-infinity problem, we adopt the Delaunay triangulation technique.
Delaunay triangulation is a computational geometric technique that produces a superset of MST.
Since every Delaunay triangle tends to be approximately equilateral, we can achieve the maximum
possible reduction of length. Delaunay triangulation has been used to solve the problem of ESMT [31]
and hence we can use it to solve the problem of SIF since SIF consists of minimum superposition of
ESMT [14]. This work proposes a Delaunay triangulation based technique (Lines 8–10 of Algorithm 1)
that is explained as follows. First, use a Delaunay triangulation algorithm [31] to generate Delaunay
triangles for N ≥ 3 given terminals (Line 8). Second, generate the candidate Steiner nodes for each
Delaunay triangle (Line 9), which is equivalent to three-terminals ESMT problem and can be computed
in polynomial time by the Simpson method [16]. Third, generate the candidate Steiner nodes for each
quadrilateral obtained by concatenating two adjacent Delaunay triangles (Line 10), which is equivalent
to four-terminals ESMT problem and can be computed in polynomial time by the iterative equilateral
point method [16]. It is not necessary to compute the candidate Steiner nodes for 5, 6, . . . N terminals
(N-terminals ESMT problem), since the optimal solution (with regard to a certain q) can be obtained by
the second computation of linear programming model (Line 20 of Algorithm 1), as it will be verified
later by simulation experiments.
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4.2.2. Finding the Optimal Positions of the Relay Nodes

The goal of equilibrium method (Line 18 of Algorithm 1) is to fine-tune the relay nodes chosen
by linear programming towards their optimal positions, which satisfy the balanced [33] property of
optimal SIF stable at relay. Since each relay node chosen by linear programming satisfies the 120◦

property [14], we adopt the analytic geometric method [34] for equilibrium. The analytic geometric
method is based on the 120◦ condition: if a relay node has three adjacent links each with equal flow
rate, then the balanced position of the relay node should result in three 120◦ angles among its three
adjacent links. The analytic geometric method exploits this fact to compute the coordinates of the
balanced relay nodes. More specifically, we can apply inner product of two vectors to establish equations.
Let us suppose that a relay node (x1, y1) is connected with three adjacent terminals (a1, b1), (a2, b2) and
(a3, b3) (see Figure 6a). The following two equations can be solved to get the two unknown variables
(i.e., x1 and y1): 

(a1−x1)(a2−x1)+(b1−y1)(b2−y1)√
(a1−x1)2+(b1−y1)2

√
(a2−x1)2+(b2−y1)2

= cos 120◦

(a1−x1)(a3−x1)+(b1−y1)(b3−y1)√
(a1−x1)2+(b1−y1)2

√
(a3−x1)2+(b3−y1)2

= cos 120◦.
(9)

(b)(a)

(x1, y1)

(a3, b3)

(x1, y1)

(x2, y2)

(a1, b1) (a2, b2) (a1, b1) (a2, b2)

(a4, b4) (a3, b3)

Figure 6. The analytic geometric method for equilibrium in Phase II. (a) one relay node with three
adjacent terminals; (b) two relay nodes that are adjacently connected and four adjacent terminals.

The number of equations varies according to the following cases. If a relay node (x1, y1) has
one adjacent relay node (x2, y2) and two adjacent terminals (a1, b1) and (a2, b2), there should be four
equations with four unknown variables, as x2 and y2 have another two equations. Suppose that the
relay node (x2, y2) has two adjacent terminals (a3, b3) and (a4, b4) (see Figure 6b). The following four
equations can be solved to get the four unknown variables (i.e., x1, y1, x2 and y2):

(a1−x1)(a2−x1)+(b1−y1)(b2−y1)√
(a1−x1)2+(b1−y1)2

√
(a2−x1)2+(b2−y1)2

= cos 120◦

(a1−x1)(x2−x1)+(b1−y1)(y2−y1)√
(a1−x1)2+(b1−y1)2

√
(x2−x1)2+(y2−y1)2

= cos 120◦

(a1 − x1)/(b1 − y1) = (a3 − x2)/(b3 − y2)

(a2 − x1)/(b2 − y1) = (a4 − x2)/(b4 − y2).

