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Abstract: For a sensor fault diagnostic system of aircraft engines, the health performance degradation
is an inevitable interference that cannot be neglected. To address this issue, this paper investigates an
integrated on-line sensor fault diagnostic scheme for a commercial aircraft engine based on a sliding
mode observer (SMO). In this approach, one sliding mode observer is designed for engine health
performance tracking, and another for sensor fault reconstruction. Both observers are employed
in in-flight applications. The results of the former SMO are analyzed for post-flight updating the
baseline model of the latter. This idea is practical and feasible since the updating process does not
require the algorithm to be regulated or redesigned, so that ground-based intervention is avoided,
and the update process is implemented in an economical and efficient way. With this setup, the
robustness of the proposed scheme to the health degradation is much enhanced and the latter SMO
is able to fulfill sensor fault reconstruction over the course of the engine life. The proposed sensor
fault diagnostic system is applied to a nonlinear simulation of a commercial aircraft engine, and its
effectiveness is evaluated in several fault scenarios.

Keywords: commercial aircraft engine; health degradation; sensor fault diagnostics; sliding
mode observer

1. Introduction

Sensors in commercial aircraft engines operate in severe hostile conditions, thus they are prone to
faults and failures. Any undetected sensor faults may cause disastrous consequences to engine control
loops, and even threaten flight safety. Therefore, the design of the on-board sensor fault detection
and isolation (FDI) system is critical to enhance the engine’s reliability, efficiency, and safety during
flight. With the increasing complexity and intelligence of engine control logics, sensor fault diagnostics
tend to take on more tasks. Apart from the fault detection and isolation, the “fault reconstruction” is a
more advanced technique in which faults are identified with exact shape and magnitude, such that
more precise maintenance work can be done or active fault-tolerant control schemes can be applied.
Another challenging issue for establishing an in-flight sensor FDI system is the robustness against
engine performance degradation. As parts wear from regular use, aircraft engines will exhibit gradual
degradation in rotating components over their operating life. The degradation will cause sensed
measurements to deviate from the nominal value, which may eventually lead to misdiagnosis in sensor
FDI. Therefore, a reliable sensor fault diagnostic scheme is expected to accurately detect and identify
the fault, while to be robust enough to engine degradations.

In general, most FDI-related methods can be split into data-based and model-based methods. The
latter one, utilizing all model information available, tends to be more accurate in diagnosis without a
priori knowledge of faults. A well-known model-based method for the in-flight sensor FDI of aircraft
engines is initially investigated by Merrill et al. [1], who utilized a bank of Kalman filters (KF) to detect

Sensors 2017, 17, 835; doi:10.3390/s17040835 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 835 2 of 15

and isolate sensor faults. Then the work was extended by Kobayashi et al. [2] to augment the FDI
system with detecting actuator and component faults by applying more Kalman filters. The main
concept of their work is that each Kalman filter is designed to be related to one specific fault, and
then residuals from each Kalman filter will be compared to a set threshold to determine whether
there is a fault in the corresponding channel. However, this method is hard to handle concurrent
faults. To address the degradation problem, Simon [3] and Armstrong et al. [4] described the enhanced
sensor FDI scheme by updating the health baseline model used for sensor diagnosis periodically. The
architecture contains real-time adaptive performance model (RTAPM) to estimate health condition,
and the performance baseline model (PBM) updated by health estimation results off-board to detect
faults. The shortcoming is that the Kalman filters need to be redesigned once the PBM is updated.
Thus, the updating period is decided by weighting the pros and cons of the diagnostic accuracy and the
operating costs. To address this problem, Kobayashi et al. [5] improved the on-line sensor diagnostics
by using Hybrid Kalman Filter (HKF), which lends itself to the health baseline update.

