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Abstract: Communication media have become the primary way of interaction thanks to the
discovery and innovation of many new technologies. One of the most widely used communication
systems today is video streaming, which is constantly evolving. Such communications are a good
alternative to face-to-face meetings, and are therefore very useful for coping with many problems
caused by distance. However, they suffer from different issues such as bandwidth limitation,
network congestion, energy efficiency, cost, reliability and connectivity. Hence, the quality of
service and the quality of experience are considered the two most important issues for this type of
communication. This work presents a complete comparative study of two of the most used protocols
of video streaming, Real Time Streaming Protocol (RTSP) and the Web Real-Time Communication
(WebRTC). In addition, this paper proposes two new mobile applications that implement those
protocols in Android whose objective is to know how they are influenced by the aspects that most
affect the streaming quality of service, which are the connection establishment time and the stream
reception time. The new video streaming applications are also compared with the most popular
video streaming applications for Android, and the experimental results of the analysis show that the
developed WebRTC implementation improves the performance of the most popular video streaming
applications with respect to the stream packet delay.
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1. Introduction

In recent years, the use of video content on the Internet has increased to 60% of all global traffic.
Different studies, such as [1], predict that the Internet video traffic will account for 80 percent of all
Internet consumer traffic in 2019. This rapid increase is partly due to the huge growth in the sales of
smartphones over the last few years, as smartphones have become the major video content creators.
For this reason, some of the most important multimedia content companies have tried to develop new
strategies to improve the Quality of Experience (QoE) and the Quality of Service (QoS) of their systems.
The rapid evolution of technology and the low cost of mobile devices make them excellent candidates
for offering new streaming functionalities with different purposes. The life of people can change with
simple streaming applications as some of the uses of this technology can turn people into potential
journalists who use their smartphones to broadcast videos over the Internet, do telemedicine [2,3] and
operate or assist somebody with the remote assistance of a specialist doctor, broadcast sports in real
time or use this technology in e-learning [4].

In this work, the most used video streaming protocols and applications are studied. In particular,
two video streaming platforms have been developed that implement different video streaming
protocols in order to compare both protocols and conclude which of them offers the best results in the
scope of Android and web real-time video streaming applications. The analysis of the implemented
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systems includes different parameters related to the QoS and QoE, namely the connection establishment
time and the stream reception time. Although the QoE depends on the users in a subjective way,
it depends directly on the QoS because a good QoS helps to obtain a better QoE by part of the user.
For this reason, the parameters analysed in this work measure the QoS in a direct way, but indirectly
influence the QoE. In addition, these two implementations were compared with the most widely
used Android and web video streaming applications, which implement those and other protocols.
In order to carry out such a comparison, a metric based on the stream delay time was used to know
the efficiency of the implemented systems in relation to the most used systems today.

The present work is structured as follows. Section 2 describes a brief state-of-the-art. Section 3
introduces two of the most commonly used video streaming protocols, RTSP and WebRTC.
The developed implementations are defined in Section 4. Section 5 presents the comparative studies
between the implemented systems and the most used web and Android applications. Finally, some
conclusions and open issues close the work in Section 6.

2. Related Work

In recent years, different proposals have been developed to measure and improve the QoS and
QoE of video streaming systems.

One of the first works related to the topic is [5], which compares HyperText Transfer Protocol
(HTTP), Real Time Streaming Protocol (RTSP) and InterMedia Streaming (IMS), and describes several
approaches that promise the synthesis of networks based on those protocols. The main advantage
of this proposal is the research of a future possible expansion of IMS to harmonize Session Initiation
Protocol (SIP), HTTP, and RTSP service delivery, a fact that is related to the video streaming quality.
However, that work studies only the cases of HTTP, RTSP and IMS, forgetting other promising
protocols like WebRTC.

The subsequent work [6] also contains a study of HTTP, RTSP and Dynamic Adaptive Streaming
over HTTP (DASH) [7] applied over smartphones. The method to analyse these protocols consists of
the calculation of the switch delay or the time between the moments when a user sends a command
and when the client screen undergoes these changes. The main contribution of that work is the use of
metrics to compare the different video streaming protocols in the fields of bandwidth consumption
and QoS. Its disadvantages compared with the present work are that, despite the relative youth of
the proposal, the WebRTC protocol is not included, and the delays in the video streaming connection
establishments are not compared.

A video streaming framework for QoE management of Scalable Video Coding (SVC) based on the
H.264/SVC codec is presented in [8], together with a measurement study to quantify the influence of
different parameters such as video resolution, scaling method, network conditions and video content
type on the QoE of streaming. The main difference between that study and the one presented in this
paper is that they considered that the most important measurements are those related to the video
itself, while this work focuses on the protocols that send the video to other users.

