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Abstract: Information fusion from multiple sensors ensures the accuracy and robustness of
a navigation system, especially in the absence of global positioning system (GPS) data which gets
degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned
aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger
observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on
the interaction between multiple measurement modes and a continuous observer. The state estimation
is performed in a switching environment between multiple active sensors to exploit the available
information as much as possible, especially in GPS-denied environments. Luenberger observer-based
projection is implemented as a continuous observer to optimize the estimation performance.
The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm.
Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability
which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L).
Simulation results are presented for a small UAV fixed wing localization problem. The results
obtained using the proposed approach are compared with a single mode Extended Kalman Filter
(EKF). Simulation results are presented to demonstrate the viability of the proposed strategy.

Keywords: integrated navigation system; multi-mode estimation; sensor data fusion; Luenberger
observer; small UAV localization

1. Introduction

The major issue in the field of autonomous Unmanned Aerial Vehicles (UAVs) and Micro
Aerial Vehicles (MAVs) is their consistent and precise localization. This problem is usually solved by
combining navigation data provided by different sensors. Recently, the problem has attracted many
researchers and a lot of work has been done in the autonomous low cost UAV guidance, navigation
and control (GNC) area, leading to great success during the last few years. Multiple sensor information
fusion for robot navigation increases the accuracy and robustness of the navigation information [1].
Different methods of integration of navigation data from different types of sensors and estimators
have been developed and investigated by researchers in the recent past few years. The focus has
mainly been on the integration of Inertial Navigation System (INS) information with GPS to provide
precise navigation information, but GPS data is occasionally unavailable due to outages. GPS is
a satellite-based navigation system that provides accurate positioning information anyplace on the
globe, but GPS is insufficient for many navigation applications as a stand-alone system because while
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GPS has superior long-term stability and error performance, the accuracy of GPS measurements can be
poor for short periods of time due to several errors related with its signal acquisition. INS, on the other
hand, is not influenced by external interferences, and has higher bandwidth with good short-term
accuracy, stability and noise characteristics, but it possesses poor long-term reliability as the navigation
accuracy degrades with time because of bias drift and noise, and therefore it needs external information
from GPS measurements for correction and initialization for long-term, high accuracy navigation.
GPS/INS integrated systems are robust, operate at higher bandwidth, provide reliable navigation
information and have better noise characteristics with the long-term stability of GPS and improved
positioning continuity compared to either stand-alone GPS or INS [2–4]. Nowadays, the trend is to
increase the number of navigation sensors to mitigate the GPS dependence. All sources positioning
navigation (ASPN) is an important concept in a new era of navigation studies to achieve low cost,
effective, and robust navigation solutions regardless of the availability of a global positioning system
(GPS) [5]. Along with the importance of increasing the number of navigation information sources, the
design of integrated navigation system using estimators is important to yield more accurate, robust
and reliable integrated systems. The key problem of any integrated navigation system is how to
achieve an optimal estimation for position, velocity, attitudes and state of interest parameters.

Multi-Sensor Data Fusion (MSDF) is defined as the acquisition and processing of data collected by
different sensors. There are different MSDF techniques, ranging from Kalman filtering methods to those
used in soft computing technology, while some work has also been done on hybrid architectures [6].

The need for multiple model architectures emerges in numerous applications where framework
changes or alternative models are more suitable to depict a particular issue. Cases of such issues are
fault diagnosis, linearization of non-linear frameworks with the end goal of control, reconfiguration,
and so on. Multi-mode state estimation frameworks turn out to be more troublesome than standard
single-model estimations and extensive research has focused on this matter [7].

Multiple-model estimation techniques for the most part expect that the actual model has a place
within a finite arrangement of models. A priori event probability for every mode is known and what’s
more, the system equations and measurement equations are generally corrupted by noises. In addition,
the change starting with one framework mode then onto the next one is frequently depicted by
a Markov chain method. The deduction of the optimal estimator is troublesome regardless of the
possibility that the noises are thought to be independently Gaussian distributed.

As a result, various approximate techniques have been developed. Most techniques depend on
the residual generation executed by a bank of filters (each implemented in accord with a particular
model) and a hypothesis testing algorithm which is used to processes the residuals to decide on
a conditioned-model estimate of state. The residuals give an assessment of how near each of the filter
models is to the actual model. Such techniques are for the most part alluded to as multiple-model (MM)
estimation approaches [8]. Upgrades have been introduced by exchanging the computed statistics
between the different filters of the bank [9] (this is normally designated as an Interacting Multiple
Model (IMM) technique). IMM techniques are widely applied in target tracking [10]. Numerous uses
of these techniques are surveyed in the literature (see, among others, [11]).