Sliding mode observer techniques have gained much attention in fault diagnosis recently, due
to their remarkable capabilities of fault reconstruction. The nonlinear discontinuous term can be
designed to maintain a sliding motion, while faults can be reconstructed by analyzing the so-called
“equivalent output estimation error injection” term, instead of being just isolated by analyzing residuals
in KF-bank-based methods. In the work of Tan et al. [6] and Alwi et al. [7], the robust sliding mode
observers were applied to reconstruct sensor faults for an aero-engine with uncertainties involved.
Rahme et al. [8] investigated a SMO-based sensor fault diagnosis scheme for a gas turbine under
degraded component scenarios. In [8], the observer was proved to maintain stability with degradation
injection, but the reconstruction of sensor faults was polluted. So far, uses of SMO in fault detection
have mainly been in handling actuator/sensor fault cases. In our previous research [9], the feasibility
and potential of sliding mode observer to be applied to an aircraft engine health monitoring system
was investigated.

In this paper, an integrated sensor fault diagnostic scheme is proposed based on sliding mode
observers. Two SMOs are employed in this architecture: one is for degraded performance tracking,
and another for sensor fault reconstruction. Compared to KF-bank-based methods, the proposed
scheme is structurally simplified, and faults can be not only located, but a direct estimate of the size of
the fault is also obtained. In addition, concurrent sensor faults can be reconstructed by the described
method as well. Similar to the basic architecture in [3,4], the current health condition after each flight is
estimated by degraded performance tracking, which is used to update the baseline model for on-board
sensor fault diagnosis in the next flight cycle. However in our scheme, the update operations and the
whole diagnostic algorithms can be executed in on-board computers, with no ground-based effort
required, thus the difficulties associated with off-board to on-board data transmission are avoided.
With such an advantage, the degradation update process can be executed after each flight, which is of
great importance to increasing diagnosis accuracy.

In the following sections of this paper, a brief description of the considered aircraft engine is
firstly given. Next, a second-order sliding mode observer (SOSMO) designed to reconstruct in-flight
sensor faults is described, followed by the same algorithm applied to build another SOSMO to fulfill
on-board health performance tracking, and the overall architecture of the integrated sensor fault
diagnostic system is depicted. Then, the performance of the proposed scheme is evaluated in a
nonlinear simulation environment. Finally, conclusions are presented.

2. Aircraft Engine Description

A two-spool turbofan engine is considered in this paper, of which the schematic model is shown
in Figure 1. The airflow is supplied by a single inlet. Airflow passes through the fan and separates
into two streams: one passes through engine core path, and the other passes through the bypass duct.
Fuel is injected in the combustor and burned to produce the hot gas to drive the turbines. The fan and
low pressure compressor (LPC) are driven by a low pressure turbine (LPT), while the high pressure
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compressor (HPC) is driven by a high pressure turbine (HPT). The airflow leaves through the nozzle.
The notations used in this paper and their descriptions are shown in Table 1.
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Table 1. The notations and their descriptions.

Notation Description

H Height
Ma Mach number
NL Low pressure rotor speed
NH High pressure rotor speed

h Health parameter vector
h1 LPC efficiency
h2 HPC efficiency
h3 HPT efficiency
h4 LPT efficiency
h5 LPC flow capacity
h6 HPC flow capacity
h7 HPT flow capacity
h8 LPT flow capacity
Wf Fuel flow rate
P25 HPC inlet pressure
T25 HPC inlet temperature
P3 Combustor inlet pressure
T3 Combustor inlet temperature

T495 Exhaust gas temperature

As engine parts wear from regular operation, the lifespan of components will be reduced. The
aging of components is reflected in slow-evolving changes in internal flow capacities and component
efficiencies, thus these capacities and efficiencies of components are chosen as “health parameters” to
reflect component health conditions. The degradations of health parameters are described as

∆hi = hi/hi,r − 1, i = 1, .., 8 (1)

where hi is the health parameter and hi,r denotes the nominal value of hi. A normalized health parameter
varies between 0 and 1, with 1 representing a healthy component and 0 a “fully deteriorated” one.
The maximum level of deterioration indicates an engine overhaul is necessary.

Mechanical system dynamics due to rotating inertias constitute the most important contribution to
engine transient behavior. Thus, rotating dynamics are the most important dynamics to be considered.
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In view of this, the state vector x is chosen as [NL, NH]
T. Newton’s law for rotating masses is applied

to each shaft as .
NL = f1(NL, NH , u, h, v)
.