In [9], the authors integrate the SVC extensions of the Advanced Video Coding (AVC)
standard into the recently ratified MPEG-DASH standard to improve its performance. Moreover,
they present a comprehensive study that evaluates the presented solution applying restricted
conditions, and compare it with another version of MPEG-DASH implementation using AVC, which is
the typical case in commercial applications. The main contribution of that work is that it presents
a comparative study of the most used MPEG-DASH implementations using AVC. However, that work
is focused only on one side of video streaming applications, which is the codec used in the video
codification, while, in this paper, the main purpose is the study and comparison of the other side of
video streaming applications, the communication protocol.

Subsequently, the work [10] describes different measurements collected from DASH and Web
Real-Time Communication (WebRTC) implementations while moving at walking speeds through
an 802.16e WiMAX network. The collected data come from an application, the network and the
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physical layers under different wireless environments. In addition, the work also identifies the features
that directly affect the quality of the video service in the mobile data network, in order to conclude that
in order to adapt the channel conditions, these services do not achieve acceptable quality of service for
mobile users under different network conditions.

On the subject of the use of dynamic adaptive streaming over HTTP, which is a widespread topic in
the field of video streaming systems, the work [11] presents a range of issues related to the performance
of DASH, studying the most important parameters that affect this type of video streaming systems.
The main contribution of this work is concretely the study of the DASH techniques and the parameters
that affect the streaming QoE to understand in a better way how the DASH streaming techniques
works. Despite the fact that that work only deals with DASH streaming techniques, the knowledge
obtained from it will be important to compare the protocols used in different commercial applications
and to extend the present paper to DASH streaming applications in the future.

In the recent proposal [12], a QoE instrumentation for video streaming on smartphones,
called VLQoE, is presented. The authors use a VLC media player to record a set of metrics from
the user interface, application-level, network-level and available sensors of the device, and present two
state models based on the time of HTTP and RTSP protocols streaming via 3.5 G. The main contribution
of that proposal is the creation of some objective metrics to measure the QoE independently of the user
and its subjectivity in smartphones using both RTSP and HTTP streaming protocols through the use of
the VLQoE tool-kit, which seems to be the first objective tool to measure the QoE. These metrics are
a good starting point to understand better how important the QoE is for the final user.

Finally, a recent study on the QoE of three of the most common video streaming protocols is
presented in [13]. The main purpose of that work is to measure the QoE of MPEG-DASH, Real Time
Messaging Protocol (RTMP) and RTSP protocols by applying some non-intrusive methods to monitor
video streaming under different network conditions. In practice, the RTMP and RTSP protocols are
very similar, so the obtained results are also very similar. In addition, the MPEG-DASH protocol in the
scope of media streaming, like could be the Video-on-demand (VoD) [14], is widely used. However,
in the scope of video streaming communications, real-time communications over video are not used as
much. As expected, RTSP offers slightly worse results compared to RTMP, but this is normal because
the protocols are very similar and the RTSP protocol implements some mechanisms that make it a bit
less efficient than the RTMP protocol. The main difference between that work and the one presented
here is that such a work focuses on the QoE in VoD protocols, whereas, in the present work, the main
purpose is the study of real-time streaming protocols.

3. Preliminaries

Choosing a streaming protocol is a difficult task that depends on the type of information to be
shared. Communication must be made using a protocol formed by a group of rules defining how data
are transmitted over the network and divided into different parts, such as headers, data, authentication
and error handling. Thus, a streaming protocol may be viewed as a communication protocol where
the transmitted data are media data.

In this study, the main objective is to share audio and video media. For this reason, the most
important point is the guarantee of a low latency and efficient transmissions with occasional packet
losses. A media streaming protocol is defined, taking into account the structure of the packets and
the algorithms used to send real-time media on a network. Different media streaming protocols are
available today, which differ in a few implementation details.

This section is focused on the study of two of the most used streaming protocols: RTSP and
WebRTC, which are used as base of the platforms developed in this work. Traditionally,
these communication categories have been divided into push-based and pull-based protocols [15].

Push-based protocols consist of established communication between the client and the server,
where the client is responsible for establishing the connection, and the server sends a packet stream
until the client stops or interrupts the communication. In this type of protocol, the server, in addition
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to sending media packets, maintains a session to listen for commands from the client. These protocols
usually work over the User Datagram Protocol (UDP) [16], but could work over the Transmission
Control Protocol (TCP) [17] if necessary. They normally use the Real-time Transport Protocol (RTP),
specified in RFC 3550 [18].