The computational complexity cost of an arrangement of parallel filters may prevent one from
executing them online for a high order system with a large number of state variables, and algorithms
have been proposed to diminish the amount of calculation needed. A conceivable strategy to address
this disadvantage comprises choosing the number of residual generators (thus the computational cost
is assigned) and after that an adaptive tuning of each filter can be introduced [12]. Another strategy is
alluded to as multiple-model estimation with variable structure and depends on the usage of a variable
arrangement of adaptable models [13]. Expansions to a more broad class of hybrid framework have
been reported [14,15].
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More formal strategies to manage a multiple-model estimation issue have been introduced as
of late and provide convergence results. These estimation issues might be solved utilizing limited
dimensional filters, as pointed out in [16]. Various algorithms are introduced in [17] and depend on
different Bayesian cost equations. A strategy to manage non-Gaussian noises is introduced in [18].

Here the consideration is on the issue of reproducing the state of a dynamic framework based
on a switching environment in general. The goal is to build up an estimator ready to track the state
of the dynamic system framework based on a limited amount of data regarding the techniques cited
above. More specifically, we suppose that different measurement information is available from various
sensors (such as GPS, IMU, altimeters...etc.) at different time instants and in addition, the GPS signals
can fade or become corrupted in many availability over time cases and therefore they are degraded.
Furthermore, we assume no noise influences in the measurements and dynamic equations and thus
any uncertainty is just due the initial state and switching between modes. Such presumptions are
relaxed in the simulations to get a more practical evaluation comparison, where the system noise and
measurement noise have been introduced. The switching model is not considered and the probability
information is not given. Thus, a decision maker depends on the evaluation of the residual generation
that is performed based on the difference between the measured system output for each possible
operating mode and the estimated system output from the continuous observer. The assessment of the
residuals applies a reset to the filter model according to the matching operating mode. As an outcome,
the dynamics error of the eventual scheme acts as a switching system. The problem in any kind of
switching observer among different modes is the observer gain selection to guarantee the stability
of the estimation dynamic errors and this problem remains difficult to solve and harder than the
design of the standard observer. The observer gain in case of the classical Luenberger observer is
chosen on the basis of the pole placement technique where convergence of the error dynamics might
occur only if the poles of the dynamics error are placed in the strictly stable region, while in case
of the observer in a switching environment then the solution is by seeking the common Lyapunov
function. The stability is guaranteed for such an error dynamics by the solution of a common Lyapunov
function in the ideal case when the system is not influenced by the noise and the right decision for
switching is taken at every time instant [19]. Linear matrix inequality (LMI) techniques are appropriate
to discover this solution and also to permit a more effective design of the observers to improve the
estimation performance [20]. In addition, an enhancement has been made by executing a projection
strategy [21,22] on the Luenberger observer by incorporating the last measurements into the estimation
process to update the current estimate. Such an enhancement results in higher estimation performance
by reducing the estimation error. Some of current research works focus on observer-based controller
design scheme via using the relation of Young inequality in a judicious manner to calculate the observer
and controller gains based on improved LMI conditions to ensure the stability of the closed-loop
system [23–25].

In our simulation we have selected the Extended Kalman Filter (EKF) to compare with the
proposed approach because EKF is a successful and widespread estimator for nonlinear systems and
is used in many applications [26] and it is well proven for inertial data fusion [27]. The Extended
Kalman Filter is widely used for the purpose of sensor fusion in UAV applications, In [28–31] robust
navigation for fixed wing Unmanned Aerial Systems (UASs) based on integration of MSDF architecture
using an Extended Kalman Filter has been introduced. Another integrated navigation system for UAV
localization using the method of nonlinear smooth variable structure filter is presented and compared
with an Extended Kalman Filter in [32]. Moreover, in [27,33] the authors evaluated the Extended
Kalman Filter for inertial data fusion-based navigation localization for mobile robots. EKF has been
most widely used for the application of multi-sensor fusion, either in a self-sufficient, or in a multiple
model manner. The main reason behind the widespread use of EKF is the lower computational cost
and simplicity in dealing with nonlinear systems. Many researchers have modified the multiple model
approach using EKF as per the system design and requirements. In [34] a multiple model approach
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using EKF is described for collision avoidance and position estimation, and a similar approach for
multi-target state estimation is presented in [35].

The article organization is as follows: multi-mode estimation based on a switching observer has
been described in Section 2, Then feasible solutions for the stability and performance are discussed in
Sections 3 and 4, where the stability analysis of the estimation error has been addressed in Section 3
while the performance enhancement-based projection consideration has been addressed in Section 4.
Finally, in Section 5, the simulation framework and results, discussion and a comparison are given to
show the effect of the proposed method.

2. Multi-Mode Estimation-Based Switching Observer

Let a discrete time linear system be described by:

x(k + 1) = Aσ(k) x(k) + Bσ(k) u(k) + wk,

y(k) = Cσ(k) x(k) + vk
(1)

where x(k) is the state vector, u(k) is the input vector, y(k) is the measurement vector, wk is process
noise, vk is measurement noise and σ(k) is a function of switching signal which maps between the index
of the current time step among a set of indices {1,2,.., k}. Every index from these indices is compatible
with various system and measurement equation configuration models, i.e., {Aσ(k), Bσ(k), Cσ(k)} ∈
{(A1, B1, C1), (A2, B2, C2)... (Ak, Bk, Ck)}. We suppose the pairs (Ai, Ci), i = 1, 2, .., k are observable,
and also presume that the switching sequence is arbitrary and no a priori information on the switching
probability from one mode into another one is required. A switching Luenberger observer for (1) is
as follows:

x̂(k + 1) = Aσ(k) x̂(k) + Bσ(k) u(k) + Lσ(k) rσ(k), k = 1, 2, . . . (2)

where Lσ(k) and rσ(k) are the observer gain matrix and the residual at the time k, respectively.
We suppose that the different measurement information is available from various sensors at

different discrete time instants and in addition, some of these sensors may be not available at different
time instants, such as the GPS signals that can fade or become corrupted in many cases therefore
degrading their availability and as a consequence, we assume that the measurement information from
different sensors can be grouped into a multi-measurement mode to ensure the information availability
from different sensors in the absence of GPS information to keep describing the system dynamics all
the time. This stage acquires the measurements at every time step and estimates the system mode
based on the evaluation of the residuals. The system output is then generated by this most likely
system mode. The proposed hybrid navigation system combines all the measurements from all the
sensors through two operational modes, designated as mode 1 and 2.

An essential question is the assessment of the residuals, i.e., how to decide a choice on the working
operating mode utilizing the residuals. As the error dynamics are supposed to be stable, a possible
assessment technique comprises choosing the mode that relates to the most reduced value of the
residuals. For each system mode, we calculate the residual of the measurement with the output of the
corresponding mode. The residual is then used to decide the operating mode; such a decision relies on
the criterion used to discriminate among the different residuals, the resulting design scheme comes
out to behave like a switching system. A general debate on switching system frameworks is beyond
the scope of this article, and for an introduction readers can consult [19]. It is worth mentioning here
that we don’t depend on a probability depiction of stochastic variables and events in general, and
then a traditional Bayesian way to deal with this issue is prevented. In this context, a feasible solution
comes out to be that of choosing the model with the smallest matching residuals.

Generally, residuals are generated from the difference between the measured system output y(k)
for each mode and the estimated system output ŷ(k):
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ri(k)yi(k)− ŷi(k) = yi(k)− Ci x̂(k), i = 1, 2, ..., N (3)

The switching between the two modes, depending on the decision function can be expressed as:

decision function =

{
i f RMS‖r1(t)‖ ≤ ε and t = t1 switch to mode one

otherwise RMS‖r2(t)‖ ≤ ε or t 6= t1 switch to mode two
(4)

where ε is a root mean square of the residual threshold and t1 is the instant at which all measurements
are available including the GPS. The decision function not only judges the availability of GPS, but
also judges the accuracy of the sensors’ measurements where the switching between the two modes is
based on the most reduced residual which leads to the most likely mode. This technique acquires the
measurements at every time step and estimates the system mode. As a consequence, the switching
observer can be described by the following expression:

x̂(k + 1) = Ai x̂(k) + Bi u(k) + Li

(
yi(k)− Ci x̂(k)

)
, i = 1, 2, . . . ., (5)

where, x̂(0) = x(0) is chosen a priori, yi(k) is the measurement vector of the ith mode and Li is the
related observer gain. The multi-measurement mode estimation-based switching observer scheme is
depicted in Figure 1.
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The essential problems emerging in the design of such an observer are related to stability,
optimization, and performance. These problems will be addressed in the next sections and possible
solutions will be proposed.
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3. Stability Analysis of the Estimation Error

The attention in the first place is placed on the stability of the estimation dynamics error
e(k) = x(k) − x̂(k). Such error dynamics behave as a switching dynamic system, consequently
the stability is guaranteed for such an error dynamics case by the solution of a common Lyapunov
function [36]. By taking into consideration the system in Equation (1) and with the assumption that the
pairs (Ai, Ci) are observable, and if matrix P exists as a solution of the following Lyapunov inequality:

(Ai − LiCi)
T P(Ai − LiCi)− P < 0 , i = 1, 2, . . . N (6)

where, matrix P is a symmetric positive definite then the observer in Equation (2) includes a dynamic
estimation error that converges exponentially asymptotically to zero [36]. To prove this result then, we
recall the error dynamics equation as follows:

e(k + 1) = x(k + 1)− x̂(k + 1) (7)

From the system Equation (1) and from the observer Equation (2) we can substitute in the error
dynamic Equation (7) then:

e(k + 1) = Aσ(k) x(k) + Bσ(k) u(k)− Aσ(k) x̂(k)− Bσ(k) u(k)− Lσ(k) rσ(k) (8)

where, the residual rσ(k) = yσ(k)(k)− Cσ(k) x̂(k) then:

e(k + 1) = Aσ(k) x(k)− Aσ(k) x̂(k)− Lσ(k)

(
yσ(k)(k)− Cσ(k) x̂(k)

)
e(k + 1) = Aσ(k)( x(k)− x̂(k))− Lσ(k)

(
Cσ(k) x(k)− Cσ(k) x̂(k)

)
e(k + 1) = Aσ(k)( x(k)− x̂(k))− Lσ(k)Cσ(k)

(
x(k)− x̂(k)

)
e(k + 1) =

(
Aσ(k) − Lσ(k)Cσ(k)