NH = f2(NL, NH , u, h, v),
(2)

where f 1 and f 2 are the net torques delivered by LPT and HPT. u is the control input Wf, h is the health
parameter vector and v denotes the external parameters (flight condition). The available measurements
are defined by the standard suite of sensors found in the tactical turbofan engine control system. Then
the output vector y is chosen as [NL, NH, T25, P25, T3, P3, T495]

T.
For developing a sensor fault diagnostic algorithm of aircraft engine, one challenge in achieving

reliable results is the effect of degradation. Fault diagnostic algorithms are generally designed under a
nominal healthy condition, which constitutes a reference baseline for diagnostics. However, the fact
that both sensor faults and degradations cause measurement deviations may result in misdiagnosis
in degrading engines. The idea here is to develop a health monitoring system to update the baseline
model off-line, and then to maintain the effectiveness of sensor fault diagnostic system over the course
of the engine life.

Given the available sensor suite constraints, observability studies indicate seven health
parameters could be discerned properly. The statistical data analyses from the described engine
indicate that h8 deteriorates much less in the degrading process compared to other health
parameters [9], thus by ignoring h8, the health parameter vector to be monitored is chosen as
[∆h1, ∆h2, ∆h3, ∆h4, ∆h5, ∆h6, ∆h7]

T.

3. Sensor Fault Diagnostic

In this paper, the proposed sensor fault diagnostic system is constructed based on sliding mode
observers. Two SMOs are involved in the scheme: one is for health degradation tracking and another for
sensor fault diagnostic. This section describes the design of the observer for sensor fault reconstruction.
Since most FDI-related work of commercial aircraft engines is concerned with the cruise state, a state
variable model (SVM) representing the engine dynamic in a small range around a steady-state operating
point is appropriate and convenient for the observer design. Considering h as artificial inputs, the
SVM of the cruise operating point can be obtained

.
x(t) = Ax(t) + Bu(t) + Lh(t)

y(t) = Cx(t) + Du(t) + Mh(t) + f(t),
(3)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, L ∈ Rn×q, and M ∈ Rp×q are constant coefficient
matrices. f(t) ∈ Rp denotes the sensor fault signal. Here, n = 2, m = 1, p = 7, q = 7. Assume f(t),
h(t), and their first-time derivatives are unknown but bounded

‖f(t)‖ < α1, ‖
.
f(t)‖ < α2, ‖h(t)‖ < β1, ‖

.
h(t)‖ < β2, (4)

where α1, α2, β1, and β2 are known real scalars. The notation ‖·‖ represents the Euclidean norm for
vectors and the induced spectral norm for matrices.

A new state z(t) ∈ Rp, which is a filtered version of y(t), is introduced

.
z(t) = −A f z(t) + A f y(t), (5)

where −A f ∈ Rp×p is a stable filter matrix. Typically A f is in the form of a diagonal matrix with
positive entries where the diagonal elements represent inverse time constants. Substituting z(t) for y(t)
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in Equation (3), and combining x(t) and z(t) to create an augmented state xa(t) ∈ Rn+p, the following
representation can be obtained[ .

x(t)
.
z(t)

]
=

[
A 0

A f C −A f

]
︸ ︷︷ ︸

Aa

[
x(t)
z(t)

]
︸ ︷︷ ︸

xa(t)

+

[
B

A f D

]
︸ ︷︷ ︸

Ba

u(t) +

[
L

A f M

]
︸ ︷︷ ︸

Ha

h(t) +

[
0

A f

]
︸ ︷︷ ︸

Fa

f(t)

z(t) =
[

0 Ip

]
︸ ︷︷ ︸

Ca

[
x(t)
z(t)

]
,

(6)

where Aa ∈ R(n+p)×(n+p), Ba ∈ R(n+p)×m, Ha ∈ R(n+p)×q, Ca ∈ Rp×(n+p), Fa ∈ R(n+p)×p, and
Ip ∈ Rp×p denotes identity matrix.