Pull-based protocols are based on the HTTP protocol and consist of a communication between
client and server where the client is responsible for sending a request to the server, and the server starts
a communication where the client downloads the video streaming. In these protocols, the streaming
speed depends on the bandwidth of the client network. The most commonly used pull-based protocol
is a progressive download, in which a client sends a request to the server and starts pulling the media
content from it as quickly as possible.

Table 1 shows some examples of streaming protocols and their features. This information is based
on [19], where there is an analysis of the transmission protocols for the H.265 encoder.

Table 1. Comparison between push-based and pull-based streaming protocols.

Feature Push-Based Pull-Based

Source
Broadcasters and servers like Windows Web servers such as LAMP,
media, QuickTime, RealNetworks Helix RealNetworks Helix, Microsoft BS,
Cisco CDS/DCM Cisco CDS

Protocols RTSP, RTP, UDP
HTTP (HLS, MPEG-DASH, Adobe
HTTP Dynamic Streaming, Microsoft
Smooth Streaming)

Bandwidth usage Likely more efficient Likely less efficient

Video monitoring RTP Control Protocol (RTCP) Currently proprietary

Multicast support Yes No

The two most used real-time streaming protocols are explained in the following subsections.

3.1. RTSP

The RTSP [20] is a non-connection-oriented application layer protocol that uses a session
associated with an identifier. RTSP typically applies the UDP protocol to share video and audio
data, and TCP for control, if necessary. The syntax of the RTSP protocol is similar to that of the HTTP
protocol and supports the following operations:

• Retrieval of media from media server: The client can request a presentation description via HTTP
or some other method. If the presentation is multicast, the presentation description contains the
multicast addresses and ports that will be used for the continuous media. If the presentation is to
be sent only to the client via unicast, the client provides the destination for security reasons.

• Invitation of a media server to a conference: A media server can be “invited” to join an existing
conference, either to play back media in the presentation or to record all or a subset of the media
in a presentation. This mode is useful for distributing teaching applications. Several participants
in the conference may take turns “pushing the remote control buttons”.

• Addition of media to an existing presentation: Particularly for live presentations, it is useful for
the server to be able to inform the client about the availability of additional media.

The structure of a URL for RTSP is very similar to the URL in HTTP, with the only difference in
the used scheme rtsp:// in RTSP instead of http:// in the HTTP protocol, and the addition of new request
methods such as DESCRIBE, SETUP, PLAY, PAUSE and TEARDOWN. The DESCRIBE method is used
to obtain a description of the presentation or object appointed by the URL RTSP in conjunction with
the use of the Session Description Protocol. The server responds to this request with a description
of the requested resource. This answer corresponds to the initialization phase of RTSP and contains
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the list of required multimedia streams. On the other hand, the SETUP method is used to establish
how the stream is transported, the request contains the URL of the multimedia stream and a transport
specification that usually includes the port to receive RTP video and audio data and another for the
RTCP [21] meta-data. The server responds by confirming the selected parameters and fills the other
parts, as they are the ports selected by the server. Every stream has to be configured before sending
a PLAY request.

The PLAY request is used to start the data stream shipment by the server using the ports configured
with the SETUP request method. Moreover, the PAUSE method temporarily pauses one or all streams
to resume later with a PLAY request. Finally, the use of the TEARDOWN request method stops the
shipment of data, releasing all resources. Note that, first of all, a TCP connection is established between
the client and the server, started by the client and typically over a well-known TCP port (554).

The operation and request order of the RSTP protocol are shown in Figure 1.

Figure 1. Real Time Streaming Protocol (RTSP) request order.

3.2. WebRTC

WebRTC [22] is an Application Programming Interface (API) created by the World Wide Web
Consortium (W3C) that allows browser applications to make calls and video chats and to use P2P files
without any plugin. The first implementation of WebRTC was created by Google and released as Open
Source. Different bodies such as the Internet Engineering Task Force, created to standardize the used
protocols, and the W3C, with the browser APIs, have been working on this implementation.

The main components of WebRTC are the following:

• getUserMedia: It allows obtaining video or audio streams from the microphone or camera
hardware. This API can be used to get a screenshot or to share our screen with other users too.

• RTCPeerConnection: It allows setting up the audio/video stream. It consists of a lot of different
tasks such as signal processing, codec execution, bandwidth administration, security of the
streaming, etc. This API call can be used to implement these different tasks without the
intervention of the programmer.
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• RTCDataChannel: It allows sharing video or audio data between connected users.
RTCDataChannel uses a two-way communication between peers, and can be used to
exchange any data type. To do this, RTCDataChannel uses Websockets, which allows
bidirectional communication between the client and the server, using either a slower and reliable
communication over TCP, or a faster and non-reliable communication over UDP.

• geoStats: API call that allows getting different statistics about a WebRTC session.