)(
x(k)− x̂(k)

)
e(k + 1) =

(
Aσ(k) − Lσ(k)Cσ(k)

)
e(k)

(9)

With the consideration of the Lyapunov function is Vk = eT
k Pek, we get Vk+1 ≤ Vk, if:(

Aσ(k) − Lσ(k)Cσ(k)

)T
P
(

Aσ(k) − Lσ(k)Cσ(k)

)
− P < 0 , (10)

where P is a positive symmetric definite matrix, then the Equation (6) can be derived easily.
The assumption of (Ai, Ci) are observable is an important feature to ensure the inequality in

Equation (6) allows a solution of a symmetric positive matrix P, however the presence of such a matrix
P is required for achieving the inequalities which guarantee the stability. Therefore, the goal is to get
the solution of the following observer gain Li problem, such that a matrix P exists for the solution of
Lyapunov inequalities:

(Ai − LiCi)
T P(Ai − LiCi)− P < 0 , i = 1, 2, . . . N (11)

However, the above problem is difficult to solve in this form, so, it is appropriate to choose the
matrices Li and P simultaneously. Therefore this problem can be changed to another simpler form
based on the relation of the Schur complement (for proof the reader is referred to [36]), thus the
Lyapunov inequality in the aforementioned problem is equivalent to [20]:(

P (PAi − YiCi)

(PAi − YiCi)
T P

)
> 0 , i = 1, 2, . . . N (12)
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Now, we can solve the Lyapunov inequality in this form by means of LMI techniques.
LMI techniques permit one to solve such problems using convex programming [20,37]. In order
to efficiently perform such an optimization by linear matrix inequalities, we have used the CVX 3
toolbox as a convex programming algorithm to find the matrices P and Yi and then find the observer
gain Li as follows:

Li = P−1Yi, i = 1, 2, . . . N (13)

4. Performance Enhancement by Using Luenberger Observer Based Projection

The classic Luenberger observer in Equation (2) estimates the state vector x̂(k + 1) at time (k + 1)
by using the available measurements y(k) at time k. In this section we aim to discuss an approach to
compute the estimate state vector x̂(k + 1) at time (k + 1) by using the available measurement vector
y(k + 1) at time (k + 1) just like a standard Kalman filter. We denote x̂+(k) as the state estimates
at time k incorporating the output at time k as shown in Figure 2. Such an approach is based on
the projection method and takes into consideration the last measurement to enhance the estimation
performance (for further information about such an approach the reader is referred to [36]). More
specifically, this estimation technique can be characterized as follows [36,38]:

x̂(k + 1) = Aσ(k) x̂+(k) + Bσ(k) u(k) + Lσ(k)

(
y(k)− Cσ(k) x̂+(k)

)
(14)

x̂+(k + 1) = x̂(k + 1) + P−1CT
σ(k+1) (Cσ(k+1)P

−1CT
σ(k+1))

−1 (
y(k + 1)− Cσ(k+1) x̂(k + 1)

)
(15)

where x̂+(0) = x(0) is chosen a priori, Lσ(k) and P are the observer gain and a symmetric positive
definite matrix at time k, respectively.Sensors 2017, 17, 887 7 of 18 
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The estimation error before incorporating y(k + 1) is as follows:

e(k + 1) = x(k + 1)− x̂(k + 1) =
(

Aσ(k) − Lσ(k)Cσ(k)

)
e+(k) (16)

where e = x− x̂ and e+ = x− x̂+, then the estimation error after incorporating y(k + 1) is as follows:

e+(k + 1) = x(k + 1)− x̂+(k + 1) =
[

I − P−1CT
σ(k+1) (Cσ(k+1)P

−1CT
σ(k+1))

−1
Cσ(k+1)

]
e(k + 1) (17)

Considering the Lyapunov functions are Vk = eT
k Pek and V+

k = e+T
k Pe+k , for stability we want

to show that e+(k) converges to zero asymptotically by proving V+
k is decreasing in k. Then, it is

sufficient to show that V+
k+1 < Vk+1, since it is obvious from Equation (16) that Vk+1 < V+

k if the
Lyapunov inequalities are satisfied. Let’s consider:
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V+
k+1 = e+T

k+1Pe+k+1

=
[
e(k + 1)− P−1CT

σ(k+1) (Cσ(k+1)P−1CT
σ(k+1))

−1Cσ(k+1)e(k + 1)
]T

P
[
e(k + 1)

−P−1CT
σ(k+1) (Cσ(k+1)P−1CT

σ(k+1))
−1Cσ(k+1)e(k + 1)

]
= Vk+1 − eT(k + 1) CT

σ(k+1)(Cσ(k+1)P−1CT
σ(k+1))

−1Cσ(k+1)e(k + 1)

< Vk+1

(18)

In the next section, the improvements of the estimation performance which were introduced via
the Luenberger observer-based projection consideration can appear clearly in the simulation results.

5. Simulation Framework and Results

In this section we present our simulation framework and results in order to validate the proposed
multi-mode estimation by using a Luenberger observer after a projection (LOAP)-based LMI approach
for the small fixed wing unmanned aerial vehicle localization problem.