For the system described in Equation (6), the aim is to design a second-order sliding mode
observer to identify sensor faults via “fault reconstruction” technique. As argued in [10], the
necessary and sufficient conditions for the existence of a stable sliding motion and feasibility of
fault reconstruction are:

1. The first Markov parameter (the product of Ca and Fa) must have full column rank;
2. Any invariant zeroes (if there exists) of (Aa, Fa, Ca) are Hurwitz.

It is easy to verify rank(CaFa) = rank
(

A f

)
= p, then by constructing the Rosenbrock matrix for

(Aa, Fa, Ca), the invariant zeros of (Aa, Fa, Ca) are given by the values of s for which

Ra(s) =

 sIn −A 0 0
−A f C sIp + A f A f

0 Ip 0

 < n + 2p. (7)

It is clear that

rank(Ra(s)) = rank(sIn −A) + rank

([
Ip 0

sIp + A f A f

])
. (8)

If s is not an eigenvalue of A, then det(sIn −A) 6= 0, and Rank(Ra(s)) = n + 2p. Hence, the
invariant zeros of (Aa, Fa, Ca) ∈ λ(A). Therefore, to ensure the invariant zeros of (Aa, Fa, Ca) are
Hurwitz, the open-loop system matrix A in Equation (3) is required to be stable, and this condition is
inherently satisfied by engine natures.

Next, a two-order sliding mode observer is designed based on Equation (6). Define
ez(t) = ẑ(t)− z(t) as output estimation error, where ẑ(t) is the estimate value of z(t). The proposed
SMO has the following structure

.
x̂a(t) = Aax̂a(t) + Bau(t)−Glez(t) + Gnν(t)

ẑ(t) = Cax̂a(t),
(9)

where x̂a(t) is the estimate value of xa(t). Gl ∈ R(n+p)×p, Gn ∈ R(n+p)×p are linear gain
matrix and nonlinear gain matrix, respectively. Define ez(t) =

[
ez,1(t), ez,2(t), .., ez,p(t)

]T, then

ν(t) =
[
ν1(t), ν2(t), .., νp(t)

]T is defined component-wise as

νi(t) = −ψsign(ez,i(t))|ez,i(t)|1/2 + di(t)
.
di(t) = −ςsign(ez,i(t))− ϕez,i(t) i = 1, 2, .., p,

(10)
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where ψ, ς, and ϕ are design scalars to be chosen. Define e(t) = x̂a(t)− xa(t) as state estimation error.
The following error system is obtained from Equations (6) and (9)

.
e(t) = Aae(t)−Glez(t) + Gnν(t)−Hah(t)− Faf(t). (11)

According to the form of Ca, e(t) can be partition as
[
eT

1 (t), eT
z (t)

]T where e1(t) ∈ Rn. Let

Gn =

[
0
Ip

]
and Gl =

[
0

−A f + χIp

]
where χ is a real scalar to be chosen, then the error system can

be written as[ .
e1(t)
.
ez(t)

]
=

[
A 0

A f C −χIp̃

][
e1(t)
ez(t)

]
+

[
0
Ip

]
ν(t)−

[
L

A f M

]
h(t)−

[
0

A f

]
f(t). (12)

The objective is to force the output error ez(t) to zero in finite time and induce a sliding mode on
the sliding manifold

S = {[ eT
1 (t) eT

z (t) ]
T|ez(t) = 0}. (13)

Considering the structure of ν(t) in Equation (10) and substituting Equation (10) into Equation (12),
the equation related to ez(t) in Equation (12) can be written component-wise as

.
ez,i(t) = −ψsign(ez,i(t))|ez,i(t)|1/2 − χez,i(t) +

(
A f C

)
i
e1(t)−

(
A f M

)
i
h(t)−A f ,if(t) + di(t)

.
di(t) = −ςsign(ez,i(t))− ϕez,i(t) i = 1, 2, .., p,

(14)

where
(

A f C
)

i
, A f ,i, and

(
A f M

)
i

are the ith row of A f C, A f , and A f M, respectively. By defining a
new variable

d0,i(t) =
(

A f C
)

i
e1(t)−

(
A f M

)
i
h(t)−Af,i f (t) + di(t) i = 1, 2, .., p, (15)

the Equation (14) can be rewritten as

.
ez,i(t) = −ψsign(ez,i(t))|ez,i(t)|1/2 − χez,i(t) + d0,i(t)

