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Abstract: In this work, a low cost Bluetooth Low Energy (BLE) transceiver for wireless sensor
network (WSN) applications, with a receiver (RX)-matching network-reusing power amplifier (PA)
load inductor, is presented. In order to decrease the die area, only two inductors were used in
this work. Besides the one used in the voltage control oscillator (VCO), the PA load inductor was
reused as the RX impedance matching component in the front-end. Proper controls have been
applied to achieve high transmitter (TX) input impedance when the transceiver is in the receiving
mode, and vice versa. This allows the TRX-switch/matching network integration without significant
performance degradation. The RX adopted a low-IF structure and integrated a single-ended low
noise amplifier (LNA), a current bleeding mixer, a 4th complex filter and a delta-sigma continuous
time (CT) analog-to-digital converter (ADC). The TX employed a two-point PLL-based architecture
with a non-linear PA. The RX achieved a sensitivity of −93 dBm and consumes 9.7 mW, while the TX
achieved a 2.97% error vector magnitude (EVM) with 9.4 mW at 0 dBm output power. This design
was fabricated in a 0.11 µm complementary metal oxide semiconductor (CMOS) technology and
the front-end circuit only occupies 0.24 mm2. The measurement results verify the effectiveness and
applicability of the proposed BLE transceiver for WSN applications.

Keywords: Bluetooth low power (BLE); wireless sensor networks (WSNs); TRX-switch; two-point
modulation; single-ended LNA; ISM; transceiver

1. Introduction

There has been an explosive growth recently in wireless sensor networks (WSN) [1], whose
applications have been extended to autonomous health monitoring, remote or hazardous area
monitoring, and emergency management. The sensor nodes in these networks are typically connected
to multiple types of devices, including smartphones, wearables and PCs [2]. For the sake of flexibility,
low cost and seamlessness, the communication among these nodes requires the use of a commonly
or easily available wireless technique. Therefore, Bluetooth Low Energy (BLE) is a competitive
candidate [3,4] because of its already massive establishment in the mobile market.

Due to the limited energy source (e.g., battery or harvested energy) of the sensor nodes,
an ultra-low power (ULP) transceiver design for WSN applications is highly desirable. In addition,
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because of the stringent market requirements, there has been a strong drive in recent years to decrease
the cost and module area of wireless sensor nodes [5]. This can be achieved through shrinking the
silicon area and reducing the external components. Therefore, the investigation on low power and low
cost BLE transceivers is indispensable.

For a conventional radio frequency (RF) front-end configuration [6] as shown in Figure 1, there
are several external components: (1) the impedance matching network for the low noise amplifier
(LNA); (2) the TRX-antenna switch; and (3) impedance matching network for the power amplifier (PA).
This leads to an increase in the printed circuit board (PCB) area and cost. For a low cost BLE module,
these external TRX-switches and matching networks [6,7] are clearly not favorable. To achieve higher
integration, an on-chip CMOS TRX-switch technique has been reported in [8], yet the non-linearity
and insertion loss introduced by CMOS transistors will deteriorate the performance of the transceiver.
In [9–11], an on-chip balun shared by the transmitter (TX) and receiver (RX) was used to convert the
single-ended signal to a differential one, and eliminated the need of a separated TRX-switch through
the principle of impedance conversion. However, the differential architectures for both LNA and
PA is power-consuming for an ultra-low power transceiver. Meanwhile, the insertion loss of the
on-chip balun will degrade RX noise figure (NF). In [12,13], a TRX-switch and matching network
were integrated using multiple inductors, which is area-consuming and thus not favorable in low
cost design.
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Figure 1. The conventional RF front-end configuration.

To address the aforementioned issues, a low power and low cost transceiver for 2.4 GHz ISM
band was presented in this work. Seeking a low-power implementation, a single-ended LNA and PA
were employed in the transceiver. In order to further reduce the chip cost and module area, a front-end
with a RX-matching network-reusing PA load inductor was proposed.

This work is organized as follows: the front-end circuit implementation of the transceiver is
described in Section 2. Section 3 shows other circuit implementations. The measurement results and
discussion are described in Section 4, and conclusion is drawn in Section 5.

2. Proposed Front-End with RX Matching Network Reusing PA Load Inductor

An integrated TRX-switch/matching network presents some design challenges. Firstly, reliability
issues will be introduced by the large PA output power through stressing the low noise amplifier
(LNA) input transistors. This requires an input voltage swing reduction of LNA at TX mode, and
thus a large RX off-state impedance (ZRX-off). Secondly, the TX performance features, such as output
power, error vector magnitude (EVM) should not be degraded by the ZRX-off. Similarly and finally, the
off-state TX impedance (ZTX-off) should not deteriorate RX performance such as NF and linearity.

BLE specification asks for only −70 dBm sensitivity (1-MHz channel bandwidth) at GFSK
modulation with a required SNR of 14 dB [4]. The NF can thus be obtained by:

NF = −(−174 dBm/Hz) − 10 × Log(BW) − SNRout + Sensitivity, (1)
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where BW and SNRout represent channel bandwidth and required demodulator signal-to-noise ratio
(SNR), respectively. The maximum allowable NF obtained using (1) is 30 dB. However, in order to
increase the link budget, a NF below 7 dB was targeted in this work. This allows a reasonable matching
network design trade-off between RX noise and power delivery.