The nonlinear state dynamics and measurement model which describe the dynamics of the body
of the small fixed wing unmanned aerial vehicle can be expressed by the following equations:

.
x(t) = f

(
x(t), u(t), t

)
,

y(t) = h
(

x(t), u(t), t
) (19)

where x is the state vector, which consists of attitude in terms of Euler angles, position and velocity
expressed in navigation frame, gyros and accelerometers biases, respectively, defined as follows:

x =
[
φ θ ψ Pn Pe h Vn Ve Vd bωx bωy bωz bax bay baz

]
(20)

Furthermore, u is the system input which in our case is the IMU measurements, expressed
as follows:

u =
[

ωx ωy ωz fx fy fz
]
, (21)

Nonlinear navigation state model can be written as:

f(x, u) =



 1 sin φ tan θ cos φ tan θ

0 cos θ − sin φ

0 sin φ sec θ cos φ sec θ


 ωx,gyro − bωx

ωy,gyro − bωy

ωz,gyro − bωz


Vn

Ve

−Vd

Cn
b

 fx,accel − bax

fy,accel − bay

fz,accel − baz


0
0
0
0
0
0



(22)
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where Cn
b is the transformation matrix which represents a rotation from body to navigation coordinates

and because it is an orthonormal matrix then one from its characteristics is Cn
b =

[
Cb

n

]T
where Cb

n can
be characterized as:

Cb
n =

 cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)
sin(φ) sin(θ) cos(ψ)− sin(ψ) cos(φ) sin(φ) sin(θ) sin(ψ) + cos(ψ) cos(φ) sin(φ) cos(θ)
sin(θ) cos(φ) cos(ψ) + sin(ψ) sin(φ) sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ) cos(φ) cos(θ)

 (23)

The basic frame for the inertial sensors used in the simulation is the body-fixed coordinate frame
(body x–y–z coordinate) where, x-axis point in the forward direction, y-axis point to right, and z-axis
points downwards however, the local geodetic coordinates are North-East-Down (NED).

In the simulation we assume that various measurement information data is available from
different sensors at various different time instants and furthermore, some of these sensors might be
not available at various moments of time, for example, the GPS signals can fade or be corrupted in
many situations consequently degrading the availability and as an outcome of this we suppose that the
measurement information data from various sensors is to be gathered into two-modes to guarantee the
availability of the measurement data from various sensors in the absence of the information from some
of them to keep describing the system dynamics all the time. Figure 3 shows a graphical representation
for switching between two modes.
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In mode one, the observations for velocity and position are obtained from GPS, while in mode
two, the position and velocity in the north and east directions are acquired from the IMU and the height
from a barometric pressure sensor and finally the down velocity from the fusion between barometer
and vertical accelerometer measurements. The vertical velocity can be gathered on the basis on the
available vertical acceleration and altitude measurements [39].

The estimation of the continuous states is performed by utilizing a Luenberger observer based on
geometrical considerations, as portrayed in Section 4, and no a priori statistical information data about
system and measurement noises and system uncertainties is required. Furthermore, we assume no
noise influences on the measurement and dynamic equations, thus any uncertainty is just because of
the initial state and switching between modes. Such presumptions are relaxed in the simulations to get
a fair evaluation comparison, where the system noise and measurement noise have been introduced.
The initial states are chosen a priori while the system process covariance matrix P and the observer
gain matrix L are selected simultaneously by solving the Lyapunov inequality by means of the LMI
approach. No a priori information about the process covariance matrix P is required, but the matrix
P as a positive symmetric definite matrix is chosen as a solution for the Lyapunov inequality by
means of the LMI technique. The existence of the positive definite matrix P as a solution of the
Lyapunov inequality ensures the dynamic estimation error converges exponentially to zero. For simple
denotation we call the proposed continuous observer a Luenberger observer after projection (LOAP).
We tested the proposed projection filter on a class of nonlinear system and compared the results with
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the Extended Kalman Filter (EKF). The initialization of the state estimate for both the LOAP and EKF
is the same and based on utilizing the first measurement of GPS to provide an initial position and
velocity state estimate as follows 0.31 m, 2.23 m and 160.6 m for the initial north, east and height
positions state estimate, respectively, and 20.8 m/s, 5.9 m/s and −1.1 m/s for the initial north, east
and down velocities state estimate, while the initialization of the other state estimates such as the
Euler angles, gyros biases and accelerometers biases have been set to zero. Although we initialized
the position and velocity state estimate for the EKF, we assume the EKF filter started with large initial
uncertainties compared to the expected magnitudes of the states to build the initial process covariance
matrix P with deviations equal to 0.5 rad, 100 m and 10 m/s for the initial attitudes, position and
velocity uncertainties, respectively, also we use a priori information about the initial uncertainties in
the gyro and accelerometer biases equal to 0.01 rad/s and 0.1 m/s2, respectively. Also, we design the
process noise covariance matrix for EKF based on how much we expect the deviation of the reality
from the model of the vehicle motion to be. Although no a priori statistical information is required
for the LOAP, we applied system process noise for the LOAP the same as EKF with deviations equal
to 0.002 rad, 0.5 m, 0.2 m/s for the attitude, position and velocity process noises, respectively, and
assigned the process noises of the gyro and accelerometer sensors biases near to zero because we do
not expect them to vary very quickly with deviations equal to 10−6 rad/s and 10−6 m/s2 for the gyro
and accelerometer biases process noise, respectively. Table 1 shows the type of the measured data and
the sampling rate used for each sensor while Table 2 shows a comparison of the factors of the filters
used in this study.