.
d0,i(t) = −ςsign(ez,i(t))− ϕez,i(t) + φi(t) i = 1, 2, .., p,

(16)

where φi(t) =
(

A f C
)

i

.
e1(t)−

(
A f M

)
i

.
h(t)−A f ,i

.
f(t). Then

‖φi(t)‖ < ‖
(

A f C
)

i
‖‖ .

e1(t)‖+ ‖
(

A f M
)

i
‖‖

.
h(t)‖+ ‖A f ,i‖‖

.
f(t)‖. (17)

Since A is stable, the autonomous system associated with e1(t) is stable. Consequently, both
‖e1(t)‖ and ‖ .

e1(t)‖ are bounded. Provided ‖
.
h1(t)‖ and ‖

.
f1(t)‖ are bounded, then there exists a

sufficiently large ε with which ‖φi(t)‖ < ε is satisfied. As discussed in [11], Equation (16) is a special
case of the super-twisting structure from [12]. Choose the scalar gains from Equation (16) as

ψ > 2
√

ε, χ > 0, ς > ε, ϕ >
χ2(ψ3 + 5/4ψ2 + 5/2(ς− ε)

)
ψ(ς− ε)

, (18)

Consequently, from the results of [12], it can be proven that a sliding motion will take place and
.
ez,i(t) = ez,i(t) = 0 in finite time.
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Once the sliding surface is reached, the error dynamics in Equation (12) are given by

.
e1(t) = Ae1(t)− Lh(t)

0 = A f Ce1(t) + Ipνeq(t)−A f Mh(t)−A f f(t),
(19)

where the signal νeq(t) is the so-called equivalent output injection signal. As in [13], νeq(t) represents
the averaged behavior of ν(t), which can be obtained from ν(t) by a low pass filter. Considering only
the effects of f(t), i.e., assuming A f Mh(t) = 0, the sensor fault reconstruction can be obtained from

f̂(t) = A−1
f νeq(t). (20)

4. Degraded Performance Tracking and Post-Flight Model Update

In the previous section, a second order sliding mode observer has been constructed for engine
sensor fault diagnosis. Although the health parameters were considered during the analysis, the
reconstruction signal was approximated by leaving out the effect of h(t). The sliding mode observer
is able to obtain robust stability with a proper design of gains, but the pollution in f̂(t) caused by
h(t) may generate misdiagnosis or false alarm in in-flight sensor fault diagnostics. In this section, the
problem is investigated by constructing another sliding mode observer to update the degraded engine
model post-flight. That is, the health parameters are estimated on-line in each flight, and then the
baseline model for sensor diagnostics is updated post-flight by using the analyzed health tracking
data, eventually in next flight the updated model will be used for on-board sensor fault diagnosis,
instead of the non-degraded baseline model. In this section, the observer for tracking performance
degradation is designed by the same methodology applied previously. The degraded engine model
can be expressed as

.
x(t) = Ax(t) + Bu(t) + Lh(t)

y(t) = Cx(t) + Du(t) + Mh(t).
(21)

Here, the output vector is partitioned as
[
yT

1 , yT
2
]T such that y1 = [NL, NH]

T and
y2 = [T25, P25, T3, P3, T495]

T, the reformulated model becomes

.
x(t) = Ax(t) + Bu(t) + Lh(t){

y1(t) = C1x(t) + D1u(t) + M1h(t)
y2(t) = C2x(t) + D2u(t) + M2h(t)

,
(22)

where C1, C2, D1, D2, M1, and M2 are coefficient matrices of appropriate dimension. Since y1 = x, then
C1 is an identity matrix, and D1, M1 are both zero matrices. Obviously, there is no useful information in
measurement equation of y1 for health tracking usage. Consider a filtered version of only y2, which is

.
z2(t) = −A f ′z2(t) + A f ′y2(t), (23)

where −A f ′ ∈ R(p−n)×(p−n) is a stable filter matrix. Similarly, substituting z2(t) for y2(t) in
Equation (22), and combining x(t) and z2(t) to create xa′(t) ∈ Rp, the augmented system is in the
form of [ .