Figure 2a shows the simplified schematic of the proposed front-end with RX-matching
network-reusing PA load inductor. The front-end integrated the TRX-switch and matching network.
The PA load inductor L1 is reused as the impedance matching component for RX. Capacitors C1 and
C2 are employed to match the impedance in both RX and TX paths. Switches S1–S9 are adopted to
determine the mode of the front-end circuit.
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PM2. For PM2 size, it is determined by the following three factors: (1) The on-resistance. Large 
on-resistance causes a large voltage drop, and thus reduces the efficiency of PA. (2) The parasitic 
resistance and capacitance when PM2 is turned off. RX NF might thus be degraded. (3) The current 
density. The size of PM2 should be large to accommodate large PA current. Therefore, the size of PM2 
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Figure 2. (a) Proposed front-end with RX matching network reusing PA load inductor; (b) Simplified
LNA circuit in TX mode; (c) Simplified PA circuit in RX mode.

In TX mode, S1, S4, S7, S5 and S9 are turned off while S2, S3, S5, S8 and S9 are turned on.
The inductor L1 acts as the load of the PA which is typically supplied by DC-DC convertor through
the PM2. For PM2 size, it is determined by the following three factors: (1) The on-resistance.
Large on-resistance causes a large voltage drop, and thus reduces the efficiency of PA. (2) The parasitic
resistance and capacitance when PM2 is turned off. RX NF might thus be degraded. (3) The current
density. The size of PM2 should be large to accommodate large PA current. Therefore, the size of
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PM2 is chosen to be 0.11 µm/200 µm, where the width is 5 µm and the finger number is 40. For LNA,
the input transistors NM1 and PM1 are turned off and the simplified circuit is shown in Figure 2b.
Consequently, the PA sees the impedance of the LNA path (ZRX-off) as a small capacitor shunted with
a large resistor given as RRL‖1/jωCRL. Around 2.45 GHz, simulation shows the real and imaginary
parts of ZRX-off are 2.6 kΩ and 95 fF, respectively. Simulation shows about 4% PA efficiency loss due to
ZRX-off and PM2.

In RX mode, S1, S4, S7, S5 and S9 are turned on and S2, S3, S5, S8 and S9 are turned off. For PA,
the transistors (NM2, NM3 and PM2) are turned off and the simplified circuit is shown in Figure 2c.
Similarly, LNA sees PA path as a large impedance (ZTX-off), consisting of a small capacitor shunted
with a large resistor and can be given as ZTX-off = RTL‖1/jωCTL. Around 2.45 GHz, the simulated real
and imaginary parts of ZTX-off are 16 kΩ and 66 fF, respectively. This large impedance ZTX-off results in
a 0.4 dB insertion loss, which is acceptable for the NF requirement of BLE.

2.1. PA and PA Matching Network

In the TX, a switching-type single-ended PA operating in non-linear region is employed for the
constant envelope modulation required by BLE, as shown in Figure 2a. The PA is typically powered
by a DC-DC convertor with reduced output noise [14,15] for better PA linearity. This PA composes of
three stages of amplification, with two inverters as pre-amplifiers for the gate voltage of NM2. For the
first one, it is placed in proximity to VCO to drive the long signal path between VCO and PA. For the
second one, it does not generate a rail-to-rail output signal. The final stage is a cascode-type amplifier,
where NM2 adopts thin gate oxide to obtain input/output isolation. The cascode stage NM3 increases
the output impedance of the PA and employs thick gate oxide to withstand peak drain voltage beyond
power supply due to the inductive load [16]. The size of the second inverter, together with NM2

size and NM2 gate bias, are carefully chosen to obtain the input signal of NM2 with appropriate
amplitude and operation point, which reduce 2nd harmonic component while maintain the required
output power. Simultaneously, 2nd harmonic component is further attenuated by 15 dB with the
matching network.

In TX mode, the simplified small signal equivalent circuit diagram of ZTX is shown in Figure 3,
and the output impedance can be written as:

ZTX = jωL1||RD||RI ||
1

jωCcr
||ZRX−o f f , (2)

RD = [1 + (gm2 + gmb2)ro3]ro2 + ro3, (3)

where RD represents the output impedance of the cascode NM2 and NM3, RI represents the shunt
resistance of the inductor, Ccr represents the sum of various parasitic capacitances seen from the output.
The value of L should be large to increase output power and make ZTX in inductive region in Smith
chart, as shown in Figure 4a. Therefore, ZTX can be simplified as a resistor Rt shunted with an inductor
Lt, and the admittance YTX can be written as:

YTX =
1
Rt
− j

1
ωLt

= (
1

RD
+

1
RI

+
1

RRL
)− j

[
1

ωL1
−ωCcr −ωCRL

]
, (4)