Figure 2 shows the operation of the WebRTC protocol used to make a call with the aforementioned
API, which is composed of the next four steps:

• The application receives a streaming offer from the RemotePeer.
• The next step is the instantiation of the PeerConnection by from the application.
• Once the PeerConnection is created, the application generates the media stream and the audio

and video tracks through the PeerConnectionFactory and adds the created stream to the
PeerConnection.

• Finally, the application responds to the RemotePeer and starts the media communication.

Figure 2. Web Real-Time Communication (WebRTC) request order.

The security of the WebRTC protocol is based on two parts. On the one hand, it uses the Datagram
Transport Layer Security (DTLS) protocol [23], which is based on the TLS protocol and involves a similar
security level, in the previous communications, where the parameters of the media communications
are established. On the other hand, the Secure Real-time Transport Protocol (SRTP) [24] uses the
AES-256 algorithm [25] to encrypt all media communications.
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4. Implemented Systems

In this work, two systems have been developed. The first one is called RTSP streaming platform
because it implements the RTSP protocol. The second one is called Direct WebRTC streaming platform
because it implements the WebRTC protocol. Both systems are implemented through Android
applications in which the application logic and the web server application that supports the system
perform different tasks. The general architecture of the two systems has been created with the same
principles, changing only the protocols and the parts necessary to interact with them. The main
difference between these two protocols is that while in many to many communications, when the RTSP
is used, the video is only sent to the server, which resends it to the other users, in the WebRTC protocol,
every user has to send the video to all other users. This happens because the WebRTC protocol is
designed for peer-to-peer communications which are the scope of this work. The developed Android
applications are based on the Google developer and Google design principles and using the Java
language through the Android Software Development Kit (SDK), and the Native Development Kit if
necessary. In conclusion, two new streaming platforms through two new Android applications have
been implemented. Figure 3 shows the global architecture of the system. The systems that implement
the two studied protocols have the peculiarity of using two servers each. Although these are two
independent servers that interact with each other, they could be hosted on the same physical server,
but for the resilience of the system, they are physically separated. These servers are the MEAN and
the KURENTO or Live555 servers. The MEAN server acts as information point server that stores
who is online and who is not in every moment. It also stores information about the URLs, public IPs,
and other personal data about the users of the system. On the other hand, the KURENTO and Live555
servers are media servers that act as a bridge in the streaming, if necessary.

Figure 3. System global view.

4.1. RTSP Streaming Platform

The architecture of the RTSP streaming platform consists of the use of P2P communications
through the RTSP protocol in places where the two users are in the same network, and in the use of
a Live555 media server in cases in which there are no dedicated network and Internet connection.
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Live555 media server is a complete open source RTSP server that supports the most common types
of media files. Moreover, this server can stream multiple streams from the same or different files
concurrently, using by default the UDP protocol to transmit the streams, but it is also possible to
transmit over the TCP protocol if necessary.

The developed Android application acts as server and/or client depending on the application
scenario. This application allows connecting with multiple users and sending their real-time stream.
In the implementation of this system, it was decided to use the latest available version of Android,
Android 6.0, which corresponds to the API 23 of the Android SDK. Neither this version of Android
nor, consequently, in any previous, the RTSP protocol is implemented, so we had to use the third party
libraries that implement this protocol. At this point, we decided to use the Libstreaming open source
library that implements the RTSP protocol on both the server side and the client side. This library
allows streaming the camera and/or the microphone of an Android device. It supports all devices with
version equal or higher than Android 4.0, and supports H.264, H.263, Advanced Audio Coding (AAC)
and Adaptive Multi-Rate (AMR) media codecs. The choice of this library is due, first of all, to the fact
that this library makes a faithful implementation of the RTSP protocol. Second, this library is one of
the most used libraries in the applications that implement the RTSP protocol, and, last, but not least,
this library is an open source library, so that everybody can inspect it and solve any bug that may find.

Moreover, for the application to be compatible with a greater number of devices, we decided
to capture the video using the MediaRecorder API that is available in the Android 4.0 version.
The MediaRecorder API is not thought to be used for streaming purposes, but it can be used to
get data from the peripherals of the phone. To use this method and get more potential users, we had to
use a ParcelFileDescriptor to record the captured stream instead of using a file to do so. Apart from this
method for recording, we could apply the MediaCodec API to record the stream using a buffer-to-buffer
method or a surface-to-buffer method. To do this, it would be necessary to use the Android 4.1 or
Android 4.3 versions, respectively, with the consequent loss of potential users.