x(t)
.
z2(t)

]
=

[
A 0

A f ′C2 −A f ′

]
︸ ︷︷ ︸

Aa′

[
x(t)
z2(t)

]
︸ ︷︷ ︸

xa′ (t)

+

[
B

A f ′D2

]
︸ ︷︷ ︸

Ba′

u(t) +

[
L

A f ′M2

]
︸ ︷︷ ︸

Ha′

h(t)

ya′(t) = Ca′xa′(t),

(24)
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where Aa′ ∈ Rp×p, Ba′ ∈ Rp×m, Ha′ ∈ Rp×q, and Ca′ = Ip. Compared to Equation (6), the system in
Equation (24) is reduced by 2 while the information necessary for health tracking is well reserved. The
observer existence conditions discussed earlier are checked by rank(Ca′Ha′) = rank(Ha′) = q, and

rank(Ra(s)) = rank


 sIn −A 0
−A f ′C2 sIp−n + A f ′

L
A f ′M2

Ip 0




= rank
(
Ip
)
+ rank

([
L

A f ′M2

])
= p + q = 2p,

(25)

which means the invariant zeros of (Aa′ , Ha′ , Ca′) are non-existant. With the conditions been checked,
the same SOSMO design strategy for sensor fault can be used to fulfill degrading estimation based on
system in Equation (24). With appropriate gains selected, the estimation of health parameters can be
obtained from

ĥ(t) = H−1
a′ νeq(t). (26)

During flights, ĥ(t) can be obtained on-line in real time. Since health degradations are assumed
to be a long-time slow-evolving process, h(t) varies marginally in one flight. Therefore, define

ĥ[k] =
1
T

∫ T

0
ĥ(t) (27)

as the estimating value of health parameters after the kth flight, where T is the flight cycle period.
By ignoring the influence of degradation in the (k + 1)th flight, the on-board sensor fault diagnosis is
modified to be based on the updated model

.
xa(t) = Aaxa(t) + Bau(t) + Haĥ[k] + Faf(t)

ẑ(t) = Cax̂a(t).
(28)

Therefore, the observer for sensor reconstruction becomes

.
x̂a(t) = Aax̂a(t) + Bau(t) + Haĥ[k]−Glez(t) + Gnν(t)

ẑ(t) = Cax̂a(t).
(29)

By subtracting Equation (29) from Equation (24), the error system becomes

.
e(t) = Aae(t)−Glez(t) + Gnν(t)− Faf(t) + Ha

(
ĥ[k]− h(t)

)
. (30)

Since in the (k + 1)th flight h(t) ≈ ĥ[k], the effect of performance degradation is eliminated from
the error system and the following deductions. Therefore, the sensor diagnostic system maintains
its effectiveness even in performance degradation circumstances. The overall sensor fault diagnostic
scheme can be summarized as: one SMO is built for on-board health performance estimation, then the
calculation of ĥ[k] is done after each flight to update the current degraded baseline model, which is
used for the on-board sensor fault diagnostic algorithm based on another SMO. An overview of the
model updating and sensor fault diagnostic architecture is presented in Figure 2.
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From the observer form in Equation (29), it can be seen that although the degraded engine model
is changed constantly with updated ĥ[k], the observer gains do not need adjustments. It is a significant
advantage compared to the traditional KF-bank-based methods in [3,4], which demands the diagnostic
algorithm to be redesigned once the degraded model is updated, and the redesigned algorithm to be
uploaded to the on-board computer. The frequency of the periodic update in their schemes is hard to
decide: shortening the update period means decreasing the model errors, but it will inevitably increase
the labor, material, and cost consumption. Whereas in the proposed scheme, the updating process
being implemented each flight can be handled just with an on-board computer, and human effort
which is necessary in [3,4] to adjust the algorithms is avoided. Thus the update process can be executed
after each flight, which provides a more accurate degraded model for sensor fault reconstruction.

