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Abstract: WiFi fingerprinting-based indoor localization has been widely used due to its simplicity
and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that
the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi
fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental
changes and device diversity. RSS variance severely degrades the localization accuracy. In this
paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can
automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS
abstracts the indoor map as the semantics graph in which the edges are the possible user paths and
the vertexes are the location where users may take special activities. RCILS extracts the activity
sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based
on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio
map is constructed based on the localization results. For the RSS variance problem, RCILS uses the
trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS
sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate
RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and
robustness of RCILS.
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1. Introduction

Indoor localization has attracted much interest in recent years due to the diverse location-based
services (LBS) that require accurate positioning [1]. There are several technologies available to
provide indoor positioning solutions such as WiFi [2], radio-frequency identification (RFID) [3],
Bluetooth [4], Ultrawide Band (UWB) [5], inertial sensors-based localization [6,7], etc. In particular,
WiFi fingerprinting has been widely used due to its simplicity leveraging on the pre-existing WiFi
infrastructures. Moreover, this approach does not require any specialized hardware or additional
infrastructure support because most smartphones are WiFi-enabled.

A WiFi fingerprinting-based positioning system consists of two phases: offline training phases
and online positioning phases. In the training phase, a set of known locations are selected as the
reference points (RPs) and WiFi Received Signal Strengths (RSSs) from all detected access points
(APs) are collected at each RP. The RSSs collected at each RP are called fingerprints. To improve
the localization performance, this collection takes a few seconds in every point to collect a sufficient
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number of measurements in order to overcome the RSS variance problem. In some other cases, the
collection takes even more time when it is done in four different orientations to take into account the
effect of antenna patterns [2]. After the collection, the radio fingerprint of each location is defined by
averaging the RSS measurements or the statistics. The radio fingerprints of all the RPs constitute the
radio map. In the online phase, the real-time RSS samples received from the APs are compared against
the stored radio map to estimate the user’s location.

As can be easily inferred from the above description, building the radio map is a very
labor-intensive and time-consuming process, which is the major bottleneck of WiFi fingerprinting in
practical applications. To avoid a site survey, researchers have proposed many calibration-free indoor
positioning systems [8–14]. Another drawback of WiFi fingerprinting-based localization is the RSS
variance problem, which severely degrades the localization accuracy. An RSS variance problem means
that the RSS vectors observed in the localization phase are different from the ones collected during the
training phase. The RSS variance problem is caused by differences in device type and environmental
changes between the two phases.

Crowdsourcing is the most promising solution for solving the site survey problem. This is due
to the rise of the smartphone users and every smartphone user may become a potential contributor.
By the built-in sensors of the smartphone, the inertial data and WiFi RSS data can be collected. Inertial
data can be used to obtain relative trajectory of the user. Based on the relative trajectory, some methods
are used to infer the location of each step and label the RSS vectors with the location information.
Crowdsourcing is a low-cost and efficient way to extract useful information from data acquired by
crowd participants. The crowdsourcing method has been successfully applied to different indoor maps
and WiFi radio map construction systems [15,16]. For crowdsourcing-based radio map construction,
the RSS variance problem is especially serious. The participant’s smartphones are usually different;
additionally, the RSS vectors are collected at different times and in different environments.

In this paper, we propose the RCILS, a Robust Crowdsourcing-based Indoor Localization System.
RCILS can automatically construct a WiFi radio map using the crowdsourcing data collected by
the smartphones. Moreover, RCILS can reduce the influence of RSS variance problem by using a
sequence-base radio map. RCILS is based on two key observations. The first observation is that people’s
activities and trajectories in the indoor environment are restrained by the indoor map. By matching
the activities and trajectories to the map, we can get the coordinates of the trajectories and label the
RSS collected along the trajectories with location information. The second observation is that, during
the localization process, the user is walking and the collected RSS vectors are continuous. From our
preliminary experiments, we found that the changing trend of the same path at different times are
similar. That is to say, due to the environmental changes, the RSS values may be different at different
times, while the changing trend of the RSS during people walking along the same path changes little.
Moreover, the changing trends of the RSSs collected by different types of smartphones are also similar,
although the RSS values are different due to the device diversity.