(10)

The latter two equations come from the two parallel vectors. For example, the last equation is due
to two parallel vectors (a2 – x1, b2 – y1) and (a4 – x2, b4 – y2). This can reduce the computation overhead.
If a relay node has two adjacent relay nodes and one adjacent terminal, there should be six equations
with six unknown variables. For each extra relay node (two unknown coordinates), two extra equations
arise. The number of unknown variables is always equal to the number of equations.
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Algorithm 1 RPSNC Algorithm

Require: Input: a partitioned WSN topology
Ensure: Output: a restored connectivity WSN topology

1: Initialization: MINCOSTI = MINCOSTI I = +∞, partitioning coefficient q = 2;
2: Mark each partition as a disconnected partition;
3: Select one representative sensor node in each partition and set it as a terminal;
4: for N ≥ 3 terminals from all partitions, do

5: Compute a convex hull for N terminals;
6: Execute the non-uniform partitioning with q;
7: Consider the centers that are inside the convex hull as the candidate relay nodes;
8: Construct all Delaunay triangles for N terminals by Delaunay triangulation;
9: Generate the candidate Steiner nodes for every Delaunay triangle;

10: Generate the candidate Steiner nodes for every quadrilateral obtained by concatenating two

adjacent Delaunay triangles;
11: Add the candidate Steiner nodes to the set of the candidate relay nodes;
12: end for
13: Construct a complete graph with N terminals and the candidate relay nodes of the current round

as well as the balanced relay nodes of the last round;
14: Solve the linear programming model (Equation (8)) based on the complete graph and output the

resulting relay nodes;
15: if costq < MINCOSTI then

16: MINCOSTI = costq;
17: end if
18: Apply the analytic geometric method for equilibrium to get the exact coordinates of the balanced

relay nodes;
19: Construct the second complete graph with N terminals and the balanced relay nodes;
20: Solve the linear programming model (Equation (8)) based on the second complete graph;
21: if costq < MINCOSTI I then

22: MINCOSTI I = costq;
23: end if
24: if MINCOSTI 6= MINCOSTI I then

25: Goto Step 13;
26: end if
27: if MINCOSTI I of current round 6= MINCOSTI I of last round then

28: q = q + 1 and goto Step 6;
29: else

30: Output MINCOSTI I and stop.
31: end if
32: if Resulting balanced relay nodes cover all terminals then

33: Output a connectivity restored WSN topology and stop.
34: else

35: Deploy additional relay nodes along the connection links such that all the terminals are covered

and stop.
36: end if

The pseudo code of RPSNC is shown in Algorithm 1. Two linear programming computations
are adopted by Line 14 and Line 20 before and after the equilibrium method, respectively. The linear
programming computation before equilibrium aims to obtain the topology, while the one after
equilibrium can help to decide when to stop RPSNC. The two linear programming models are the
same, but their input complete graphs are different. The balanced relay nodes that are obtained
by equilibrium method of Phase II (Line 18 of Algorithm 1) represent local optimization to some
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extent. Therefore, a retention mechanism [34] that can speedup the convergence is adopted by Line 13.
In addition, the value of MINCOSTI I will decrease monotonically, which can also help to decide when
RPSNC can stop.

4.3. Illustrative Example

Figures 7–9 illustrate how RPSNC works through a detailed example of random network. Let us
assume that we have a partitioned WSN deployed in 1500 m × 1500 m area with ten partitions,
as illustrated in Figure 7a. In order to restore the connectivity among partitions of a damaged WSN,
RPSNC first selects a representative sensor node REP(Pi) for each partition Pi (Line 3 of Algorithm 1)
by CORP algorithm [4]. We assume that only one representative sensor node is selected for each
partition. In order to decide the representative sensor nodes for the case of reconnecting a set of
partitions in a damaged WSN, it is required to first address one major issue: how the surviving sensor
nodes recognize that a network is split into partitions.