Two additional matching components help to match ZTX to 50 Ω. Taking the compatibility with
the RX matching network (mentioned below) into account, the matching network of a series capacitor
C1 and a shunt capacitor C2 is selected. ZTX1 is the series impedance of ZTX and C1, and YTX2 is the
shunt admittance of ZTX1 and C2, which are written as:

ZTX1 =
jR1ωLt

Rt + jωLt
+

1
jωC1

, (5)
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YTX2 =
1

ZTX1
+ jωC2 + jωCdio, (6)

where Cdio represents the capacitance introduced by ESD diode. From (5) and (6), the value of C1 and
C2 can be obtained if the output impedance is matched to 50 Ω, and Figure 4a shows the trajectory
of the ZTX when applying C1 and C2. Another factor needs to be considered is bonding wire which
can be simply modeled as two capacitors shunted with an inductor. The inductance of the bonding
wire can be cancelled by its resonating with the output decoupling cap C4 at 2.45 GHz. As shown in
Figure 4b, the overall simulated TX impedance S11 is smaller than −18 dB within in ISM band.
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2.2. LNA and LNA Matching Network

To allow the RX a good coexistence performance with an in-band blocker [9], the LNA and mixer
should be designed to be linear to prevent these blockers from degrading the performance. As shown
in Figure 2, the LNA adopts a push-pull common-source inductorless topology [17], which inherently
achieves higher linearity and power-efficiency when compared with a conventional NMOS-only
LNA [18].

In RX mode, the simplified small signal equivalent circuit diagram of ZRX is shown in Figure 5,
and the output impedance can be written as:

ZRX = Zin||
1

jωCct
||ZTX−o f f , (7)
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where Cct represents the sum of all of parasitic capacitances seen from the LNA input, Zin represents
the LNA input impedance and can be expressed as [17]:

Zin =
RFin

1 + (RFinCgsT
ω

2)
− j

RFin
2CgsTω

1 + (RFinCgsTω)2 , (8)

RFin =
R f

1 + |GV |
, (9)

CgsT = C3 + Cgsn1 + Cgsp1, (10)

where Cgsn1 and Cgsp1 represent the capacitance between the gate and the source of NM1 and PM1,
respectively. GV represents the LNA voltage gain and can be written as:

GV =
1
2

gmT
RsCgsTω0

(rds1||rds2||R f ||RMixin), (11)

gmT = gmn1 + gmp1 (12)

Here gmn1 and gmp1 represent the transconductance of NM1 and NM2 respectively, and Rs is 50 Ω.
Thus, ZRX can be simplified as a resistor Rr shunted with an inductor Cr, and the admittance YRX can
be expressed as:

YRX =
1

Rr
+ jωCr = (

1
RFin

+
1

RRL
) + j

[
ω(CgsT + Cct + CT L)

]
(13)
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Considering there is no inductive device in the LNA circuit, ZRX is in the capacitive region in
Smith chart. Therefore, the PA load inductor L1 is reused in RX matching network. As described above,
L1 moves ZRX to the inductive region in Smith chart. ZRX1 represents the series impedance of ZRX and
L1, which can be written as:

ZRX1 =
Rr

1 + (ωRrCr)
2 − j

ωRrCr

1 + (ωRrCr)
2 + jωL1. (14)

Then ZRX1 can be moved to near the center point via the capacitor C1 and trimming the capacitor
C2. Figure 6 shows the trajectory of the ZRX when applying L1, C1 and C2. ZRX2 represents the
impedance after adding C1 and C2, and can be expressed as:

ZRX2 = (ZRX1 +
1

jωC1
)|| 1

jω(C2 + Cdio)
. (15)

As shown in Figure 6b, the simulated LNA NF is around 2.57 dB and the maximum S11 is about
−15 dB.
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2.3. The Summarized Merits of this Proposed Frond-End

There are some merits of the proposed front-end with RX-matching network-reusing PA load
inductor: (1) Only one inductor is employed in this front end. It is used for PA load in TX mode, and
reused as a matching component in RX mode. Thus, the chip area has been reduced significantly;
(2) The front-end has integrated the TRX-switch and matching network, and reduced the number of
external components and thus reduced the cost of WSNs nodes; (3) RX and TX performance have not
been deteriorated: for one, the impedance of LNA and PA can be optimized respectively using the
proposed scheme; for the other thing, nonlinear components, such as CMOS switch, have not been
adopted in the signal path of matching network; (4) It is free of TX reliability issues, because the PA
sees the RX path as a high impedance compared with 50 Ω and the input voltage swing of the LNA is
very small.

3. Transceiver Circuit Implementation

3.1. Transceiver Architecture

Recent designs for the 2.4 GHz ISM band receiver employed either the sliding-IF [19–21],
direct conversion [22,23] or low-IF architecture [9], which have been demonstrated to be the most
feasible to meet BLE performance requirements under severe power and chip area constraints.
The sliding-IF architecture shifts the RF signal into the analog baseband (ABB) signal with twice
frequency conversions [24,25]. This architecture facilitates LO generation and distribution at a favorably
lower frequency, but causes a systematic, difficult-to-avoid susceptibility to out-of-band (around
1.45 GHz) image interference. Furthermore, GFSK modulation used in BLE contains significant energy
at very low frequencies close to DC. Considering direct conversion architecture is susceptible to DC
offset and flicker noise, low-IF architecture is adopted in this work.