The contributions of RCILS include: firstly, RCILS proposes a crowdsourcing-based WiFi
radio map construction method; secondly, RCILS propose trajectory fingerprint model for WiFi
fingerprint-based localization, which can reduce the RSS variance problem caused by environment
changes and device diversity.

In order to realize RCILS, we propose a sequence-based fingerprint model for WiFi fingerprinting
indoor localization. The sequence-based fingerprint model can overcome RSS variance problem caused
by environment changes and device diversity. We represent indoor map as a semantics graph and
model the radio map as the graph model. In the graph-based radio map, the edges represent the RSS
sequence on the paths, and the vertexes represent the connection point of the paths. To construct
the graph-based radio map, we use activity-based map matching approach to label the RSS collected
during the crowdsourcing trajectories. For online localization, RCILS obtains an RSS sequence during
the walking process and realizes localization by matching the RSS sequence with the radio map.
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The remainder of this paper is organized as follows. Section 2 reviews the related work about
crowdsourcing-based indoor localization. Section 3 introduces the methodology of the proposed
RCILS. Result and analysis are in Section 4. Section 5 concludes the paper.

2. Related Work

WiFi fingerprinting-based localization is first proposed in a RADAR system [2], which requires a
training phase and a localization phase. In the training phase, a radio map is constructed by collecting
RSSs from existing APs at all the reference points. In the localization phase, location is determined by
the k-nearest neighbor algorithm, which identifies the RSS vector that has the closet Euclidian distance
to the currently observed RSS vector. WiFi fingerprinting-based techniques have been widely studied
recently, and reviews are given in [17,18].

The major disadvantage of the RADAR system is that the radio map construction is very
labor-intensive and time-consuming. Recently, numerous work has been proposed to minimize
human effort in fingerprint training [8].

Radio map construction usually involves fingerprint collection and location labeling. For the
point model, the fingerprint is collected by point-by-point manual calibration. In the point-by-point
manual collection, the target area is partitioned into numerous grid cells, i.e., reference points, and
then surveyors collect fingerprint samples at the center of each grids. The coordinate is the location
labeling of the reference points. Typically, grids are sized between 2 m× 2 m to 5 m× 5 m, and dozens
of samples are collected at each reference points [19]. The point-by-point manual calibration requires
considerable time and effort. The walking survey was used instead to reduce the calibration effort
of the point-by-point manual collection [20]. In the walking survey, the survey paths are planned in
advance and the surveyors walk along the path to collect the fingerprints. The collection points do not
have to be specified, and only the specific points, such as the start, corners, and the end point of the
paths are marked by the surveyors. The location labeling is obtained by interpolation based on the
specific points. Although the walking survey can reduce the collection effort to some extent, it still
requires considerable time and effort [21]. Crowdsourcing approaches in which the fingerprint samples
are collected from numerous users have been proposed to reduce the cost of radio map construction [8].
The crowdsourced samples can be viewed as unlabeled data since the true locations at which the
samples haven been obtained are unknown.

Bolliger et al. proposed a crowdsourcing based radio map construction system named Redpin.
In Redpin, the WiFi fingerprints are collected by user uploading [22]. Based on Redpin, Ref. [23]
proposed an improved system to increase the number of available samples of the radio measurements
by using an accelerometer to detect whether a device is moving or stationary. Similarly, Ref. [24]
proposed an organic location system, which constructs radio map by user collaboration. In the
system, users manually input their locations. Manual collection limits the application of the
crowdsourcing based radio map construction system. Ref. [25] proposed a crowdsourcing based indoor
localization system without manual training. In the system, the location of each RSS measurement
by imposing constraints on the physics of wireless propagation model. However, it is different to
get the accuracy parameters of the wireless propagation model in the complex indoor environment.
Woodman and Harle [26] proposed a wearable inertial measurement unit-based WiFi fingerprints
automatic construction system. The proposed system realizes pedestrian localization by combining a
foot-mounted inertial unit, a detailed building model and a particle filter.