Since the partition is due to a major scale damage inflicted by uncontrolled event/force such as
explosions, the closest sensor nodes to the affected area—for example, black sensor nodes in Figure 7b
detect the failure of their neighbors. For instance, they may conclude that there is major damage when
they detect consecutive node failures, when they notice a huge and sudden drop in communication
traffic and/or when they become unable to reach a certain set of sensor nodes. Upon confirming
the damage, the black nodes send a message on active links to notify all reachable sensor nodes.
The damage-detection message is delivered to all sensor nodes that belong to the same partition.

(a) (b)

Figure 7. (a) A partitioned WSN due to large scale damage. Green nodes represent operational nodes,
while red nodes represent failed nodes; (b) selection of partitions representative nodes. Black nodes
marked by a square are representative nodes (terminals) of each partition selected among black (border)
nodes that detect the damage.

After some pre-determined convergence time, the black sensor node that has more neighbors
than other border (black) sensor nodes within the same partition becomes a representative sensor node.
This can be tracked by including the number of neighbors in the notification messages that get flooded
in the partition. The rationale of the REP() selection is that new relay nodes are deployed in the vicinity
of these border sensor nodes, and it is thus imperative to restore the network topology in a manner as
similar as possible to its pre-failure state. In Figure 7b, a black node in a square becomes a REP(Pi) for
each partition Pi. Therefore, ten REP()s are selected for ten partitions in Figure 7b, and their locations
are announced according to the other sensor nodes in the partitions. The problem of federating the ten
partitions shown in Figure 7a is now equivalent to reconnecting REP(Pi), i = 1, 2, 3, . . . 10. These ten
REP(Pi) are set as terminals.
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Figure 8a shows the terminals and candidate relay nodes from non-uniform partitioning of Phase
I of RPSNC. Figure 8b shows the terminals and candidate relay nodes from non-uniform partitioning,
as well as the candidate relay nodes from Delaunay triangulation of Phase I of RPSNC. Figure 9a
shows the topology obtained from the first round of linear programming computation of Phase I of
RPSNC, with a min-cost of 2804.586319/bit. Figure 9b shows the final topology by RPSNC, which is
obtained after the second round of linear programming computation of Phase II, with a min-cost of
2800.183681/bit. Figure 9b shows that the total 16 relay nodes are used in the recovery process when
R = 100 m.
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Figure 8. (a) terminals and candidate relay nodes from non-uniform partitioning (q = 2) of Phase I
of RPSNC for random network (N = 10); (b) terminals and candidate relay nodes from non-uniform
partitioning (q = 2) and Delaunay triangulation of Phase I of RPSNC.
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Figure 9. (a) Topology obtained from the first round of linear programming computation of Phase I of
RPSNC (min-cost = 2804.586319/bit); (b) final topology by RPSNC after the second round of linear
programming computation of Phase II, R = 100 m (min-cost = 2800.183681/bit).

4.4. Analysis of RPSNC

In this subsection, we analyze the performance and complexity of the proposed RPSNC. We prove
that RPSNC always outperforms (or equal to in the worst case) FeSTA and QTA, and it has a
polynomial complexity.
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4.4.1. Performance Analysis

We introduce the following theorem for analyzing the performance of RPSNC:

Theorem 2. RPSNC always performs better than (or equal to in the worst case) FeSTA and QTA.