Figure 7 shows the simplified block diagram of the proposed BLE transceiver. It includes the
aforementioned TRX-switch and matching network integrated front-end, a low IF RX, a two-point
modulation based TX, a fractional-N synthesizer, digital modulator and demodulator, and several
digital signal processing.

The RF signal passes first through the integrated TRX-switch and matching network, in which the
inductor is shared between RX and TX. The on-chip switch drives the single-end variable-gain LNA,
which amplifies the RX signal before it is fed to a current bleeding quadrature down conversion
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mixer. A 4th order complex band pass filter (BPF) follows the mixer, which performs channel
selection, image rejection and anti-aliasing filtering, and also serves as a programmable gain amplifier.
The IF signal is then digitized by a 3rd order delta-sigma continuous time (CT) ADC [26]. After that,
the signals are further processed in the digital sections, such as additional channel select digital filtering,
RSSI estimation, dc offset cancellation, automatic gain control (AGC), IQ imbalance calibration, and
demodulation [27].Sensors 2017, 17, 895  8 of 20 
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For BLE intermodulation characteristics, the required signal shall be measured at a power level
of 6 dB over the reference sensitivity level [4]. The minimum BLE requirements for the input
3rd intermodulation point (IIP3) and input 2nd intermodulation point (IIP2) can be calculated as
follows [28]. IIP3 (min) = Pin + 1/2 × (P1 − P3). Where Pin = −50 dBm, P3 = −70 (sensitivity) + 6 (dB)
−14 (SNR) = −78 dBm and P1 = −50 dBm. Thus, IIP3 (min) = −36 dBm. A −22 dBm IIP2 (min) is
calculated in a similar way. However, in order to increase the link margin, IIP3 above −20 dBm and
IIP2 above 0 dBm was targeted in this work.

BLE TXs usually adopt two architectures: conventionally mixer-based [29], and two-point
PLL-based TX [22]. The mixer-based TXs can support universal modulations, but at the expense
of high circuit complexity and power consumption. Additionally, the severe PA-to-VCO coupling
in mixer-based TXs [30] gives rise to frequency pulling effect, which degrades the TX modulation
accuracy and increases output spectral regrowth [31,32]. In this work, the TX employed a two-point
PLL-based architecture with a non-linear PA to eliminate the power-hungry RF mixers and quadrature
local oscillator (LO) generators, as shown in Figure 7. High frequency (HF) and low frequency (LF)
data paths are produced from digital domain to directly modulate a fractional-N synthesizer working
at two times carrier frequency. LF acted as the first point modulation which can be modulated
by a slowly-varying frequency modulation (FM) signal. On the other hand, HF extended the FM
bandwidth to beyond the PLL bandwidth, which is the second point modulation. After dividing by 2,
the modulated signal is directly fed to a nonlinear PA. Although the specified minimum output power
of BLE standard is −20 dBm [4], the 0 dBm transmit power is targeted in this work.

The PLL phase noise not only affects the EVM of RX and TX, but also affects the interference
and intermodulation performance. For the BLE specification [4], the interference performance shall
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be measured with a wanted signal 3 dB over the reference sensitivity level. The minimum BLE
requirements for phase noise at offset 3 MHz can be calculated as:

PN(max)@3M = −70 dBm + 3 − 14 (SNR) − P(blocker) − 10 × log(1M) = −106 dBc/Hz (16)

where P(blocker) is the adjacent (3 MHz) interference which is 27 dB higher than the wanted signal,
and 10 × log(1M) is the logarithm of 1 M transmitted bandwidth. However, in order to increase the
link budget, the phase noise at offset 3 MHz was designed to below −110 dBc/Hz in this work.

3.2. Down Conversion

Figure 8 illustrates one path of the quadrature mixer. Although the popular passive mixer [9] can
save current in mixer stage, it needs large current to drive LO to full swing, and thus it is not considered
in this work. Acting as a Gilbert type, this mixer employed PMOS as input and switch transistors
for smaller flick noise. The dummy mixer renders the mixer symmetric from the LO standpoint and
enhances IIP2. The square root currents of the input PFETs PM11 and PM12 are proportional to the
mixer linearity, while the larger current, the larger LO swing is required for the switching transistors.
Meanwhile, increasing the switching current will increase the switching stage noise. In order to solve
the trade-offs among noise, linearity and power consumption, the current-bleeding prototype was
employed in this work. To minimize the differences in the two halves caused by the single-end output
of LNA, the gate of PM12 in dummy mixer is connected to a resistor R13 and capacitor C12, which
matches the output impedance of the single LNA at the desired RF frequency. The resistors R11 and R12

not only act as the mixer load, but also serve as roofing filter together with capacitance C11. This filter
implements the first channel filtering pole in the RX path.
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3.3. LPF and ADC

Following the mixer, out-of-band blockers and image interferences are filtered out sufficiently
by the analog baseband 4th Butterworth active-RC complex filters. This 4th order complex filter is
achieved with two 2nd order filters cascaded, and the simplified schematic of the 2nd order complex
filter is given in Figure 9.