With the development of the smartphones, the built-in sensors can be used for indoor localization.
Kim et al. [12] proposed a smartphone-based autonomous war-walking radio map construction system
via crowdsourcing. The system used built-in accelerometer and digital compass of the smartphone
to realize pedestrian localization. However, the system has the limitation that the initial location and
direction need to be given. Zee [13] overcame this limitation by exploiting the constraint of the walls.
Zee combined the information extracted from an indoor map and particle filter to realize pedestrian
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localization. During the pedestrian localization, the RSS samples of all the locations are collected and
the radio map is constructed automatically.

These proposed crowdsourcing methods used a point model-based radio map, which easily
suffers from the RSS variance problem caused by environment changes and device diversity. In this
paper, RCILS utilizes a trajectory-based radio map model, which can improve the robustness of
crowdsourcing-based indoor localization system. WarpMap also used a trajectory-based radio map
model for indoor localization [27]. The difference between WarpMap and RCILS is that RCILS proposes
a crowdsourcing-based radio map construction system, which uses a trajectory-based model for the
data structure of radio map.

3. Methodology

3.1. Trajectory Fingerprint Model

During experiments, we found that the change of the WiFi RSS during a trajectory is smaller
than that of the fixed sampling point. We show in Figure 1 how the RSS from an Access Point (AP)
changes during the user walking. The RSSs are collected by two different smartphones carried with
the user. The user repeated the path four times. From Figure 1, we can see that the RSS values of
different smartphones are different. For the same smartphone, the RSS values of different paths are
also somewhat different. The RSS difference of two smartphones is caused by the diversity of the WiFi
chipsets and antenna. The difference between different paths of the same smartphone is caused by the
instability of WiFi strength. However, the changing trend of the RSSs are similar, which can be seen
from Figure 1.

Figure 1. The change of the RSS (Received Signal Strength) from an AP (Access Point) during the
user walking.

Based on this observation, RCILS uses a trajectory fingerprint model for indoor localization. In the
trajectory fingerprint model, the radio map is stored as a graph G = (V, E). Each node v ∈ V is a
position where a pedestrian would take special activities (special means the activities different from
walking straight on level ground, including turning, taking elevator, walking stairs, etc.), and each
edge e = (v1, v2) ∈ E corresponds to a trajectory between v1 and v2. Besides the trajectory, the edge
also includes the WiFi signatures collected when pedestrians walk along the trajectory.

RCILS includes two phases: radio map construction and trajectory fingerprint-based localization.
In the first phase, the radio map is constructed automatically based on crowdsourcing data. In the
second phase, RCILS realizes online localization by matching a collected RSS sequence with the
fingerprints in the radio map.
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3.2. Radio Map Construction

RCILS is a crowdsourcing-based indoor localization system, which utilizes built-in sensors of
a smartphone to collect motion data, WiFi fingerprints and air pressure. The motion data includes
acceleration, heading and angular velocity. The WiFi fingerprint includes the Medium Access Control
(MAC) of the AP and the corresponding Received Signal Strength (RSS) value. The system overview
of the proposed radio map construction method is shown in Figure 2.

Crowdsousrcing 

Users

PDR

Activity 

Detection

Activity Sequence-

based Map Matching

Indoor Map

Accelerometer

Gyroscope

Magnetometer

WiFi
Labeling WiFi 

Observations

Radio Map

Barometer

Figure 2. System overview of the proposed radio map construction method.