The general flow of this version of the system is now described. Firstly, when a user decides
to broadcast a streaming, a request is sent to the web server starting that it will start broadcasting.
The server then responds with an “OK” and the smartphone starts sending the video stream to
the media server. When a user wants to see a streaming and opens the application, a request is
automatically sent to the server to find out what the online streaming and its URLs are. Finally,
when a user selects a streaming from the list of online streamings, the application connects to the media
server, and downloads and reproduces the streaming. The first part of Figure 4 shows the general flow
of the RTSP streaming platform.

Figure 4. General flow of streaming platforms.
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4.2. Direct WebRTC Streaming Platform

The architecture of the Direct WebRTC platform consists of the use of P2P communications
through the WebRTC protocol in places where the two users are in the same network, whereas in the
cases in which the users do not have a dedicated network, the Internet connection is used.

The developed application acts as client and/or server depending on the application scenario.
It allows connecting with one or multiple users and sending their real-time stream. It was decided
to use the latest available version of Android, Android 6.0, which corresponds to the API 23 of the
Android SDK. Neither this version of Android nor consequently in any previous, the WebRTC protocol
is implemented in the core of Android, so we had to use to third party libraries that implement
this protocol. At this point, it was decided to use the Libjingle library, which is an open source
library written in C++ by Google to allow the establishment of P2P connections and development
of P2P applications. To use this library in Android, it was necessary to compile the source code
to generate the JNI API so that the Java implementation can reuse the C++ implementation of
the same API. This library allows streaming the camera and/or microphone of an Android device.
This library supports all devices with a version equal to or higher than Android 4.1 and supports the
H.264, H.265, VP8 and VP9 media codecs. Moreover, the use of Socket.io library was also decided.
This library allows us to establish communications through the Websocket protocol, so it is used in
initial communications between the Android application and the Session Initiation Protocol server. The
use of these libraries is because the fact that these two libraries are widely used and tested on a large
number of applications and systems, both are open source libraries with a huge community supporting
and testing it, and everybody can inspect and use the code and finally, the WebRTC library implements
WebRTC faithfully, keeping the proposed standard. Furthermore, it was decided to use a STUN server,
which is responsible for obtaining the public IP and the port used to send the video streaming.

The general flow of this version of the system is described now. First, when a user decides to
broadcast, a request is sent to the server with data about the public IP and the port that this device will
use to broadcast the streaming. This public IP and port are obtained through the Google STUN server.
The server then answers with an “OK” response and the smartphone starts sending the video streaming
to the web server. When we open the client application, a request to the server is automatically sent
to find out what the online streamings and its public IP and port are. Finally, when a user selects
a streaming from the list of online streaming, he/she connects to the transmitter and the streaming
starts. The second part of Figure 4 shows the general flow of the Direct WebRTC streaming platform.

5. Comparative Study

In this section, different results obtained from the two implemented platforms are reported
and used to compare their performance, both with each other, and with the most commonly used
streaming applications.

In the experiments, a Lenovo G510 laptop (manufactured by Lenovo PC HK Limited, Hong Kong,
China) was used as a server of the two implemented systems. This laptop has an Intel i7-4702MQ
processor (manufactured by Intel Corporation, Santa Clara, CA, USA), 8 GB of RAM memory, 1 TB of
storage and uses the Windows 10 × 64 operating system.

The network used to perform all the tests is made up of a TP-LINK TL-WR841N Wi-Fi router
(Manufactured by TP-LINK Technologies Co., Limited, Shenzhen, China) that theoretically offers
maximum transfer rate of 300 Mbps and an Internet connection of 100 Mbps, but after testing the
maximum transfer rate on smartphones, the obtained maximum rate was 74.26 Mbps while the average
after 10 measurements was 53.835 Mbps.

5.1. Comparative Analysis between the Two Implemented Systems

This subsection shows the analysis of the different measures taken on the connection establishment
time and stream reception time obtained from the implementations of the two streaming protocols.
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The measurements were made using the system time that is implemented in Java programming
language, and, therefore, in the Android platform, in the System class with the currentTimeMillis()
function. This function returns the current time in milliseconds. In order to get the connection
establishment time, we took the time at the moment when user A launched the streaming, and then the
time again when the connection was fully established. Subtraction was then performed between them
to obtain the connection establishment time. On the other hand, the stream reception time is the time
between the correct communication establishment and the time when the first video packet is received.