Compared with the real BPF, complex filter provides rejection at the image channel. In addition,
the complex filters act as programmable gain amplifiers, with gain range from 2 to 20 dB controlled
by the digital module. This relatively low voltage gain prevents the DC-offset saturating the coming
stages even without the DC-offset cancellation circuits. Though an active-RC circuit is commonly used
as the complex filter, its frequency characteristics vary with the RC time constants, which are likely to
change due to power, voltage and temperature (PVT) variations. To handle this issue, RC constant
time calibration circuits [33] is added in this work.
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The complex filters also provide anti-alias filtering for the 3rd order delta-sigma CT ADC, which
is sampled with a 128 MHz clock. The simulated magnitude-frequency response of the 4th order
complex filter is shown in Figure 10, that more than 150 dB attenuation at 128 MHz is obtained, which
avoid aliasing issue. The CT-ADC loop coefficients employ active-RC networks and can be digitally
tuned using the same code generated by the RC constant time calibration circuits in complex filter.
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3.4. Synthesizer

As shown in Figure 7, the LO is generated by a 4.8 GHz fractional-N synthesizer [34], consisting
of a phase-frequency detector (PFD), a charge pump (CP) current source, a loop filter, a third
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order multi-stage noise shaping (MASH) delta-sigma modulator (DSM), a dual-modulus prescaler,
programmable dividers, and a voltage-controlled oscillator (VCO). Considering the phase noise and
respond time, the PLL loop bandwidth of 120 kHz was adopted in this work. However, this loop
bandwidth is significantly smaller than the BLE specified 1 Mb/s rate with GFSK modulation. To extend
the modulation bandwidth, a two-point modulation scheme is applied to reuse the synthesizer. This
simultaneously guarantees reduced noise performance in both TX and RX modes.

Figure 11 shows the simplified VCO schematic. The NMOS only cross-coupled topology is
employed due to its better phase noise performance [35] in low power design. The charge pump
output is applied to MOS-varactors C22 and C23 for fine frequency and phase-locking after the 3-order
loop filter. To improve the linearity of the VCO gain (Kvco), both C22 and C23 were designed to have
two combined varactors biased to ground. An 8 bit DAC is added as HF (the second point) to extend
the frequency modulation bandwidth beyond the PLL bandwidth. The designed frequency resolution
is about 2 kHz. A symmetric and differential customized inductor is adopted to increase the Q-value
and reduce current consumption. Current biasing is achieved by a variable poly resistor R21, which
suffers lower noise as comparing to a tail current source. The output impedance of NM21 and NM22

are increased through NM23 and NM24 by using negative feedback, which makes the node (VF) voltage
be less sensitive to external interference and provide steadier current for resonance device. Therefore,
the phase noise of the VCO is much less sensitive to bias noise in low frequencies [23].

Sensors 2017, 17, 895  11 of 20 

 

prescaler, programmable dividers, and a voltage-controlled oscillator (VCO). Considering the phase 
noise and respond time, the PLL loop bandwidth of 120 kHz was adopted in this work. However, 
this loop bandwidth is significantly smaller than the BLE specified 1 Mb/s rate with GFSK modulation. 
To extend the modulation bandwidth, a two-point modulation scheme is applied to reuse the 
synthesizer. This simultaneously guarantees reduced noise performance in both TX and RX modes. 

Figure 11 shows the simplified VCO schematic. The NMOS only cross-coupled topology is 
employed due to its better phase noise performance [35] in low power design. The charge pump 
output is applied to MOS-varactors C22 and C23 for fine frequency and phase-locking after the 
3-order loop filter. To improve the linearity of the VCO gain (Kvco), both C22 and C23 were designed 
to have two combined varactors biased to ground. An 8 bit DAC is added as HF (the second point) 
to extend the frequency modulation bandwidth beyond the PLL bandwidth. The designed frequency 
resolution is about 2 kHz. A symmetric and differential customized inductor is adopted to increase 
the Q-value and reduce current consumption. Current biasing is achieved by a variable poly 
resistor R21, which suffers lower noise as comparing to a tail current source. The output impedance 
of NM21 and NM22 are increased through NM23 and NM24 by using negative feedback, which makes 
the node (VF) voltage be less sensitive to external interference and provide steadier current for 
resonance device. Therefore, the phase noise of the VCO is much less sensitive to bias noise in low 
frequencies [23]. 

 
Figure 11. Simplified schematic of VCO. 

To cover frequency range from 4.8 GHz to 4.967 GHz (two times of ISM band frequency), a 
7-bit capacitor array was used as shown in Figure 11. In order to speed up the lock time, initial 
coarse frequency algorithm is implemented in digital domain during startup period. The control 
word of the capacitor array is scanned and the corresponding frequency is calculated and stored. 
When channel switching, the required control word will be automatically picked up to achieve a 
fast lock. After the PLL has settled to the channel frequency, the HF data is then applied to other 
MOS varactors consisting of C24 and C25 in TX mode. 