Based on the collected data, we use an activity detection algorithm to detect the activities and use
the pedestrian dead-reckoning (PDR) algorithm to estimate the distance between each two activities.
The detected activities and estimated distance between each two activities constitute the activity
sequence. In the proposed system, the indoor map is used as a known element. The indoor map
contains useful information for indoor localization. On the one hand, it imposes hard constraints on
where a pedestrian can walk. On the other hand, based on the user’s activities, the indoor map can
be used to infer the user’s location. For example, if a turn activity is detected, the user may be in a
corner. In this paper, the indoor map is used as a semantic graph, in which the edges are the possible
user paths and the vertexes are the location where the user may take special activities. Based on the
activity sequence and semantic graph of the indoor map, we use activity sequence-based matching
to match the trajectory to the indoor map and get the locations of the trajectory. Then, we can label
the WiFi observations based on the localization and use the labeled WiFi observations to generate the
radio map.

During the online localization phase, the RSS vectors collected during the walking process
constitute the RSS sequence. The length of the RSS sequence is determined by the PDR algorithm.
Based on the RSS sequence, RCILS realizes pedestrian localization by matching the sequence with the
sequence-based radio map.

3.2.1. Semantic Graph Generation

For activity sequence-based map matching, the indoor map should be converted to semantic
graph, in which pathways are the edges and the intersections of the pathways are the vertexes,
as shown in Figure 3. Based on the semantic graph, the location of the vertexes and displacement
between each vertexes can be estimated. Moreover, the vertex also contains semantic information,
which is used to match activities to the map. Figure 3 is an example of a semantic graph of the indoor
map. The semantic information of the vertexes includes labelling as corner, elevator and stair.

3.2.2. Trajectory Preprocessing

The trajectory of the people in the indoor map has map-related information. On the one hand,
the trajectory is restrained by the topology of the map. One the other hand, based on the activity
detected during the trajectory, the people’s location can be estimated. That is to say, people’s location
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can be estimated by matching activities to the vertexes of the graph. In order to match the trajectory
to the indoor map, we should first detect the activities and estimate the displacement between each
two activities.

Corner Elevator Stair

Figure 3. An example of semantic graph of the indoor map.

(1) Activity detection

In an indoor environment, there are usually three types of activities: turning, taking the elevator,
and walking stairs. Turning is the most common activity during the walking process. When a
pedestrian turns, the angular velocity would generate a peak waveform, as shown in Figure 4 [16].
A turn is detected using the peak detection algorithm, which is used to find the local maximum or
minimum during a period of time [28]. To eliminate the influence of the noise, a Butterworth filter of
order 4 is used, with a cutoff frequency of 10 Hz.
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Figure 4. Turn detection by peak detection algorithm.

Generally, when the elevator rises, there will be an overweight state and a subsequent weightless
state. On the contrary, when the elevator descends, there will be a weightless state and a subsequent
overweight state. Moreover, the air pressure detected by the barometer can also be used for elevator
detection, since the air pressure changes with the change of the altitude. The acceleration and pressure
of the elevator activity are shown in Figure 5. Another activity with pressure change is walking stairs.
Differently from using an elevator, during walking stairs, there is neither an overweight state nor a
weightless state. The acceleration and pressure of the walking stairs are shown in Figure 6.

(2) Displacement estimation

The second step of trajectory pre-processing is to estimate the relative displacement between each
activity. The distance estimation is implemented by PDR. PDR is a pedestrian localization scheme
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that estimates the relative displacement by step detection and heading estimation. Step detection is
realized by the peak detection algorithm, as shown in Figure 7. When a step is detected, the location is
updated by the following equation: {

xt = xt−1 + l · cos(θ),

yt = yt−1 + l · sin(θ).
(1)

In Equation (1), (xt, yt) is the location at time t. l is the step length, calculated using the
frequency-based model [29]: l = a · f + b, where f is the step frequency, and (a, b) are parameters that
can be trained adaptively based on the matching result obtained based on activity sequence-based
map matching, which is introduced in the next subsection.
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Figure 5. Taking the elevator. (a) up, (b) down.
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Figure 6. Walking up/down the stairs. (a) up, (b) down.