Table 1. The measured data and sampling rate used for each sensor.

Sensor Measured Data Frequency

GPS Position and Velocity 1 Hz
Gyro Angular Speed 10 Hz

Accelerometer Acceleration 10 Hz
Barometric Altimeter Height 10 Hz

Table 2. A comparison factors of the filters used in this study.

Observer A Priori Statistical
Information about Noises

Design of the
Gain Matrix Covariance Matrix (P) Update Rate

LOAP

Not required (but
introduced in the
simulation for fair

evaluation comparison)

Selected by solving the
Lyapunov inequality by

means of LMI techniques.

Selected as a solution
of the Lyapunov

inequality by means of
LMI techniques.

10 Hz

EKF Required Using a correction matrix
A priori chosen, then
estimated during the

estimation process
10 Hz

A trajectory of 100 s is used in the simulation of the aforementioned model. Figure 4 provides the
3D position trajectory for the true positions and GPS measurement.

The results of our proposed approach are compared with single mode Extended Kalman Filter
technique and the simulation is divided into two sections, the first is the case where the GPS signal is
available at every 1 Hz, while the second is a case where the GPS signal is absent during an interval of
time. The data is recorded and processed offline.
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5.1. Evaluation of Estimation Performance (in the Case of a GPS Signal Available Every 1 Hz)

A trajectory of 100 s is used in the simulation. We use the same measurement sources for both
multi-measurement mode estimation-based LOAP and single mode EKF and suppose the GPS signal
is available every 1 Hz for both of them. For the latter estimator, when the GPS signal is available we
assign the sampled measurement uncertainty matrix where the GPS has a measurement error with
deviations equal to 2 m in position and 1 m/s in velocity, while the former does not require a priori
statistical information about the measurement error, but the randomness of the sensor errors has been
considered in the simulation. As the sensor error is random and every sensor has its own measuring
error, the simulation has done based on extensive Monte Carlo runs. Also, for EKF at every 10 Hz
when the GPS is unavailable and since the measurement depends on the other sensors we increase the
values of the measurement errors in position and velocity by multiplying by the same deviations when
the GPS is available by scale factor 10 and that is because the measurement position and velocity from
the GPS is more accurate than the measurement position and velocity from the IMU-based MEMS
but this increases the measurement noise just applied on the position and velocity in the east and
north directions without the height and down velocity because of the use of a barometric altimeter
to measure the height in case the GPS is unavailable with measurement noise deviation equal to 1 m.
It is obvious from the Figures 5–10 that when the GPS signal is available without any disconnection
every 1 s during the time of flight then the proposed multi-measurement mode-based LOAP and the
single mode EKF almost perform equally, with slightly differences between both of them where the
deviations of the estimated position errors in Figures 5, 6 and 9 and the deviations of the estimated
velocity errors in Figures 7, 8 and 10 are as summarized in Table 3.
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Figure 5. Error estimation of north position.
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Figure 6. Error estimation of east position.
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Figure 7. Error estimation of north velocity.
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Figure 8. Error estimation of east velocity.

Sensors 2017, 17, 887 12 of 18 

 

 
Figure 8. Error estimation of east velocity. 

 
Figure 9. Error estimation of height. 

 
Figure 10. Error estimation of down velocity. 

0 20 40 60 80 100
-4

-3

-2

-1

0

1

2

3

time (sec)

E
rro

r i
n 

E
as

t V
el

oc
ity

  (
m

/s
ec

)

 

 

estimated error by LOAP estimated error by  SEKF

0 20 40 60 80 100
-8

-6

-4

-2

0

2

4

6

time (sec)

 E
rro

r i
n 

H
ei

gh
t  

(m
)

 

 

estimated error by LOAP
estimated error by  SEKF

0 20 40 60 80 100
-3

-2

-1

0

1

2

3

time (sec)

 E
rro

r i
n 

D
ow

n 
V

el
oc

ity
  (

m
/s

ec
)

 

estimated error by LOAP
estimated error by  SEKF

Figure 9. Error estimation of height.
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Figure 10. Error estimation of down velocity.
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Table 3. A standard deviations of estimated errors comparison between multi measurement modes
based LOAP and single mode EKF.