4. Measurement Results and Discussion 

The BLE transceiver is implemented in a standard 110 nm CMOS technology using a 
single-poly and six-metal layers (one thick copper and one thick aluminum layer). The chip 
microphotograph is shown in Figure 12. Only two inductors, one for front-end and one for VCO, 
were implemented. The die area is 3.6 mm2, in which the front-end circuits only occupies 0.24 mm2 , 
while the rest is PLL, analog baseband, digital modular, demodulator and digital signal processing. 
Without using off-chip TRX-switch and Balun, this transceiver achieves small area and high-level 
integration.  

Figure 13 shows the S11 of the RX and TX. Both TX and RX achieve S11 less than 10 dB over the 
entire operating band. This verifies the effectiveness of the proposed TRX-switch and matching 

Figure 11. Simplified schematic of VCO.

To cover frequency range from 4.8 GHz to 4.967 GHz (two times of ISM band frequency), a 7-bit
capacitor array was used as shown in Figure 11. In order to speed up the lock time, initial coarse
frequency algorithm is implemented in digital domain during startup period. The control word of the
capacitor array is scanned and the corresponding frequency is calculated and stored. When channel
switching, the required control word will be automatically picked up to achieve a fast lock. After the
PLL has settled to the channel frequency, the HF data is then applied to other MOS varactors consisting
of C24 and C25 in TX mode.

4. Measurement Results and Discussion

The BLE transceiver is implemented in a standard 110 nm CMOS technology using a single-poly
and six-metal layers (one thick copper and one thick aluminum layer). The chip microphotograph
is shown in Figure 12. Only two inductors, one for front-end and one for VCO, were implemented.
The die area is 3.6 mm2, in which the front-end circuits only occupies 0.24 mm2 , while the rest is PLL,
analog baseband, digital modular, demodulator and digital signal processing. Without using off-chip
TRX-switch and Balun, this transceiver achieves small area and high-level integration.
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Figure 13 shows the S11 of the RX and TX. Both TX and RX achieve S11 less than 10 dB over
the entire operating band. This verifies the effectiveness of the proposed TRX-switch and matching
network combination scheme. The discrepancy between the measured S11 and simulated S11 (shown
in Figures 4 and 6) might result from the inaccurate modeling from both inductor and the parasitic
components of PCB and bonding wire.

The noise performance of the RX has been evaluated from the antenna port to the ADC outputs.
Figure 14 shows the measured RX performance. The NF of the RX shown in Figure 14a achieves
6–7 dB within the ISM band. Therefore, the sensitivity for the BLE Standard calculated from (1) is
about −93 dBm, which is much higher than the BLE specification requirements (−70 dBm). The total
current consumption of RX is 9.7 mW, and the power loss breakdown of RX is shown in Figure 14b.
Among the RX power losses, the ADC and complex filter consume 2.4 and 1.4 mW, respectively, which
are mainly from their operational amplifiers. LNA consumes 1 mW, 70% of which is from the first
stage, while the buffer contributes the remaining 30%. The mixer consumes less than 0.5 mW which is
mainly from the core circuits. 1 mW is consumed by BBPLL, 40% of which is from the ring oscillator,
20% from PFD, 20% from CP, the rest from divider. RFPLL consume about 2.1 mW of power, with its
VCO, PFD, CP and prescalar consuming 1 mW, 0.2 mW, 0.2 mW and 0.6 mW, respectively.
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For the linearity performance, the measured 1 dB compression point (P1dB) of the receiver
is about −29 dBm. Additionally, Figure 14c,d show the 3rd and 2nd intermodulation products.
Two interfering sine wave signals (listed in Table 1) are input to the receiver with a channel gain
GC = 74 dB, and IIP3 = Pin + (Pin + GC − PO3)/2, while IIP2 = 2Pin − PO2 + GC. The measured IIP3

and IIP2 are thus −17.1 dBm and 9.8 dBm. The IIP2 performance might result from the following
factors: (1) The single-ended LNA used in this work does not suppress the even-order harmonic
distortion; (2) The input of down-mixer is not exactly symmetrical, as shown in Figure 8, which causes
the even-order harmonic rejection not as good as a fully differential topology. But the IIP2 performance
of this work still meets the intermodulation requirement in BLE standard [4]. For the more severe
cases not defined in [4], such as that with a large modulated out-of-band interference, a SAW filter
might be needed for this work.

Table 1. IIP3 and IIP2 measurement conditions and results.