The different measures were made using the same smartphone, an LG L9 with 1 GB of RAM
memory (Manufactured by LG Electronics Inc., Yeouido-dong, Seoul, Korea), CPU 1 GHz Dual
Core and 4 GB of storage memory and the 4.4.4 Android version. To perform these measurements,
we implemented a series of tests using Espresso [26] tests that simulate the exact behaviour of the
application. In order to obtain a significant number of measurements, the same test was performed
in 100 iterations for each measurement. Figure 5 shows the comparative analysis between the two
systems: RTSP and WebRTC. We can see how the system that uses the RTSP protocol is slower than
the WebRTC protocol, with an average connection establishment time of 2.304 s in the case of the RTSP
protocol and an average of 1.835 s in the case of the WebRTC protocol. The difference between the
two implemented protocols in the average connection establishment time is 0.469. In spite of having
some outliers in the plots of the two systems, WebRTC protocol is more efficient in the connection
establishment time than the RTSP protocol.

Figure 5. Connection establishment time.

The comparison between both stream reception times can be seen in Figure 6, where a similar
behaviour to the case of the connection establishment time is observed, with an average of 2.161 s for
RTSP and an average of 1.709 for WebRTC. Adding the two differences, the total difference between
the two protocols is almost one second to the WebRTC protocol. Moreover, we assume that the delay
in the stream reception time could be repeated in other moments of the streaming, increasing the delay
of the system.

The difference between the two protocol times can be seen in Figure 7. A confidence interval
of 95% has been used in all box plots. On the one hand, the first box plot in the figure shows
the difference between the two protocols in the stream reception time. In this figure, a median of
2166 milliseconds, five outlier points and lower and upper limits of 1922 and 2445 milliseconds,
respectively, for the RTSP streaming platform can be observed. On the other hand, the results for the
Direct WebRTC streaming platform are a median of 1699 milliseconds, six outlier points and lower and
upper limits of 1660 and 2026 milliseconds, respectively. The second box plot in the figure shows the
difference between the two studied protocols in the communication establishment time. This figure
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shows a median of 2333 milliseconds, five outlier points and lower and upper limits of 2200 and
2498 milliseconds, respectively, for the RTSP streaming platform. In the other part of the plot, a median
of 1822 milliseconds, three outlier points and lower and upper limits of 1380 and 2279 milliseconds,
respectively, can be observed for the Direct WebRTC streaming platform. The use of these statistical
values shows how the obtained measurements are grouped, which directly influences the QoS because
if the measurement is not fairly grouped, the video streaming QoS could decrease, and indirectly
influence the QoE in such a way that it could decrease too.

Figure 6. Stream reception time.

Figure 7. Comparison between the times of RTSP and WebRTC.

5.2. Comparative Analysis of Smartphone to Web Streaming Applications

On the Internet, there are many options that allow people to make video calls. In this subsection,
some of the most used are analysed, and specifically the Hangouts and Facebook video streaming
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platforms. In order to make it possible, different measurements have been taken on the stream
packet delay for Hangouts and Facebook video streaming platforms and for the two implemented
systems, RTSP and Direct WebRTC streaming platforms. We used the Wireshark packet analyser in its
2.0.5 version because these applications are proprietary platforms, which means that their source code
is not available and there is no protocol specification available.

To evaluate these systems, packet traces of the runs of the systems were collected and analysed.
First, the control packets were separated from the data packets that interest us. Moreover, using the
control data, a small overview of how these systems work can be seen. In these experiments, an amount
of 10,000 data packets to be analysed were collected in order to obtain significant results. The same
laptop mentioned in the previous section was used to act as server and to access the web application and
the Wi-Fi network. As client, a Samsung Galaxy S6 with Exynos 7420 octa core processor (4 × 2.1 GHz
Cortex-A57 & 4 × 1.5 GHz Cortex-A53) (manufactured by Samsung Electronics, Yeongtong, Suwon,
Korea), 3 GB of RAM memory, 32 GB of storage memory and the 6.0 Android version was used.

The experiment consisted in making a video call between the smartphone and the web application.
During this video call, communication packets were captured to be analysed using the Wireshark
analyser to estimate the stream packet delay, obtained using Equation (1), where ti is the time when the
packet i is received and ti − 1 is the time when the packet i − 1 is received. The use of this measurement
could be influenced by the codec used by the different protocols in spite of it being known that some
applications use the same codecs as that the presented implementations. Moreover, the bitrate of
the studied applications is not known because they are private applications, but in future works,
an approximation of this aspect can be evaluated using the Wireshark packet analyser. Although these
parameters can influence the measurements, the stream packet delay is a good starting point to know
these applications and the possible protocols behind them because it provides an approximation to
learn how the packet delay affects the different streaming platforms:

δti = ti − ti−1. (1)

Next, the stream packet delay of the two implemented platforms, RTSP and WebRTC,
were estimated. The results show how the Direct WebRTC streaming platform has a much lower
delay than the RTSP streaming platform. Specifically, the average delay time after 10,000 received
packet is 37,807 milliseconds for the RTSP streaming platform and 8072 milliseconds for the Direct
WebRTC streaming platform. These measures confirm the previous conclusion that the WebRTC
implementation offers better results than the RTSP implementation.