The step length parameters is trained adaptively based on the matched trajectories. We use
Figure 8 as an example to explain the parameters training algorithm. There is a trajectory which
has been matched to the indoor map. Based on the known indoor map information, we can get
the length of segments AB, BC, CD, DE and EF. Meanwhile, the step numbers that users walked
passing these segments can be detected by the step detection algorithms. We assumed that the step
length during the same segment is equal. In consequence, the step length for each segment can be
calculated. The step frequency is determined based on the step detection result. The step length and
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step frequency for these five segments are indicated as: < L, F > ={(l1, f1), (l2, f2), (l3, f3), (l4, f4),
(l5, f5)}. The parameters (a, b) are trained based on vector < L, F > using the least squares method.
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Figure 7. Step detection result.
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Figure 8. Step length parameters training.

3.2.3. Activity Sequence-Based Map Matching

We use Hidden Markov Model (HMM) to match the activity sequence to the semantic graph of
the indoor map. The activity sequence-based map matching method is shown in Figure 9. S0, S1, ..., Sk
are the hidden state, namely the nodes of the semantic graph. P(Sk|Sk−1) is the transition probability
from state Sk−1 to Sk. The transition is assumed to be uniform over all neighbors of a given
node. The observations of the HMM are activity detection results and displacement inferred by
PDR, represented by Zact

k and ZPDR
k . The subscript k means the observations are obtained at state

Sk. P(Zact
k |Sk) and P(ZPDR

k |Sk) are, respectively, the observation probabilities of Zact
k and ZPDR

k .
P(Zact

k |Sk) describes the probability of correct activity detection for a given hidden state, namely the
confusion matrix. According to the principle of PDR, P(ZPDR

k |Sk) is made up two parts: distance
observation probability distribution and heading observation probability distribution. Here, these two
probability distributions are assumed to be Gaussian distributions [6,13]. Since distance and heading
are independent, the observation probability distributions is defined as

P(ZPDR
k |Sk) =

1√
2πσd

e
− 1

2σ2
d
(dPDR−dSk ,Sk−1

)2

· 1√
2πσφ

e
− 1

2σ2
φ
(φPDR−φSk ,Sk−1

)2

. (2)

σd and σφ are, respectively, the standard deviation of the distance and heading. dPDR is the
distance calculated by PDR, and dSk ,Sk−1 is the distance between Sk and Sk−1. φPDR is the heading
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estimated by PDR, and φSk ,Sk−1 is the angle between vector
#            »

Sk−1Sk and north direction. dt is the
distance between zt and the last matched state (indicated by ri−1), di is the distance between ri and
ri−1, φt is the angle between vector ri−1zt and north direction, and φi is the angle between vector ri−1ri
and north direction.

Given the detected activity sequence, activity sequence-based map matching aims to find all
nodes where the user completes the activities in the activity sequence. The nodes constitute the
trajectory. For an activity sequence, there may be many trajectory candidates in the map. We find the
best-matching one by the following equation:

P (Sk) = P (Sk−1) · P(Sk|Sk−1) · P(ZPDR
k |Sk) · P(Zact

k |Sk), 1 ≤ t ≤ T (3)
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Figure 9. Activity sequence-based map matching method.

By activity sequence-based map matching, we get the tracking results of the crowdsourcing
trajectories, namely the locations where the WiFi RSS vectors are collected. Then, we can use these
trajectories and RSS vectors to construct the radio map of the indoor environment.

3.2.4. Radio Map Construction

The radio map is stored by the graph structure, G = (V, E, F), where V represents the vertexes,
E represents the edges, and F represents the RSS vectors on the edges. By activity sequence-based
map matching, the trajectories collected by crowdsourcing can be matched to the semantic graph.
The activities contained in the trajectories are matched to the vertexes V of the radio map graph, and
the RSS vectors collected on the edges E constitute the RSS vectors F.