Proof. Both FeSTA and QTA aim to improve the MST-based solution by leveraging the Steiner method
based Steinerization. Let Ti(u, v, w) be a triangle, if (u, v) and (v, w) are Steinerized edges of Ti,
the optimization gain of Ti can be calculated as Gain(Ti) = We(u, v) +We(v, w)−Wsp(Ti). FeSTA lists

(N
3 )=

N3−3N2+2N
6 possible triangles, among which those having positive gain are considered for

optimization. On the other hand, QTA lists (N
4 )=

N4−6N3+11N2−6N
24 possible quadrilaterals, among which

convex quadrilaterals are considered for optimization. In the worst case where no triangles and
quadrilaterals are found to be optimized by Steiner method based Steinerization, both FeSTA and
QTA end up with the Steinerized MST. In other words, running either FeSTA or QTA never produces
a topology that requires more relay nodes than MST-based solution. While FeSTA and QTA only
consider triangles and quadrilaterals Steiner nodes, respectively, RPSNC takes full advantage of
considering Delaunay triangles and quadrilaterals Steiner nodes (Lines 9–10 of Algorithm 1). Thus,
RPSNC is hybrid to FeSTA and QTA to a certain extent. RPSNC uses linear programming as a means
of optimization to choose the minimum number of required relay nodes. The following three cases
arise: (1) if linear programming chooses the relay nodes from Delaunay triangles and quadrilaterals,
then RPSNC results will be better than those of FeSTA and QTA. (2) If linear programming chooses
the relay nodes from Delaunay triangles only, then RPSNC results will be equal to FeSTA results.
(3) If linear programming chooses the relay nodes from quadrilaterals only, then RPSNC results
will match those of QTA. Therefore, RPSNC will always perform better than (or equal to) FeSTA
and QTA.

Theorem 2 suggests that RPSNC significantly performs better than FeSTA and QTA.

4.4.2. Complexity Analysis

The time complexity of selecting the partitions representative sensor nodes (Line 3 of Algorithm 1)
is O(r.N) [4], where r is the number of rounds. On Line 6, the upper-bound number of the candidate
relay nodes from non-uniform partitioning is q2(N − 1)2. The time complexity for constructing
Delaunay triangles (Line 8) is O(NlogN) [31]; the time complexity of computing all the candidate
Steiner nodes for every Delaunay triangle (Line 9) is O(2N − 5) since we can get at most 2N − 5
Delaunay triangles for N terminals; the time complexity of computing all the candidate Steiner
nodes for every quadrilateral obtained by concatenating two adjacent Delaunay triangles (Line 10)
is O(3N − 6) because we can get at most 3N − 6 Delaunay triangulation edges for N terminals;
the upper-bound number of the candidate Steiner nodes for all Delaunay triangles is 2N− 5 since each
Delaunay triangle has at most one candidate Steiner node; the upper-bound number of the candidate
Steiner nodes from quadrilaterals formed by concatenating all two adjacent Delaunay triangles is
2(3N − 6) because each quadrilateral has at most two Steiner nodes. Line 13 deals with constructing a
complete graph (CG) for all the nodes and NCG = N + q2(N− 1)2 + (2N− 5) + 2(3N− 6), where NCG
denotes the number of nodes in the complete graph. The number of linear programming decision
variables is the number of edges of the complete graph, i.e., (NCG

2 ), whose time complexity is O(q4N4).
The time complexity of linear programming constraints is O(q4N5). Since the combination of Delaunay
triangulation and non-uniform partitioning techniques eliminates the approaching-infinity problem,
the partitioning parameter q can be a finite constant that is independent from N. Hence, the time
complexity of linear programming at Line 14 is polynomial. The time complexity of analytic geometric
method (Line 18) is polynomial because it can compute the exact coordinates of the relay nodes by
solving Equations (9) and (10), whose upper-bound number is N − 2. The iterations of the main loop
of RPSNC is q− 1. In summary, the time complexity of RPSNC is polynomial. As for space complexity,
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the amount of storage required for constructing Delaunay triangles is O(N) [31]. Since there are
q2(N − 1)2 + (2N − 5) + 2(3N − 6) relay nodes, the amount of storage required for them is O(q2N2).
The amount of storage required for linear programming decision variables is O(q4N4) since there are
(NCG

2 ) edges in the complete graph. The amount of storage required for linear programming constraints
is O(q4N5). The partitioning parameter q is a finite constant that is independent from N. Therefore,
the space complexity of linear programming at line 14 is polynomial. In summary, the space complexity
of RPSNC is also polynomial.