The same analysis was performed for the Google Hangouts application. Using the captured
control packets, some appointments seem pretty clear about the protocol used by this application.
In the captured packets, the use of the STUN protocol can be seen, which could mean that the video
streaming goes directly between the clients, without going through a media server. The use of the
STUN, RTP, RTCP and SRTP protocols in this application is known because it requires having these
ports open to work well. Therefore, it is likely that the video streaming protocol used in Google
Hangouts is the WebRTC protocol, but we cannot be sure.

Using the data packets, the stream delay time was calculated and the obtained results are very
near to those obtained by the Direct WebRTC streaming platform, which intensifies the conjecture that
the WebRTC protocol is used in Google Hangout. The average measurement obtained in the stream
delay time was 8.832 milliseconds.

Another analysed application was the Facebook video application. The video call feature in the
Android application is out of the official Facebook application and can be found in the messenger
extension application, which is the messaging application of Facebook. In the web application,
the video call system can be used through the main application. In this case, like in the previous one,
the use of the STUN protocol could mean that the video streaming goes directly between the clients,
without going through a media server. The use of the WebRTC protocol in this application also seems
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clear. The obtained measurements on the media packets obtained for this application shows an average
stream delay time of 11.093 milliseconds.

The comparison among the average stream delays time of the four systems is shown in Figure 8,
where an important improvement of the systems that implement WebRTC can be seen. In particular,
the Google Hangouts and the Direct WebRTC streaming platforms have better performance than
Facebook. This may be due to the use of some Google platforms as support in both systems, such as
the Google STUN server.

Figure 8. Average stream delay time.

5.3. Comparative Analysis of Smartphone to Smartphone Streaming Applications

The world of smartphone applications is constantly changing, and every day new applications
emerge. In the case of streaming applications, it is not different. In this section, a selection of the
most used and known video call applications is studied. Some applications studied in the previous
section are analysed, but, in this case, the analysed communication is between two smartphones.
To make this possible, different measures on the stream packet delay have been taken for Google
Hangouts, Facebook, Skype and Google Duo Android applications and for the Direct WebRTC video
streaming platform, the one that implements the WebRTC protocol. The Wireshark packet analyser is
used because these applications are proprietary platforms, which means that their source code is not
available and no specifications of the protocols are available.

In the evaluation of these systems, packet traces of the run of the systems were collected and
analysed, like in the previous subsection. First, the control packets are separated from the data packets
that interest us. Moreover, using the control data, a small overview on how these systems work
can be seen. In these experiments, an amount of 10,000 data packets were collected and analysed
to obtain significant results. The same Wi-Fi network commented in the previous section is used.
As a client, a Samsung Galaxy S6 with Exynos 7420 octa core processor (manufactured by Samsung
Electronics, Yeongtong, Suwon, Korea) (4 × 2.1 GHz Cortex-A57 & 4 × 1.5 GHz Cortex-A53), 3 GB of
RAM memory, 32 GB of storage memory and the 6.0 Android version was used.
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In the experiment, a video call was made between two smartphones using the different Android
applications, collecting packets about this communication and analysing them to know the stream
packet delay, which is obtained using Equation (1) of the previous subsection.

Then, the stream packet delay of the Direct WebRTC streaming platform was measured to find that
it has a lower delay in the smartphone to smartphone test than in the smartphone to web application
test. In particular, the average delay in this platform is 5.112 milliseconds.

For the Google Hangouts Android application, the same analysis was performed.
As aforementioned, in the analysis of the captured control packets, this application seems to use
the WebRTC protocol. In the captured packets, the use of the STUN protocol can be seen, and some
answers of this protocol points to Google server, which could act as intermediary media server.
We know that Hangouts uses the STUN, RTP, RTCP and SRTP protocols because it requires having
these ports open, and if we decode the data packets, RTP data are obtained. Thus, it is probable that
the used video streaming protocol is the WebRTC protocol, but we can not be sure of it.

Then, the stream delay time was calculated using the data packets. The obtained results are close
to those obtained by the Direct WebRTC streaming platform, which again intensifies the conjecture
that Google Hangouts use the WebRTC protocol. The obtained average stream delay time was
6.87 milliseconds.

The analysis made for the Facebook Messenger application shows that this application works in
a mode similar to the previous one. After analysing all control traffic and decoding the UDP traffic as
RTP, the possibility of use of the WebRTC protocol seems feasible. The data packet analysis shows
a stream delay average of 16.324 milliseconds.