Test Mode f 1 (MHz) f 2 (MHz) LO (MHz) Pin (dBm) Gain (dB) Measured Results

IIP3 2048.2 2051.1 2045 −50 74 PO3 = −41.8 dBm IIP3 = −17.1 dBm
IIP2 2048.5 2048.2 2045 −50 74 PO2 = −35.8 dBm IIP2 = 9.8 dBm

Figure 15a shows that the TX output power variations are less than 1 dB within the 2.4 GHz ISM
band. The TX current consumption for various output powers is plotted in Figure 15b. It consumes 9.4,
8.4 and 7.9 mW at output powers of 0, −3 and −10 dBm, respectively. Figure 16a shows the measured
eye diagram and spectrum of BLE modulation (BT = 0.5), and Figure 16b gives the in-band spurious
emission performance, which is far less than the requirement in the dashed lines. The measured
FSK error of BLE is 2.97% as shown in Figure 16c. All the measured modulations meet the accuracy
specifications with decent margins. The power loss breakdown of TX with 0 dBm output is shown in
Figure 16d. Most of the power loss is from PA, which is 5.8 mW. The last stage of the PA contributes
more than 80% of this power consumption. On the other hand, the power loss on the PLL, XO and
divider-by-2 circuit are similar to those in the receiver. The PA efficiency is not as high as the state-of-art
works due to the following two reasons: (1) The cascode stage of PA (NM3) employs thick gate oxide
to ensure the reliability of PA. However, the on-resistance and parasitic capacitance of thick gate oxide
FET are larger than the thin gate oxide FET. Therefore, more power is consumed, comparing to the
scheme using thin gate oxide FET; (2) This work employed an 110 nm CMOS process. With much
larger parasitic capacitance, the switching loss is larger for this design.

Sensors 2017, 17, 895  14 of 20 

 

harmonic rejection not as good as a fully differential topology. But the IIP2 performance of this work 
still meets the intermodulation requirement in BLE standard [4]. For the more severe cases not 
defined in [4], such as that with a large modulated out-of-band interference, a SAW filter might be 
needed for this work. 

Table 1. IIP3 and IIP2 measurement conditions and results. 

Test Mode f1 (MHz) f2 (MHz) LO (MHz) Pin (dBm) Gain (dB) Measured Results
IIP3 2048.2 2051.1 2045 −50 74 PO3 = −41.8 dBm IIP3 = −17.1 dBm 
IIP2 2048.5 2048.2 2045 −50 74 PO2 = −35.8 dBm IIP2 = 9.8 dBm 

Figure 15a shows that the TX output power variations are less than 1 dB within the 2.4 GHz ISM 
band. The TX current consumption for various output powers is plotted in Figure 15b. It consumes 
9.4, 8.4 and 7.9 mW at output powers of 0, −3 and −10 dBm, respectively. Figure 16a shows the 
measured eye diagram and spectrum of BLE modulation (BT = 0.5), and Figure 16b gives the in-band 
spurious emission performance, which is far less than the requirement in the dashed lines. The 
measured FSK error of BLE is 2.97% as shown in Figure 16c. All the measured modulations meet the 
accuracy specifications with decent margins. The power loss breakdown of TX with 0 dBm output is 
shown in Figure 16d. Most of the power loss is from PA, which is 5.8 mW. The last stage of the PA 
contributes more than 80% of this power consumption. On the other hand, the power loss on the 
PLL, XO and divider-by-2 circuit are similar to those in the receiver. The PA efficiency is not as high 
as the state-of-art works due to the following two reasons: (1) The cascode stage of PA (NM3) 
employs thick gate oxide to ensure the reliability of PA. However, the on-resistance and parasitic 
capacitance of thick gate oxide FET are larger than the thin gate oxide FET. Therefore, more power is 
consumed, comparing to the scheme using thin gate oxide FET; (2) This work employed an 110 nm 
CMOS process. With much larger parasitic capacitance, the switching loss is larger for this design. 

(a) (b) 

Figure 15. (a) Measured Pout variation VS ISM band frequency; (b) Measured power consumption 
vs. output power. 

 
(a) 

 
(b) 

Figure 15. (a) Measured Pout variation VS ISM band frequency; (b) Measured power consumption vs.
output power.



Sensors 2017, 17, 895 15 of 20

Sensors 2017, 17, 895  14 of 20 

 

harmonic rejection not as good as a fully differential topology. But the IIP2 performance of this work 
still meets the intermodulation requirement in BLE standard [4]. For the more severe cases not 
defined in [4], such as that with a large modulated out-of-band interference, a SAW filter might be 
needed for this work. 

Table 1. IIP3 and IIP2 measurement conditions and results. 

Test Mode f1 (MHz) f2 (MHz) LO (MHz) Pin (dBm) Gain (dB) Measured Results
IIP3 2048.2 2051.1 2045 −50 74 PO3 = −41.8 dBm IIP3 = −17.1 dBm 
IIP2 2048.5 2048.2 2045 −50 74 PO2 = −35.8 dBm IIP2 = 9.8 dBm 

Figure 15a shows that the TX output power variations are less than 1 dB within the 2.4 GHz ISM 
band. The TX current consumption for various output powers is plotted in Figure 15b. It consumes 
9.4, 8.4 and 7.9 mW at output powers of 0, −3 and −10 dBm, respectively. Figure 16a shows the 
measured eye diagram and spectrum of BLE modulation (BT = 0.5), and Figure 16b gives the in-band 
spurious emission performance, which is far less than the requirement in the dashed lines. The 
measured FSK error of BLE is 2.97% as shown in Figure 16c. All the measured modulations meet the 
accuracy specifications with decent margins. The power loss breakdown of TX with 0 dBm output is 
shown in Figure 16d. Most of the power loss is from PA, which is 5.8 mW. The last stage of the PA 
contributes more than 80% of this power consumption. On the other hand, the power loss on the 
PLL, XO and divider-by-2 circuit are similar to those in the receiver. The PA efficiency is not as high 
as the state-of-art works due to the following two reasons: (1) The cascode stage of PA (NM3) 
employs thick gate oxide to ensure the reliability of PA. However, the on-resistance and parasitic 
capacitance of thick gate oxide FET are larger than the thin gate oxide FET. Therefore, more power is 
consumed, comparing to the scheme using thin gate oxide FET; (2) This work employed an 110 nm 
CMOS process. With much larger parasitic capacitance, the switching loss is larger for this design. 