3.3. Trajectory Fingerprint-Based Localization

In the online localization phase, the target smartphone collects RSS vectors from the surrounding
APs. Moreover, by the inertial sensors of the smartphone, the moving distance can be estimated by
PDR. Based on the moving distance, we generate a RSS sequence and realize localization by matching
the RSS sequence with the radio map graph.

3.3.1. RSS Sequence Generation

During the moving process, we get an RSS sequence with the length of the moving
distance. We use St = (Ft − w + 1, Ft − w + 2, ..., Ft) to denote the RSS sequence collected
during the moving distance, where w is the window size and Ft is the latest collected RSS
sample. Fi = {(mac1, rss(1, i)), ..., (macj, rss(j, i)), ..., (macm, rss(m, i))}, macj and rss(j, i) are, respectively,
the MAC address and RSS value of the jth WiFi AP. The RSS sequence can be represented by a m× w
matrix, where m is the number of the APs and w is the length of the moving window. The MAC list is
(mac1, mac2, ..., macm):
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St =


rss(1, 1) rss(1, 2) ... rss(1, w)

rss(2, 1) rss(2, 2) ... rss(2, w)

... ... ... ...
rss(m, 1) rss(m, 2) ... rss(m, w)

 . (4)

3.3.2. Graph-Based Trajectory Search

Based on the RSS sequence generation during the moving window, trajectory fingerprint-based
localization is to search the best-match sequence from the radio map graph and determine the location
of the best-match sequence as the target’s location.

We use Breadth-First-Search to search the best-match sequence in the graph. Searching in the
whole graph needs a large computational amount. In this paper, we determine the start vertex based on
the similarity between the AP list of St and that of the vertex. We use the Jaccard similarity coefficient
as the similarity parameter. The Jaccard coefficient is a statistic used for comparing the similarity and
diversity of sample sets, which has been used for WiFi-based clustering in [16]. The Jaccard similarity
coefficient is calculated using the following equation:

J(MACt, MACi) =
MACt ∩MACi
MACt ∪MACi

, (5)

where MACt is the MAC of the AP list of St, and MACi is the MAC of the AP list of vertex i. After
determining the first vertex, we conduct Breadth-First-Search c steps to find the best-match sequence,
where c is the constant, set to 3 herein.

3.3.3. Localization

Trajectory Fingerprint-based localization is to find the best-match sequence based on the collected
RSS sequence. During the graph-based trajectory searching, we calculated the similarity metric between
RSS sequence and RSS in the radio map graph (called candidate RSS sequence). From Figure 1, we can
see that the RSS values of different paths are different, even for the same smartphone. Therefore, using
the RSS value as the similarity metric may cause localization error. In this paper, we use the correlation
coefficient as the similarity metric. As before, we use St to denote the RSS sequence collected during
the moving distance, as shown in Equation 4. There are m APs in St, for each AP, we calculate the
similarity metric, and use the sum of these metrics as the similarity between St and the candidate
RSS sequence:

P =
m

∑
i=1

cov(RSi, RCi)

σRSi · σRCi

, (6)

where RSi is the RSS set in the collected RSS sequence of the ith AP, and RCi is the RSS set in the
candidate RSS sequence of the ith AP:

RSi = {rsss(i, 1), rsss(i, 2), ..., rsss(i, w)},
RCi = {rssc(i, 1), rssc(i, 2), ..., rssc(i, w)}.