5. Simulation and Performance Evaluation

In this section, simulation results and performance evaluations of the proposed sensor fault
diagnostic system for a commercial aircraft engine are presented. Although the algorithms are based
on the state-space model, the verification process will be conducted via a nonlinear component-level
model (CLM) of a twin-spool turbofan engine, which is a simulation platform as a representative
of a commercial turbofan engine with highly fidelity. The developed CLM was described in [14],
and it has been validated against testing data extracted from the real engine. The CLM consists of a
set of individual components, such as compressors, combustors, and turbines, etc. Each component
contains mathematical equations, maps, and tables describing the thermodynamic relationships
between various variables, and requires a number of inputs and generates one or more variables. The
thermodynamic parameters in cross sections of each component—such as the total temperature, total
pressure, efficiency, and flow capacity—can be calculated as in [15]. The steady state simulation of
CLM is based on mass flow balance and power balance equations, while the transient simulation,
initialed by steady state calculation, follows mass flow balance and rotor dynamics equations. The
Newton-Raphson method is employed to solve the nonlinear expressions both in steady state case
and transient dynamics. Iterative solution of nonlinear equations in each step stops once the iteration
number reaches 10, or the iteration error is less than 0.01. The CLM is written using C language and
packaged with dynamic link library (DLL) for use in the MATLAB environment [15,16]. The health
parameters are modeled and health degrading injection is available in the CLM. Sensor dynamics are
ignored in the simulations, with the assumption that they have high enough bandwidth.

The CLM is simulated at the reference flight condition and at a nominal cruise power setting,
with H = 10.7 km, Ma = 0.78, and Wf = 0.36 kg/s. To represent real working condition, the white
Gaussian measurement noise and process noise are introduced with standard deviations (percentage
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of the nominal value) σnoise,m = 0.0015 and σnoise,p = 0.0005, respectively. The magnitude of noises is
determined by practical experience and previously published data [14].

One issue should be addressed that, in the real flight environment, the ambient condition
continually changes even in the cruise phase, such as the inlet temperature and pressure. Generally,
the target of the steady control scheme for an aero-engine is a constant value of NL, thus the change
of the ambient condition means the fuel flow is regulated real-time to keep NL invariant. The sensor
fault diagnostic system should be developed to be robust enough to handle Wf movements. In view
of this, in the following simulations, a continuously varying Wf is employed to present real cruise
conditions, as shown in Figure 3, and the proposed system is evaluated for its diagnostic capabilities
during Wf transient.
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The sensor faults being dealt with in this paper are “soft” failures, which are defined as
inconsistencies between true and measured sensor values that are relatively small in magnitude.
Oppositely, “hard” failures are large in magnitude and thus more readily detectable. Sensor faults are
in different forms such as a step or a drift, and in the simulations step faults are applied, which are
considered “harsher” to the system, and are convenient to evaluate observer dynamic performance.
To examine the proposed scheme, an extreme case in which faults with different magnitude occur in
the entire seven sensors during 50 s in one flight is carried out, as shown in Figure 4. The nominal
value of the measurements at the cruise and the fault magnitude in percentage are shown in Table 2.Sensors 2017, 17, 835 10 of 14 
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Table 2. The nominal value and the fault magnitude of sensors at cruise.

Measurement Nominal Value Fault Magnitude

NL 3484 RPM −2%
NH 15,044 RPM −3%
T25 298 K −5%
P25 64,990 Pa −1.5%
T3 747 K −8%
P3 1,242,145 Pa −2%

T495 936 K −2.5%

The capability of the proposed scheme is first verified in non-degraded condition. Figure 5 shows
the output variations in which the output are normalized as

yr = (y− yds)/yds, (31)