Estimators σδPn (m) σδPe (m) σδh (m) σδVn (m/s) σδVe (m/s) σδVd
(m/s)

LOAP 2.2574 1.9289 0.5710 1.0717 1.1137 0.3703
SEKF 2.3330 1.9608 0.9666 1.0862 1.1314 0.4312

Table 3 presents and compares the standard deviation of the estimated position and velocity
errors in the north, east and down directions between the multi-measurement mode-based LOAP
and single mode EKF. It is clear from this table that the proposed approach provides a slightly more
accurate position and velocity estimation than single mode EKF. Also, the simulation results prove that
the proposed approach is well suited to deal with nonlinear systems. The performance improvement
of the proposed multi-measurement mode-based LOAP approach compared to the single mode EKF
approach can appear clearly when the signal of GPS is fading and not available at every 1 Hz intervals.
This is the object of the next simulation.

5.2. Evaluation of Estimation Performance (in Case of GPS Signals Not Available during an Interval Period)

In our second simulation, we suppose that the GPS signal is disconnected and not available
during the time from 20 s until 30 s. All the previous aforementioned simulation modeling conditions
are the same for both the multi-measurement mode-based LOAP and the single mode EKF, except in
case of single mode EKF we decreased the measurement errors for position and velocity in the east
and north directions during the interval time when the GPS is disconnected to place more trust in
the other sensors in the absence of the GPS signals, while the measurement error of height and down
velocity remain the same as in the previous simulation because we are using a barometric altimeter to
provide the height. From the simulation results in Figures 11 and 12 we notice that the estimation error
of the north and east positions in the case of the single mode EKF grows exponentially and increases
quickly, reaching 89.355 m and 245.4513 m, respectively, while in the case of the multi-measurement
mode-based LOAP the estimated position error remains stable and bounded within the acceptable
range, increasing slowly and reaching 7.8117 m and 9.715 m for the north and east, respectively. Also,
it is obvious from Figures 13 and 14 with respect to the estimation error of the north and east velocities
in case of the single mode EKF, it grows exponentially, increasing quickly and reaching 11.88 m/s and
27.4918 m/s, respectively; while in the case of the multi-measurement mode the estimated velocity error
remains stable within less than 1.7622 m/s for the north and reaching 1.8424 m/s for the east direction.
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Figure 11. Error estimation of north position.
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Figure 12. Error estimation of east position.
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Figure 13. Error estimation of north velocity.
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Figure 14. Error estimation of east velocity.
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As a result, the superiority in the case of multi-measurement mode-based LOAP over the single
mode EKF is obvious because when the GPS is not available at the instant of time which all the
measurements should be available, the switching observer-based LOAP makes the right decision to
switch to the second mode to guarantee the availability of the position and velocity measurements and
then the stability of the estimation errors is obtained by solving the Lyapunov inequality-based stability
by means of the LMI approach and this keeps the dynamic estimation error bounded by selecting the
observer gain matrix (L). However, as shown in Figure 15, the estimation accuracies in the vertical
channel have been improved in the absence of GPS because of the height measurement acquired every
10 Hz from a barometric altimeter with higher accuracy than GPS in the vertical channel while the
down velocity gathered on the basis of the fusion between altitude measurements from a barometric
altimeter and an available vertical acceleration from a vertical accelerometer measurements every
10 Hz, and consequently the results of the estimation error in height and down velocity for the case of
the multi- measurement mode-based LOAP and single mode EKF are almost the same with a slight
difference between both of them being almost within less than 0.8 m in height and 0.7 m/s in down
velocity as shown in Figure 16. These results clearly validate the advantages of the multi-measurement
mode-based LOAP approach over the single mode EKF, especially when the observations from the
GPS are not available during an interval of time. Consequently, the proposed technique guarantees the
availability of the measurement data from various sensors in the absence of the information from the
GPS receiver to keep describing the dynamics of the system.

Sensors 2017, 17, 887 15 of 18 

 

As a result, the superiority in the case of multi-measurement mode-based LOAP over the single 
mode EKF is obvious because when the GPS is not available at the instant of time which all the 
measurements should be available, the switching observer-based LOAP makes the right decision to 
switch to the second mode to guarantee the availability of the position and velocity measurements 
and then the stability of the estimation errors is obtained by solving the Lyapunov inequality-based 
stability by means of the LMI approach and this keeps the dynamic estimation error bounded by 
selecting the observer gain matrix ( ). However, as shown in Figure 15, the estimation accuracies in 
the vertical channel have been improved in the absence of GPS because of the height measurement 
acquired every 10 Hz from a barometric altimeter with higher accuracy than GPS in the vertical 
channel while the down velocity gathered on the basis of the fusion between altitude measurements 
from a barometric altimeter and an available vertical acceleration from a vertical accelerometer 
measurements every 10 Hz, and consequently the results of the estimation error in height and down 
velocity for the case of the multi- measurement mode-based LOAP and single mode EKF are almost 
the same with a slight difference between both of them being almost within less than 0.8 m in height 
and 0.7 m/s in down velocity as shown in Figure 16. These results clearly validate the advantages of 
the multi-measurement mode-based LOAP approach over the single mode EKF, especially when the 
observations from the GPS are not available during an interval of time. Consequently, the proposed 
technique guarantees the availability of the measurement data from various sensors in the absence 
of the information from the GPS receiver to keep describing the dynamics of the system. 

 
Figure 15. Error estimation of height. 

 
Figure 16. Error estimation of down velocity. 