For the locations with null reading from the AP, −100 dB was used as the RSS value.
For each candidate RSS sequence, we get a similarity coefficient by Equation (6). We use the

k-nearest neighbour (knn) algorithm to determine the best-match sequence and use the location of the
terminal as the localization result. In our experiments, we set the k equal to 1 in the knn algorithm.
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4. Evaluation

4.1. Experiment Setup

To evaluate RCILS, we performed experiments in an office building, with a 52.5 m× 52.5 m floor
plan, as shown in Figure 10. We used two different types of Android smartphones, namely Nexus S
and Nexus 5, to collect the trajectory data. During the experiment, participants held two smartphones
on their two hands in front of themselves and walked normally in the accessible areas of the building.
Holding the two smartphones on their two hands causes the WiFi RSSs to be received at the same
time. To simulate the crowdsourcing users, participants started at different positions. To evaluate the
performance with incremental data, each trace is repeated ten times. In total, 200 user trajectories were
collected by three participants using two types of smartphones. In terms of time, these trajectories
correspond to 220 min of data collection. The collected data includes acceleration data, compass data,
gyroscope data, barometer data, and WiFi.

Figure 10. Experimental environment.

4.2. Performance with Incremental Data

The Cumulative Distribution Function (CDF) of localization error with incremental crowdsourced
data is shown in Figure 11. We set different lengths for sliding windows, namely 20 samples, 50 samples,
100 samples, 150 samples, 200 samples, and 250 samples. We can see that, as the crowdsourcing data
amount increases, the localization error decreases. When the length of the sliding window is 50 samples,
for 15 min data, the 80 percentile of localization error is about 21 m, and when the data amount increases
to 45 min, the 80 percentile of localization error decreases to about 15 m. The localization error decreases
sharply when the data amount increases from 15 min to 45 min. However, when the data amount is
more than 45 min, the decline of the localization error becomes smaller as the data amount increases.
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Figure 11. Localization error with incremental data.

4.3. Performance with Length of Sliding Window

Given the fixed data amount (data amount is set to 45 min), Figure 12 shows the CDF of localization
error in different lengths of sliding windows. It can be seen that, with the increase of the length of
the sliding window, the localization error decreases. When the length increases from 20 to 250,
the 80 percentile of localization error decreases from 23 m to 1.3 m.
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Figure 12. The CDF of localization error with different lengths of sliding windows (the data amount is
45 min).

The mean localization error and time delay with different lengths of sliding windows is shown
in Figure 13. From Figure 13, we can see that with the increase of lengths of sliding windows, the
localization error decreases. However, the long length of sliding window means a long time delay of
the localization system. As it can be seen from Figure 13, when the length is 20 samples, the time delay
is 1.9 s, and when the length increases to 250 samples, the time delay is 25 s.

Figure 13 shows the tradeoff between localization error and time delay with the increasing of
length of sliding window. From Figure 13, we can see that the time delay increases in linear proportion
to the length of sliding window. However, the downtrend of the localization error becomes smaller
and smaller as the length of sliding window increases. For an online localization system, we must get
a good tradeoff between localization error and time delay. For example, we can set the length to 100,
and the time delay at the beginning of the system startup is 9.9 s, and the localization error is 1.6 m.
Certainly, after the first localization process (i.e., the first 100 samples), the localization system does not
need a startup process, and it can use the scanned samples for localization. That is to say, the proposed
system just needs one time delay process at the first startup. For the offline tracking system, the time
delay can be ignored, and we can use the longest length of the sliding window.
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Figure 13. Localization error and time delay with different lengths of sliding windows (the data
amount is 45 min).

4.4. Performance of Different Fingerprint Models

We compared the proposed method with the point fingerprint model. In the point model, the
radio map consists of fingerprints at each reference point. The localization error of different fingerprint
models is shown in Figure 14. We evaluate radio map construction method from the following two
aspects: crowdsourcing data amount and device diversity.
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Figure 14. Localization error of different methods.

From Figure 14, we can see that with the increasing of the data size, the localization error of the
two methods decreases. However, the data amount needed for the proposed method is much more
than that of the traditional method.