5. Performance Evaluation

Experiment Setup and Performance Metrics

In the simulation, two sets of experiments have been conducted in 1500 m × 1500 m area for
random networks and Pentagram [15] network. In the first set, the number of partitions is varied from
4 to 10 while fixing the communication range R at 100 m. In the second set, the number of partitions is
fixed to 10 for random networks and 6 for Pentagram network, and random topologies are created with
varying R from 50 m to 200 m, while the Pentagram network is created with varying R from 50 m to
350 m. The second set of experiments is geared for studying the impact of R. The Pentagram network
is applied to the second set of experiments only because the number of partitions can not be varied
in Pentagram network. Our simulations used MATLAB R2012b to solve linear programming model
(Equation (8)). The performance of RPSNC is compared to three baseline approaches, namely, FeSTA [3],
QTA [6] and MST_1TRNP [9]. The following metrics are considered for evaluating the performance:

Number of relay nodes: This metric shows the total number of relay nodes required to restore the
connectivity. Obviously, minimizing the required relay node count is the objective of the optimization
and for sure captures the effectiveness of RPSNC.
Average node degree: This metric reports the average number of neighbors for each node in the
resulting topology. A higher node degree indicates a stronger connectivity and enables better load
balancing among the routing resources, which reduces the data latency.

5.1.1. Random Networks

Number of relay nodes: Figure 10a shows that RPSNC performs significantly better than QTA,
FeSTA and MST_1TRNP in terms of the number of relay nodes required to restore the connectivity,
under varying the number of partitions. The reason of such performance can be explained as follows.
Unlike FeSTA and QTA that are based on triangle Steiner tree and quadrilateral Steiner tree methods,
respectively, RPSNC takes full advantage of combining both methods. In contrast to MST_1TRNP
that deploys the relay nodes along the MST edges, RPSNC places them at the Steiner points inside
the Delaunay triangles and quadrilaterals, which minimizes the required relay node count. It is
worth noting that, for all algorithms, the number of relay nodes increases when the number of
partitions increases due to the fact that more relay nodes are required to connect more partitions.
Figure 10b shows the effect of R on relay node count. For bigger transmission ranges, all algorithms
restore the connectivity with fewer relay nodes, which is intuitive. RPSNC again outperforms QTA,
FeSTA and MST_1TRNP.

Average node degree: Figure 11a,b reports the average node degree for all compared approaches.
Figure 11a compares the performance in terms of average node degree under varying the number of
partitions. The average node degree of all compared algorithms increases as the number of partitions
increases. This can be attributed to the fact that more relay nodes are required to connect more
partitions, which increases the average node degree. RPSNC requires fewer relay nodes and yields
stronger connectivity than MST_1TRNP. This can be attributed to the fact that every relay node in
MST_1TRNP has a node degree of two because all relay nodes are deployed along the edges of MST,
while RPSNC places some of the relay nodes at the Steiner points of the Delaunay triangles and
quadrilaterals, yielding a node degree of three and consequently a strong connectivity. Therefore,