0 10 20 30 40 50 60 70 80 90 100
-8

-6

-4

-2

-1

0

1

2

4

6

time (sec)

 E
rro

r i
n 

H
ei

gh
t  

(m
)

 

estimated error by LOAP
estimated error by  SEKF

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

time (sec)

 E
rro

r i
n 

D
ow

n 
V

el
oc

ity
  (

m
/s

ec
)

 

estimated error by LOAP
estimated error by  SEKF

Figure 15. Error estimation of height.

Sensors 2017, 17, 887 15 of 18 

 

As a result, the superiority in the case of multi-measurement mode-based LOAP over the single 
mode EKF is obvious because when the GPS is not available at the instant of time which all the 
measurements should be available, the switching observer-based LOAP makes the right decision to 
switch to the second mode to guarantee the availability of the position and velocity measurements 
and then the stability of the estimation errors is obtained by solving the Lyapunov inequality-based 
stability by means of the LMI approach and this keeps the dynamic estimation error bounded by 
selecting the observer gain matrix ( ). However, as shown in Figure 15, the estimation accuracies in 
the vertical channel have been improved in the absence of GPS because of the height measurement 
acquired every 10 Hz from a barometric altimeter with higher accuracy than GPS in the vertical 
channel while the down velocity gathered on the basis of the fusion between altitude measurements 
from a barometric altimeter and an available vertical acceleration from a vertical accelerometer 
measurements every 10 Hz, and consequently the results of the estimation error in height and down 
velocity for the case of the multi- measurement mode-based LOAP and single mode EKF are almost 
the same with a slight difference between both of them being almost within less than 0.8 m in height 
and 0.7 m/s in down velocity as shown in Figure 16. These results clearly validate the advantages of 
the multi-measurement mode-based LOAP approach over the single mode EKF, especially when the 
observations from the GPS are not available during an interval of time. Consequently, the proposed 
technique guarantees the availability of the measurement data from various sensors in the absence 
of the information from the GPS receiver to keep describing the dynamics of the system. 

 
Figure 15. Error estimation of height. 

 
Figure 16. Error estimation of down velocity. 

0 10 20 30 40 50 60 70 80 90 100
-8

-6

-4

-2

-1

0

1

2

4

6

time (sec)

 E
rro

r i
n 

H
ei

gh
t  

(m
)

 

estimated error by LOAP
estimated error by  SEKF

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

time (sec)

 E
rro

r i
n 

D
ow

n 
V

el
oc

ity
  (

m
/s

ec
)

 

estimated error by LOAP
estimated error by  SEKF

Figure 16. Error estimation of down velocity.



Sensors 2017, 17, 887 17 of 19

6. Conclusions

In this paper, a multi-mode estimation technique-based measurement method for the small fixed
wing UAV localization navigation problem is presented. The proposed approach depends on utilizing
a Luenberger observer-based projection method as a continuous observer to estimate the navigation state.
The projection consideration has been utilized to optimize the estimation performance. The simulation
results prove that the Luenberger observer after projection (LOAP) is well suited to deal with this class
of nonlinear systems. The positive symmetric definite matrix (P) and the observer gain matrix (L)
are chosen simultaneously by solving a Lyapunov equation by means of a linear matrix inequality
(LMI) algorithm. The positive symmetric definite matrix (P) is chosen as a solution of the Lyapunov
inequality by means of the LMI technique to find the observer gain matrix (L). Convergence is achieved
by utilizing LMI based on a Lyapunov stability inequality which keeps dynamic estimation error
bounded by selecting the observer gain matrix (L). The state estimation is performed in switching
environment between multiple active sensors to exploit the available information as much as possible
and guarantee the availability of the measurement data, especially in GPS-denied environments.
The proposed multi-measurement mode-based LOAP approach is implemented and compared with
a single mode Extended Kalman Filter (EKF). The simulation results are divided into two parts
based on the availability or not of the GPS signal. The results in the first part clearly show that the
multi-measurement mode-based LOAP performs slightly better than single mode EKF, but we can say
on the other hand that the EKF method gives better noise rejection for higher values of the measurement
noise covariance matrix (R) while the proposed LOAP is well suited in the ideal case when the system
not influenced by the noise. The results in the second simulation clearly show the superiority of the
proposed multi-measurement mode-based LOAP over the single mode EKF, especially in absence of
the GPS signal during an time interval because the proposed approach guarantees the availability of
the position and velocity measurements in the absence of GPS and also the solution of the Lyapunov
inequality-based stability to find the observer gain guarantees the stability of the dynamics estimation
errors and keeps them bounded within an acceptable range. The drawback of the proposed approach
is the high computation cost and need for high computational power-embedded systems, especially
when dealing with high order state systems and that is because of the use of the computationally
complex convex programming algorithm as a means to apply the LMI technique to solve the Lyapunov
inequality-based stability to find the observer matrix gain (L). Therefore in general, if computational
time requirements are not stringent and the number of states is less, then we can use the LOAP-based
Lyapunov inequality stability while for a greater number of states, the familiar nonlinear Kalman
filters perform quite well and faster.
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