For the same device, if the window length is set to 150, in order to achieve 2 m localization
error, the data amount needed for RCILS is 15 min, while that for the traditional method is 150 min.
RCILS needs smaller amounts of data for crowdsourcing-based localization. This demonstrates that
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RCILS is more applicable than the traditional crowdosurcing-based system using a point-based radio
map model.

Moreover, we evaluate the impact of device diversity to RCILS. In the evaluation, the data used
for radio map construction and that used for online localization are different. This is common in the
crowdsourcing systems since the smartphones used by the crowdsourced participants are usually
different. From Figure 14, we can see that the localization error of the proposed method is much smaller
than that of the traditional point-based radio map. The result demonstrates that the proposed RCILS
can reduce the device diversity problem for the crowdsourcing-based indoor localization system.

4.5. Comparison with State-of-the-Art WiFi-Based Indoor Localization Systems

The localization performance of RCILS is compared with that of EZ [25], WiGEM [30], WILL [14],
UnLoc [31], Zee [13] and LiFS [10], as shown in Table 1. We compare the localization methods in
terms of accuracy, map requirements, anchor point, and device heterogeneity. We can see from the
Table 1 that the median error of RCILS is 1.6 m (when the sliding window is set to 100), which is
less than that of the other methods. The median error of UnLoc is 1.69 m, which is close to RCILS.
However, UnLoc needs sufficient numbers of anchor points (e.g., occasional GPS location), which is not
satisfied in many indoor environments. For device heterogeneity problem, EZ [25] and WiGEM [30]
used a learning-based approach to train the model parameters, while RCILS used the trajectory-based
fingerprint model to reduce the influence caused by the device heterogeneity. The localization error of
RCILS is smaller than that of EZ and WiGEM. WILL [14] and LiFS [10] are two room-level localization
systems, which is different from RCILS. Zee [13] is a map-assisted localization approach which
leverages the topology of the map to restrict pedestrian’s trajectory based on a particle filter. However,
particle filter is time-consuming and may be not suitable for online localization based on a smartphone.

Table 1. Comparison with state-of-the-art WiFi-based indoor localization systems.

Method Reported Accuracy Map
requirement

Anchor
point

Device
heterogeneity

EZ [25]
Median error ∼2 m inside small building

(486 m2) and 7 m inside big building (12,600 m2)
No Yes Yes

WiGEM [30]
Median error ∼4 m inside small building

(600 m2) and 6 m inside bug building (3250 m2)
Yes No Yes

WILL [14]
86% room level accuracy inside medium

sized academic building (1600 m2)
Yes No No

UnLoc [31]
Median error ∼1.69 m across three

different indoor scenes (largest begin 4000 m2)
No Yes No

Zee [13]
Median error ∼3 m inside medium

sized building (2275 m2)
Yes No No

LiFS [10]
89% room level accuracy inside

medium sized academic building (1600 m2)
Yes No No

RCILS
Median error ∼1.6 m inside medium

sized academic building (2750 m2)
Yes No Yes

5. Conclusions

In this paper, we propose a robust crowdsourcing-based indoor localization system. RCILS can
automatically construct a WiFi radio map based on the crowdsourcing data. In RCILS, an indoor
map is first converted to a semantic graph. The trajectory is preprocessed by activity detection and
pedestrian dead-reckoning. By trajectory preprocessing, we get the activity sequence contained in
the trajectory. Based on the semantic graph and activity sequence, we match the trajectory to the
indoor map to get the location of the trajectory. That is to say, the location where the WiFi RSS is
collected is determined by the trajectory matching. Then, the radio map is constructed based on the
crowdsourcing trajectories. To overcome the RSS variance problem, we use a trajectory fingerprint
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model. The experiment results in an office building demonstrate that the proposed RCILS can reduce
the variance problem caused by device diversity and environment changes.

In future work, we will include more activities in RCILS, such as opening the door, sitting in the
office, and so on. RCILS is an offline system at the moment. We intend to develop an online RCILS
system, in which the crowdsourcing data uploading and localization can be realized in real time.
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