where yds represents the nominal value of measurements at cruise operating point. The joint influence
by fuel flow transient and fault injections makes it a tough task to identify each sensor fault correctly.
However, in the proposed sensor fault diagnostic scheme, the sliding mode observer is designed to be
robust enough to endure model mismatches caused by Wf changes, while being able to reconstruct
sensor faults with satisfactory accuracy. Figure 6 shows the diagnosing results, in which the seven
concurrently occurring faults have been faithfully detected and reconstructed in separate sensors.
Compared to the traditional FDI scheme based on KF-bank concept, the proposed scheme is able to
not only detect and isolate faults, but the exact type and magnitude of faults are also obtained.Sensors 2017, 17, 835 11 of 14 
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Next, the proposed system is simulated to be employed in the course of an engine life with slow 
aging process. As an engine inevitably degrades overtime, it is necessary to evaluate the effectiveness 
of the sensor fault diagnostic system in such a real working condition. Figure 7 depicts the slow aging 
process reflected by health parameters, which slowly drift away from their nominal values in 5000 
flight cycles. Assuming that the same sensor faults in Figure 3 occur during the 4501th flight cycle, 
Figure 8 shows the normalized outputs. Obviously the “information” in outputs for sensor fault 
reconstruction is corrupted by degradations. However, with another observer designed above for 

Figure 5. The normalized measurements.

Next, the proposed system is simulated to be employed in the course of an engine life with slow
aging process. As an engine inevitably degrades overtime, it is necessary to evaluate the effectiveness
of the sensor fault diagnostic system in such a real working condition. Figure 7 depicts the slow
aging process reflected by health parameters, which slowly drift away from their nominal values in
5000 flight cycles. Assuming that the same sensor faults in Figure 3 occur during the 4501th flight
cycle, Figure 8 shows the normalized outputs. Obviously the “information” in outputs for sensor fault
reconstruction is corrupted by degradations. However, with another observer designed above for
tracking degradation, before the 4501th flight an estimation value of health parameters representing
the condition in the 4500th flight (ĥ[4500]) has been calculated. ĥ[4500] is then employed to update
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the engine model used for sensor on-board diagnosis in the 4501th flight. With the update strategy,
the sensor fault diagnosing results are shown in Figure 9. Due to the degraded model update, the
sensor fault reconstructions are slightly affected. The accuracy of reconstruction is assessed in terms
of the rooted square mean error (RSME). Table 3 shows the statistics reflecting the RSME results of
seven sensor fault reconstruction signals in both non-degrading and degrading cases. The results
consistently imply the ascendency of the proposed scheme in accuracy and robustness to degradation.
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Table 3. The RMSE results of the sensor fault reconstruction (%). 

 Non-Degrading Case Degrading Case ୐ܰ 0.197 0.208 ୌܰ 0.294 0.298 ଶܶହ 0.515 0.516 ଶܲହ 0.143 0.146 ଷܶ 0.895 0.895 ଷܲ 0.219 0.236 ସܶଽହ 0.241 0.252 

6. Conclusions 

In this paper, the second-order sliding mode observers have been developed for building an 
integrated sensor fault diagnostic system of a commercial aircraft engine. With two observers 
separately designed for health performance tracking and sensor fault reconstruction, the proposed 
approach is capable of quickly detecting fault occurrence and accurately reshaping the fault profiles 
despite the presence of degradation. The post-flight degraded model update does not require 
observers to be regulated or redesigned. Being time and cost-saving, it implies great potential in real 
applications. The proposed scheme validated with nonlinear CLM reveals promising results in terms 
of the fast and accurate sensor fault reconstructions, both in non-degraded and degraded cases. 
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Table 3. The RMSE results of the sensor fault reconstruction (%).

Non-Degrading Case Degrading Case

NL 0.197 0.208
NH 0.294 0.298
T25 0.515 0.516
P25 0.143 0.146
T3 0.895 0.895
P3 0.219 0.236

T495 0.241 0.252

6. Conclusions

In this paper, the second-order sliding mode observers have been developed for building an
integrated sensor fault diagnostic system of a commercial aircraft engine. With two observers separately
designed for health performance tracking and sensor fault reconstruction, the proposed approach is
capable of quickly detecting fault occurrence and accurately reshaping the fault profiles despite the
presence of degradation. The post-flight degraded model update does not require observers to be
regulated or redesigned. Being time and cost-saving, it implies great potential in real applications. The
proposed scheme validated with nonlinear CLM reveals promising results in terms of the fast and
accurate sensor fault reconstructions, both in non-degraded and degraded cases.
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