Sensors 2017, 17, 902 18 of 21

if there are more Delaunay triangles and quadrilaterals to be optimized by RPSNC, the average node
degree gets closer to three because more relay nodes will have a node degree of three. Interestingly,
however, QTA and FeSTA yield higher average node degree than RPSNC, since they require more
relay nodes than RPSNC and place some of the relay nodes to the Steiner points of the triangles and
quadrilaterals, just like RPSNC does. Figure 11b compares the performance in terms of average node
degree under varying the communication range of the relay nodes (R). Interestingly, the average node
degree of all compared algorithms decreases as the transmission range increases. The reason is that
when the transmission range of the relay nodes increases, the number of relay nodes required reduces,
which decreases the average node degree. RPSNC performs better than MST_1TRNP due to the reason
explained above. However, QTA and FeSTA outperform RPSNC because they require more relay
nodes than RPSNC.
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Figure 10. (a) Comparing the relay nodes count performance of RPSNC to the baseline approaches,
under varying the number of partitions in random networks; (b) comparing the relay nodes count
performance of RPSNC to the baseline approaches, with varying R in random networks.
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Figure 11. (a) The average node degree of RPSNC and the baseline approaches, under varying the
number partitions in random networks; (b) the average node degree of RPSNC and the baseline
approaches, with varying R in random networks.

5.1.2. Pentagram Network

Number of relay nodes: Figure 12a illustrates the performance comparison in terms of the
number of relay nodes required under varying R. The figure shows that for all compared algorithms,
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when R increases, the number of required relay nodes reduces such that for R = 350 m, each of RPSNC,
FeSTA and MST_1TRNP requires five relay nodes, in contrast to QTA that requires six relay nodes.
This can be attributed to the fact that fewer relay nodes are required to connect the partitions when R
increases. Hence, depending on the topology, both QTA and FeSTA may be superior to one another,
since QTA outperformed FeSTA for the tested case of random networks. RPSNC and FeSTA achieve
the same results, since the optimal relay nodes for the Pentagram network are placed at the Steiner
points of the triangles (see Figure 1c).

50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45

Communication Range (m)

N
u
m

b
e
r 

o
f 
R

e
la

y
 N

o
d
e
s

 

 

RPSNC

QTA

FeSTA

MST_1TRNP

(a)

50 100 150 200 250 300 350
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Communication Range (m)

A
v
e
ra

g
e
 N

o
d
e
 D

e
g
re

e

 

 

RPSNC

QTA

FeSTA

MST_1TRNP

(b)

Figure 12. (a) Comparing the relay nodes count performance of RPSNC to the baseline approaches,
with varying R in Pentagram network; (b) the average node degree of RPSNC and the baseline
approaches, with varying R in Pentagram network.

Average node degree: The performance comparison of RPSNC, QTA, FeSTA and MST_1TRNP in
terms of average node degree is illustrated in Figure 12b. Both RPSNC and FeSTA achieve the best
results since they require more relay nodes than QTA and MST_1TRNP for R < 350 m. Interestingly,
for R = 350 m, both RPSNC and FeSTA require fewer relay nodes than QTA and same relay nodes
as MST_1TRNP and still outperform QTA and MST_1TRNP. This can be attributed to the fact that
RPSNC and FeSTA place five relay nodes, each having a node degree of three to the Steiner points of
the triangles (see Figure 1c), while QTA places three relay nodes, each having a node degree of three to
the Steiner points of the quadrilaterals and three relay nodes, each having a node degree of two at the
MST edges. As for MST_1TRNP, it places five relay nodes, each having a node degree of two along the
MST edges.

6. Conclusions

In this paper, we have presented RPSNC, a novel polynomial time min-cost multicast relay nodes
placement algorithm based on space network coding that aims to minimize the number of required
relay nodes for connecting multiple disjoint WSN partitions. RPSNC generates the candidate relay
nodes using non-uniform partitioning and Delaunay triangulation techniques, after which linear
programming is applied for choosing the optimal relay nodes and computing their connection links
with the terminals. Since the distance between the optimal relay nodes and terminals may exceed
the communication range of the relay nodes, RPSNC populates extra coverage relay nodes along the
connection links to achieve a strong connectivity. We investigated different performance metrics to
evaluate the quality of the formed topologies. The simulation results have demonstrated that RPSNC
significantly outperforms contemporary heuristics in the literature, not only in terms of the number
of required relay nodes, but also in terms of the degree of connectivity of the formed topology and
balanced traffic load. Our future work will focus on extending RPSNC to 3D WSNs.
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