(a) (b) 

Figure 15. (a) Measured Pout variation VS ISM band frequency; (b) Measured power consumption 
vs. output power. 

 
(a) 

 
(b) Sensors 2017, 17, 895  15 of 20 

 

(c) (d)

Figure 16. Measured TX performance. (a) Measured eye diagram of BLE (BT = 0.5); (b) Measured 
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−114 dBc/Hz, respectively. When applied to the LO port, the phase noise will be reduced by 6 dB due 
to the VCO frequency divided by 2. Therefore, the phase noise in this work is far lower than the BLE 
system requirements. As shown in Figure 18b, the measured PLL lock time is faster than 33 μs. 
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The measured output spectrum is presented in Figure 17, with 0 dBm required signal and
−34.82 dBm 2nd harmonic emission, which meets the specification of the European standard [36]
Considering the out-of-band spurious emission requirements are different in the intended countries of
sales [4], more severe requirements in other standards might be employed for some specific applications.
In this scenario, this design should further reject the 2nd harmonic by using a SAW filter, or reducing
the output power.
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The PLL phase noise is measured at the VCO output and the result is ploted in Figure 18a.
At 4.8 GHz, the phase noises at 10 kHz, 1 MHz and 3 MHz offsets are −83 dBc/Hz, −108 dBc/Hz and
−114 dBc/Hz, respectively. When applied to the LO port, the phase noise will be reduced by 6 dB due
to the VCO frequency divided by 2. Therefore, the phase noise in this work is far lower than the BLE
system requirements. As shown in Figure 18b, the measured PLL lock time is faster than 33 µs.Sensors 2017, 17, 895  16 of 20 
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The performance of the proposed transceiver is summarized and compared with some
state-of-the-art designs in Table 2. Due to the proposed front-end, only two inductors were employed
in this work, and a minimum front-end silicon area is achieved. Furthermore, the TRX-switch and
matching network are integrated in this work. By optimizing the impedance and matching network,
and choosing a single-ended architecture for both LNA and PA, comparable S11, NF, output power
and linearity are achieved with this proposed design. These verify the effectiveness and applicability
of the proposed BLE transceiver for WSNs applications.
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Table 2. Comparison to the state-of-art works.

[37]
nRF8001

[10]
JSSC2008

[24]
ISSCC2015

[25]
ISSCC2015

[5] 1

Sensors2015
[12]

VLSI2016 This Work

Compliant standards BLE Bluetooth BLE BLE BLE/Zigbee BLE BLE

Data/chip rate &
modulation

1 Mbps GFSK
BT = 0.5

1 Mbps GFSK
BT = 0.32

1 Mbps GFSK
BT = 0.5

1 Mbps GFSK
BT = 0.5 N.A. 1 Mbps GFSK

BT = 0.5
1 Mbps GFSK

BT = 0.5

Technology N.A. 130 nm 40 nm 40 nm 180 nm 28 nm 110 nm
Number of inductors N.A. 3 3 6 4 5 2
On chip TRX-switch no no no yes no yes yes
On chip matching network no no no yes no yes yes
PLL lock time (us) 130 N.A. 15 N.A. N.A. N.A. 32
RX sensitivity (dBm) −87 −92 −94 −94.5 N.A. −95 −93
RX IIP3 (dBm) N.A. N.A. N.A. N.A. −19 −19 −17.1
TX max. Pout (dBm) +4 +3 −2 0 N.A. +3 +2
FSK error N.A. N.A. 4.8% N.A. N.A. N.A. 2.97%
RX Power (mW) 27 36 3.3 6.3 6.74 2.75 9.7
TX Power (mW) 21 @0 dBm 33 @2 dBm 4.2 @−2 dBm 7.7 @0 dBm N.A. 3.6 @0 dBm 9.4 @0 dBm
Front-end area (mm2) N.A. 1.3 2 0.5 2 0.6 2 2.08 1.5 2 0.24

1 Only with RX front-end; 2 Estimated from respective chip microphotographs.
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5. Conclusions

A 2.4 GHz ISM band, low cost BLE transceiver for WSNs application with RX matching network
reusing PA load inductor in front-end is fabricated in a 0.11 µm CMOS technology. RX achieves a
sensitivity of −93 dBm for BLE and consumes 9.7 mW. For TX, it achieves a 2.97% BLE FSK error and
consumes 9.4 mW at 0 dBm output power. The front-end circuit occupies approximately 0.24 mm2.
Measurement results verify the effectiveness and applicability of the proposed BLE transceiver for
WSN applications.
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