Another analysed application was the Skype Android application. In this case, analysing all
control and data traffic, the protocol used by this application to perform the video streaming is not
clear. The data communications work over the UDP protocol, but it was not possible to decode it.
Thus, it is possible that Skype uses a proprietary protocol that works over UDP. The analysis of the
data packets shows an average stream delay of 11.646 milliseconds.

Finally, another analysed Android application was the Google Duo video call application.
In this case, the use of the WebRTC protocol is also clear. The decoding of the UDP packets as
RTP packets showed different information on them, such as the sequence number, the protocol
version, etc. Moreover, the use of the STUN server and the fact that the streaming video goes directly
between the two smartphones, without passing through any web server, confirms the idea. In general,
this implementation seems to work in a similar way to the Direct WebRTC platform. The stream delay
of Duo Android application shows an average of 5.424 milliseconds.

The average comparison among the five applications can be seen in Figure 9, where the Direct
WebRTC streaming platform and the Google Duo applications show similar results due to their
apparently similar implementations. They are followed closely by another Google application,
the Hangouts application. Finally, Skype and Facebook applications have slower results.

5.4. Experiments Results Summary

The results of the experiments discussed above suggest that the use of the WebRTC protocol offers
a better performance than the others, as can be seen in Table 2. In this table, we can see the average
time in milliseconds of all the experiments with the different protocols and applications studied in this
work. Some applications have not been used in some experiments because it is not possible to apply
them using these applications, which is the reason why, in these cases, no average of them appear.
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Figure 9. Average smartphone to smartphone stream delay time.

Table 2. Results of video streaming protocols and applications experiments.

Establishment Time Reception Time Smartphone to Smartphone Smartphone to Web

RTSP 2304 ms 2161 ms 37.807 ms –
Direct WebRTC 1835 ms 1709 ms 8.072 ms 5.112 ms

Facebook – – 11.093 ms 16.324 ms
Hangout – – 8.832 ms 6.87 ms

Skype – – – 11.646 ms
Duo ms – – – 5.424 ms

The performance improvement of the WebRTC implementation with respect to the RTSP
implementation could be related to the use of UDP in all communications by the WebRTC protocol,
whereas, in the RTSP protocol, TCP is used for the control. On the other hand, RTSP does not
drop video packets, while the WebRTC protocol can do it if necessary. Finally, for peer-to-peer
communications, WebRTC sends the video directly to the other peer, while, in the case of RTSP, the
video is sent to the server and the server sends it to the other peer. Moreover, the results obtained in
this study, on the improvement that the WebRTC implementation shows over RTSP in peer-to-peer
communications, could be generalized because the implemented systems have faithfully implemented
the standards, and use widely, tested open source libraries. Moreover, the WebRTC streaming platform
shows better results than the analysed streaming applications in the stream reception time and in the
stream establishment time in all cases, which means that, taking these measurements into account,
the implemented streaming platform offers a better QoS than the studied applications.

6. Conclusions

This work includes a complete analysis of the most used video streaming protocols, paying special
attention to RTSP and WebRTC protocols. Moreover, two new streaming platforms have been
developed to compare both protocols and optimize their operation. These implementations have
been built taking into account the most common schemes and conditions of use of Android
applications. The analysis of the QoE and the QoS of both platforms was performed using two
metrics: the establishment connection time and the stream reception time. From the experiments,
it is concluded that significant improvements have been obtained in WebRTC over RTSP for both
communication establishment time and package sending time. Moreover, the implemented systems
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have been compared with the most common commercial applications through two experiments. On the
one hand, the new implemented platforms have been compared with the most common smartphone to
web video call applications, using external software because the code of such proprietary applications
is not accessible. In this experiment, both the new Direct WebRTC platform and the Hangouts
application showed similar and better behaviour than the other compared systems. On the other
hand, the implemented Direct WebRTC platform was compared to the most common smartphone to
smartphone Android video call applications, using the aforementioned external software because the
code of these proprietary applications is not accessible either. In that experiment, the implemented
Direct WebRTC system again showed a good response, and together with the Google Duo application,
showed the best results of the comparison. Therefore, at this point, it is possible to confirm that the use
of the WebRTC protocol provides better QoE and QoS than other protocols, and that the implemented
Direct WebRTC system offers good results, according to the performed experiments. This work may
lead in the future to new works where the knowledge obtained in the study and implementation of
the two protocols discussed here would help to study and implement adaptive streaming protocols
to further improve the proposed video streaming platforms. Moreover, the study of new metrics to
compare the presented streaming platforms with the commercial ones would make that the presented
study could cover other aspects. Finally, a study on how video resolution and quality affect bitrate,
QoE and QoS of the video streaming applications could be added when the adaptive video streaming
platforms are developed.
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